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Discussion Paper

n. 10

Gaetano Alfredo Minerva

Location and Horizontal Differentiation under

Duopoly with Marshallian Externalities

Abstract

A classical differentiated duopoly model is cast in a two regions’ frame-
work. An entrant firm, which locates in the other region from the
incumbent, comes in and competes with the rival, under markets’
segmentation. In the first stage of the game, it has to choose prod-
uct differentiation. The resulting equilibrium is compared under two
different settings: competition in prices (Bertrand) and quantities
(Cournot). It is shown that, under both modes of competition, the
entrant maximizes product differentiation, producing a completely dif-
ferent good.

Afterwards, the Cournot model is extended by assuming that,
when firms are located together, they benefit from Marshallian lo-
calization economies. First, the minimum cost reduction inducing ag-
glomeration is computed. Second, the implications of a linear spillover
function (linking product differentiation to marginal cost reduction)
against a quadratic specification, with respect to location and product
differentiation, are investigated.

Classificazione JEL: D43; F12; L13.
Keywords: Intra-industry trade; product differentiation; location;
Marshallian externalities.
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I. Introduction

This paper wants to add some insights to the existing literature
on role played by product differentiation in the formation of clus-

ters of firms. We focus on a duopolistic framework, where firms
can differentiate their products as much as they want, because dif-

ferentiation is costless, and consumers ceteris paribus love variety.
First we establish that maximum differentiation and dispersion is

the profit maximizing configuration. Then we show how this result
is affected by the presence of a spillover leading to marginal cost

reduction, and being dependent on product differentiation.

The framework of analysis hinges upon that of Belleflamme, Pi-

card, and Thisse (2000), BPT hereafter, though the problem we
want to investigate is somewhat different. In particular, from that

model we take the idea of casting the Dixit (1979) duopolistic frame-
work in a two regions context. We set up a game where the choice

of product differentiation is endogenous. There is an incumbent
firm and an entrant firm. The entrant, in the first stage of the
game, chooses the product differentiation parameter, i.e. decides

how much to differentiate its production from the one of the incum-
bent. Then it has to deal with the problem of selecting the region

where to organize production (second stage), and finally both firms
compete in prices or quantities (third stage).

We will assume that firms use spatial separation to segment their
markets, i.e. they set a price specific to each region in which the

product is sold. This is the same assumption of Brander and Krug-
man (1983), that focus on reciprocal dumping in a two regions econ-
omy where firms compete à la Cournot, and sell a homogeneous

product. Our model features the emergence of dumping and trade
in equilibrium under both modes of competition, independently of

the level of transport costs, given that then entrant firm will maxi-
mize differentiation in equilibrium so to allow trade also under price

competition.

Product selection in this paper is achieved by setting the param-
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eter of the demand function for the differentiated varieties linking

own price (or quantity) to rival’s quantity (or price), so that it
is closely related to cross elasticity of substitution. This is differ-

ent from non-address approaches, as the usual version of Dixit and
Stiglitz (1977), where product differentiation is defined in terms of
the number of active firms, in the framework of a CES utility func-

tion defined over all the potential range of differentiated products.

As to address models à la Hotelling, where product differentia-

tion consists in different locations in the product space (think to
d’Aspremont, Gabszewicz, and Thisse (1979) quadratic transport

costs framework), our paper retains the strategic aspect of product
differentiation (the incentive to differentiate in order to relax price

competition), while it lacks the demand effect (the incentive to lo-
cate at the market centre in order to capture as many customers
as possible) given its non-spatial nature. This explains why firms

will target maximum differentiation in the absence of any other in-
centive to lessen product differentiation. Moreover, as suggested by

Harrington (1995), the parameter of product differentiation that we
employ, more than being linked to a measure of distance on the seg-

ment, is the counterpart of transport costs in Hotelling. The higher
transport costs, the poorer substitutes the varieties are, because

the higher is the loss incurred by customers in buying a product
different from the preferred one.

The two aspects of location and product differentiation have
been addressed together in the literature in models à la Hotelling.
Schmitt (1995) analyzes a model where two countries trade differ-

entiated products subject to a barrier to trade t, representing either
transport costs or a tariff. Preferences in each country are modelled

as a segment of unit length, and each firm can adjust its special-
ization, along the segment, in addition to its location (region A or

B). In his paper, if demand density is the same across regions, the
case we actually consider in this work, then, depending on trans-

port costs, the Nash equilibrium will be either imitation (x∗
1 = x∗

2)
or maximum differentiation (x∗

1 = 0 and x∗
2 = 1). Imitation is the

profit maximizing choice when the barrier to trade between regions
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is sufficiently high as well as the degree of substitution between prod-

ucts (as captured by low transport costs on the Hotelling segment),
and corresponds to a no trade pattern between the two regions. On

the contrary, when the degree of substitution is relatively poor with
respect to the barrier to trade between regions, firms maximally
differentiate their products in equilibrium, and intra-industry trade

consequently is established. Our results differ from Schmitt (1995)
to the extent that we work out just the convenience of increasing

the degree of substitution between products.

After having established that producing independent products
is the profit maximizing choice, the second part of the paper shows

how this result could be modified by assuming that the entrant ben-
efits from marginal cost reduction if it locates in the same region of

the incumbent. To our knowledge, this is the first attempt in the
literature to build a model where profit maximizing firms compute

costs and benefits of decreasing differentiation in order to exploit a
cost reduction, due to localization economies, whose intensity de-

pends on product differentiation itself.
The analysis shows how the equilibrium level of product differ-

entiation depends on the autonomous marginal cost (i.e. the cost

incurred when the externality is null, which occurs when products
are independent). When cost decreases linearly in product differen-

tiation, the choice will be either to maximize differentiation (when
autonomous cost is low) or to produce a homogenous product in

order to fully exploit the externality (when cost is high). When the
spillover is quadratic, maximizing differentiation is still the profit
maximizing choice for low levels of marginal autonomous cost, while

it decreases smoothly as cost increases.

The organization of the paper is as follows. Section II. intro-

duces the model. Section III. solves for equilibrium quantities in
the Bertrand and Cournot games. Section IV. computes the profit

maximizing product differentiation without spillover, while Section
V. shows the effect of introducing them in the context of Cournot
competition. Concluding remarks end the paper.
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II. The model

Our economy is made up of two regions A and B. One firm,

producing a certain good, is already established either in A or in B.
Another firm wishes to entry in the market, selling an horizontally

differentiated variety of the good. Thus, the actions the entrant
must take are the following: a) to choose the level of product differ-

entiation of its own production with respect to the good produced
by the incumbent; b) to choose a region where to locate. As a last
step, both firms non-cooperatively compete in prices or quantities

for the home and foreign market.

Let us start from the consumption side of the model. Each region

shows the same demand conditions, which are taken as given, that is
firms’ location decisions do not affect them. Since we deal with entry

by a new firm in the market, we distinguish between preferences
before entry takes place and after it does. When only one variety

and the numeraire are available, preferences are of the following
form:

U(q0, q1) = αq1 −
β

2
q2
1 + q0 (1)

where marginal utility from good 1 is non-negative as long as q1 ≤
α/β. This shows that our preference relation displays satiation in

the consumption of the good, thus making it well-suited for partial
equilibrium modelling.

Entry by the other firm modifies preferences into the following
quadratic structure:

U(q0, q1, q2, δ) = α(q1 + q2) − (β/2)(q2
1 + q2

2) − δq1q2 + q0 (2)

The condition for the non-negativity of marginal utility from

good 1 is:

q1 ≤
α

β
−

δ

β
q2

saying that as consumption of good 2 increases, the upper bound in
the consumption of good 1 decreases.
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Utility function (2) depends on the product differentiation vari-

able δ. We assume that there is an incumbent in the market pro-
ducing some good, and an entrant coming in and deciding, through

the choice of δ, how much to differentiate its product either because
of the physical characteristics of the products (e.g. through differ-
ent design) or because of firms’ ability to manipulate in some sense

sheer consumers’ perception of varieties (i.e. through advertising).
In each region the representative consumer shows a symmetric pref-

erence relation over the two horizontally differentiated varieties of
the monopolistic sector, separable and linear in the homogeneous

good q0, the numeraire good. α, β, and δ are all assumed to be
positive1, and in order to get a concave utility function we need
δ2 < β2. The convexity of the indifference curves with respect to

the differentiated products q1 and q2 implies that consumers love va-
riety2. Given that the quantity of the homogeneous good that can

be consumed is the residual, from the initial fixed endowment ȳ, of
what is spent on the two varieties, we get that consumer’s problem

is to maximize

Max
q1,q2

U(q1, q2) = α(q1+q2)−(β/2)(q2
1 +q2

2)−δq1q2 + ȳ−(q1p1 +q2p2)

(3)
The necessary (and sufficient) first order conditions imply that the

demand for one of the two differentiated varieties i = {1, 2} is:

pi = α − βqi − δqj (4)

with j the other variety.

After few manipulations, it can be expressed in terms of prices
as:

qi =
α

β + δ
−

β

(β + δ)(β − δ)
pi +

δ

(β + δ)(β − δ)
pj (5)

When δ = 0 the two products belong to independent sectors,
whose cross price elasticity of substitution is zero. When δ → β, the

1Note that the case δ < 0 still retains an interesting economic interpretation in terms of
complementary products, but in what follows we will deal just with substitutes, i.e. δ > 0.

2The intensity of the love for variety depends on the magnitude of δ. For fixed prices and
quantities, utility decreases as we increase δ.
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two products are perfect substitutes, since quantities in the demand

function (5) react hugely even to a slight difference in prices.

As far as the production side of the model is concerned, there
are no fixed costs to start up production. Each firm faces just a

constant marginal cost equal to c, in order to produce one unit of
output.

Hence, profits accruing to firm i when located in region K may

be represented as:

ΠiK = (piK − c)

[

α

β + δ
−

β

(β + δ)(β − δ)
piK +

δ

(β + δ)(β − δ)
pjK

]

+

(6)

+(piL − c − t)[
α

β + δ
−

β

(β + δ)(β − δ)
piL +

δ

(β + δ)(β − δ)
pjL]

when firms maximize with respect to prices (Bertrand case), where

the variables piK, pjK, piL, pjL are the prices charged by firm i or
j in region K (home region for firm i) or L (foreign region for firm

i) respectively. A similar expression holds if firms set quantities
(Cournot case):

ΠiK = (α − βqiK − δqjK − c)qiK + (α − βqiL − δqjL − c− t)qiL (7)

Two spatial configurations are possible, agglomeration of both firms

in one region (e.g. in K) or dispersion (e.g. firm i located in K and
j in L).

Profits can be normalized. Multiplying by the constant β in

(6) simply amounts to scale equilibrium quantities, so that we can
replace in the normalized profit function 1 to β, ω ≡ δ/β to δ.
The range of variation of the product differentiation parameter is

ω ∈ [0, 1], with ω = 1 the case of homogeneous varieties. The
resulting demand corresponds to:

qi =
α

1 + ω
−

1

1 − ω2
pi +

ω

1 − ω2
pj

For the profit function (7), expressed in terms of quantities, di-
viding by β we are allowed to substitute ξ ≡ α/β to α, 1 to β,
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ω ≡ δ/β = to δ, C ≡ c/β to c and T ≡ t/β to t. We get that

inverse demand is equal to:

pi = ξ − qi − ωqj

Normalization makes it easier to derive analytical solutions, while

to go back to the original variables it suffices to multiply by the
appropriate scale factor.

III. The solution to the model

With a backward induction argument, we first compute equi-
librium in the third stage of the game, where two equilibria are

possible. One is a duopoly equilibrium with differentiated varieties,
when firms non-cooperatively compete in prices or quantities. The

other is monopoly pricing, occurring when equilibrium product dif-
ferentiation is so low that export would be possible just accepting
losses in the foreign market. In this case firms do not send their

production abroad and strategic interaction ceases.
Then we go back to the second stage of the game, when the

entrant chooses one region, locating either in the same place of the
incumbent (agglomeration) or in the other region (dispersion).

Finally, product differentiation is chosen. As said, for low val-
ues of product differentiation intra-industry trade is not profitable,

hence the entrant locating in the region not occupied by the incum-
bent can charge monopoly price.

Given the symmetric structure of the model, the entrant’s equi-

librium choice of the profit maximizing level d and of a location will
be stable in the sense that the incumbent will not find convenient

to modify it in any way. Profits accruing to both firms are equal,
and so maximizing its own profits, a firm maximizes also its rival’s.

As to existence and uniqueness, note that profit functions are
concave with respect to their own control variable when firms share

both markets. Hence, solving the first-order conditions for profit
maximization yields the equilibrium prices. The monopoly case
under autarchy is a standard one, and again existence is ensured.
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III.A. Non-cooperative equilibrium

In the last stage of the game, if product differentiation is high

enough and trade occurs, we have competition either in prices or in
quantities: firms maximize their objective functions (profits) with
respect to the strategic variable. The reaction curves are then solved

simultaneously to derive the equilibrium configuration.

III.A.i. Equilibrium à la Bertrand

Let us start from agglomeration. Equilibrium prices are:

piK = pjK =
α(1 − ω) + c

2 − ω
≡ ph

K (8)

piL = pjL =
α(1 − ω) + c + t

2 − ω
≡ pf

K

Here ph
K stands for home equilibrium price (i.e. prevailing in region

K) when the two firms locate in region K, and pf
K is the foreign

equilibrium price (i.e. prevailing in region L) when the two firms are
located in region K. Prices are decreasing in ω, i.e. are decreasing

as varieties become more homogeneous. Equilibrium quantities are
obtained substituting prices in the demand function (5):

qiK = qjK =
α − c

(2 − ω)(1 + ω)
≡ qh

K

qiL = qjL =
α − c − t

(2 − ω)(1 + ω)
≡ qf

K

In the case of dispersion, assuming i is located in K and j is
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located in L, equilibrium quantities are:

piK = pjL =
2(α + c) − ω(α − c − t) − αω2

4 − ω2
≡ ph

S (9)

piL = pjK =
2(α + c + t) − ω(α − c) − αω2

4 − ω2
≡ pf

S

qiK = qjL =
(α − c)(2 − ω2) − ω(α − c − t)

(4 − ω2)(1 − ω2)
≡ qh

S

qiL = qjK =
(α − c − t)(2 − ω2) − ω(α − c)

(4 − ω2)(1 − ω2)
≡ qf

S

Again prices are decreasing in ω. The following relations hold:

pf
K − t < ph

K < pf
K (10)

pf
S − t < ph

S < pf
S (11)

Expressions (10) and (11) show that the burden of transport costs

is divided between consumers and producers, since, both under ag-
glomeration and dispersion, the price the formers will pay for the

imported variety is higher than the domestic one, while, net of trans-
port costs, producers will get from the exported variety less of what
they are able to obtain from the local market. In other terms we

have ’reciprocal dumping’, i.e. firms receive a lower mark-up from
the foreign market.

Equilibrium prices are such that market segmentation turns out

to be a sustainable policy in equilibrium. Making the realistic as-
sumption that consumers would incur the same transport costs of
producers in importing a variety from abroad, the resulting price

equilibrium is robust against such arbitrage attempts given that:

ph
K + t > pf

K (12)

ph
S + t > pf

S (13)

We need to specify some non-negativity constraints, in order to
ensure that quantities and mark-ups be positive in the duopoly set-
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ting. Calculations are reported in Appendix A. The condition en-

suring positive equilibrium quantities under dispersion is3:

t <
(α − c)(2 − ω2 − ω)

2 − ω2
≡ τS(ω) (14)

α − c > 0 (15)

In (14), τS(ω) is the threshold level of transport costs below which
trade occurs under dispersion4. In particular, for values of t smaller
than the threshold, we get positive equilibrium foreign mark-ups

and quantities under dispersion.
The threshold level is a function of the product differentiation

parameter ω. It can be easily proven that ∂τS(ω)/∂ω < 0: the
maximum level of transport costs compatible with trade under dis-

persion is an increasing function of product differentiation. Put in
the other way, ω̄, i.e. the minimum level of differentiation that must

be introduced to get trade, is increasing in t. This means that when
products are sufficiently homogeneous and transport costs are suf-
ficiently high, consumers will buy only the local product: their love

for variety (in this case rather weak, since the two products are not
too much differentiated) is outweighed by the fact that foreign good

is expensive due to the high incidence of transport costs.
In the extreme ω = 0 the threshold level τS takes the value

τS(0) ≡ τK = α− c. The threshold τK specifies the value inhibiting
trade among regions whatever product differentiation is.

If condition (14) is not checked, then it might be the case that

foreign mark-ups and export still be positive under agglomeration,
provided that transport costs satisfy:

t < α − c = τK

We summarize the above findings in Figure 1.

Equilibrium profits in the third stage of price competition are
then distinguished whether agglomeration or dispersion occurs. If

3In turn, this will guarantee positive equilibrium quantities under agglomeration, see the
Appendix.

4In Belleflamme, Picard, and Thisse (2000) the trade condition τS(ω) is called ttrade.
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τK = α − c

t

1 ω

τS(ω)

Figure 1: The trade condition under Bertrand competition

firms locate together, they will get:

ΠK =
(1 − ω)[2(α − c)2 − 2t(α − c) + t2]

(2 − ω)2(1 + ω)
(16)

If firms locate separately in space, they will get:

ΠS =
2(α − c)2(1 − ω)2(2 + ω)2 + (4 − 3ω2 + ω4)t2 − 2(α − c)(1 − ω)2(2 + ω)2t

(4 − ω2)2(1 − ω2)
(17)

The entrant firm in the second stage of the game is supposed to
choose agglomeration whenever ΠK > ΠS. If the opposite holds it

will choose dispersion. Actually, it turns out that

ΠK(t, ω) < ΠS(t, ω) ∀ (ω, t) 6= 0 (18)

for all ranges of parameters where dispersion is feasible (i.e. t ≤

τS(ω)), and so firms will always choose to locate in different regions,
given the higher level of profits they attain. When ω = 0, profits

under agglomeration or dispersion are the same because firms pro-
duce varieties whose cross elasticity of substitution is zero, and no

interaction between them occurs: they belong to separate markets.
For τS(ω) < t ≤ τK , such that agglomeration is feasible while

dispersion is not, we have that maximization of dispersion profits
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(16) involves an increase in the level of product differentiation (lower

ω), and so we go back to a parameters’ region where dispersion is
feasible again. So we can conclude that dispersion is always the

profit maximizing configuration in this model.

III.A.ii. Equilibrium à la Cournot

We write the expression for equilibrium variables under agglom-
eration:

qiK = qjK =
ξ − C

2 + ω
≡ qh

K (19)

qiL = qjL =
ξ − C − T

2 + ω
≡ qf

K

piK = pjK =
ξ + C(1 + ω)

2 + ω
≡ ph

K

piL = pjL =
ξ + (1 + ω)(C + T )

2 + ω
≡ pf

K

and profits are:

ΠK =
2(ξ − C)2 − 2T (ξ − C) + T 2

(2 + ω)2

Equilibrium prices and quantities under dispersion turn out to be:

qiK = qjL =
2(ξ − C) − ω(ξ − C − T )

4 − ω2
≡ qh

S (20)

qiL = qjK =
2(ξ − C − T ) − ω(ξ − C)

4 − ω2
≡ qf

S

piK = pjL =
2(ξ + C) − ω(ξ − C − T ) − ω2C

4 − ω2
≡ ph

S

piL = pjK =
2(ξ + C + T ) − ω(ξ − C) − ω2(C + T )

4 − ω2
≡ pf

S

Profits under dispersion become:

ΠS =
2(ξ − C)2(2 − ω)2 + (4 + ω2)T 2 − 2(ξ − C)(2− ω)2T

(2 − ω)2(2 + ω)2
(21)
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τK = ξ − C

1

2
(ξ − C)

τS(ω)

t

ω1

Figure 2: The trade condition under Cournot competition

In analogy to the Bertrand case, we impose the non-negativity of
quantities and mark-ups. Home quantity and mark-up are always

positive. The conditions for foreign variables are:

qf
S > 0 ⇒ T <

(2 − ω)(ξ − C)

2
≡ τS(ω) (22)

pf
S − C − T > 0 ⇒ T < τS(ω)

We identify a trade condition τS(ω): there is trade only when

transport costs are low enough. It can be interpreted equivalently
as the minimum level of product differentiation ω̄(T ) ≡ τ−1

S (T )

compatible with intra-industry trade, for a given level of transport
costs. In Fig. 2 we plot the trade condition.

It is interesting to note that there is a range of transport costs for
which intra-industry trade occurs also when products are perfectly

homogeneous. This is a well known result since Brander and Krug-
man (1983), due to oligopolistic interaction between firms playing à
la Cournot, and contrasts with competition in prices, where intra-

industry trade in homogeneous products is impossible for a positive
level of transport costs.

Similarly to the Bertrand case, it can be proven that dispersion
is always more profitable than agglomeration.
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III.B. Monopoly equilibrium

When firms sell just in their domestic market (autarchy), there is
no longer strategic interaction and the model reduces to monopoly.

This occurs under two circumstances: a) transport costs are greater
or equal to τK; b) the equilibrium level of product differentiation is

greater than ω̄(t) or ω̄(T ).

Knowing that, under monopoly, Bertrand and Cournot equilib-

rium coincides, we compute just one of them. A subscript U is
added for variables under monopoly. In the non-normalized version

of the model, the demand in each region for the available variety is
equal to:

pU = α − βqU

and profits are

ΠU = (α − βqU − c)qU

Maximization with respect to qU yields the following equilibrium
quantities:

pU =
α + c

2
(23)

qU =
α − c

2β

ΠU =
(α − c)2

4β

IV. Profit maximizing product differentiation

Setting ω has an implication in terms of intra-industry trade

patterns, and in terms of market structure, as for values of equilib-
rium product differentiation greater than ω̄(t) we get an autarchic

monopoly configuration. The entrant knows that if product differ-
entiation is low enough, then there is no more strategic interaction.

It then becomes crucial to compare monopoly profits with those
under the non-cooperative duopoly equilibrium. If the entrant firm
attains a higher profit in the monopoly setting, then equilibrium
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product differentiation will be ω > ω̄(t). Otherwise the equilibrium

value will be that maximizing duopoly profits.

IV.A. The Bertrand game

The level ω∗(t) maximizing profits has to verify the following
conditions:

ω∗(t) = arg max
ω

ΠS(ω, t) if ΠS(ω, t) ≥ ΠU (24)

ω∗(t) > ω̄(t) otherwise (25)

where ω̄(t) is the threshold level of product differentiation compat-
ible with intra-industry trade.

When transport costs are null the level of product differentiation

maximizing profits is ω∗(0) = 0, corresponding to products belong-
ing to independent sectors. This can be easily checked setting t = 0
in (17), and noting that the first order derivative is negative. When

t = 0 the two regional markets collapse into a single one, given
that both areas are accessible at the same (zero) transport cost.

The problem reduces to determine, in a duopolistic framework with
firms competing in prices, profit maximizing product differentiation.

We now look for the level of ω which maximizes profits when

transport costs are positive, under the constraint ω < ω̄(t). After
that we will compare duopoly profits with those under autarchy, be-

cause by backward induction the entrant firm has to decide whether
to adopt a product differentiation level allowing trade, or whether
to differentiate its product so slightly that monopoly arises.

We first compute the partial derivative of dispersion profits with
respect to ω, in order to get necessary first order conditions. When

ω = 0 we get that

∂ΠS(ω, t)

∂ω

∣

∣

∣

∣

ω=0

= −
(α − c)t + (α − c)2

2
< 0

and so it is a local maximum given that ω must be greater or equal
than zero.
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Figure 3: t2(ω) (the lower curve) and τS(ω) when α = 3, c = 1.

Extensive calculations are reported in Appendix B for the case
ω > 0. The f.o.c. is equal to:

∂ΠS(ω, t)

∂ω
= −

Φ(ω, t)

(4 − ω2)3(1 − ω2)2
= 0 (26)

where Φ(ω, t) is a parabola in t with downward concavity for ω 6= 0.
From now on, for analytic tractability, we will explicit the f.o.c. in

terms of the level of transport costs, instead of the original product
differentiation parameter. We call the two solutions of equation

(26) t1(ω) and t2(ω) respectively. For a positive ω, t1(ω) < 0 while
t2(ω) > 0. We immediately derive that dispersion profits ΠS are
increasing in ω (decreasing in the degree of product differentiation)

for t > t2(ω). On the contrary, when t < t2(ω), dispersion profits are
decreasing in ω (increasing in the degree of product differentiation).

Moreover we have that t2(ω) < τS(ω) for all ω. In Fig. 3 we
plot t2(ω) and τS(ω) in the plane (ω, t) for the parameters’ values

α = 3, c = 1. In this way we can conclude that t2(ω) is the locus of
minimum profit, and candidates to be global maxima are then the
vertical axis (where products are made independent, ω = 0), and

the trade condition τS(ω). We derive the following Proposition.

Proposition 1 Under Bertrand competition, for every level of trans-
port costs t < α − c, dispersion profits are always maximized at
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ω = 0, so that the entrant firm will always choose to maximally

differentiate its product from the incumbent.

Proof. We begin by computing profits along the trade condition

that are:

ΠS(ω, τS(ω)) =
(α − c)2(1 − ω2)

(2 − ω2)2

Profits under monopoly, after having carried out the normalization

by multiplying for β are:

ΠU =
(α − c)2

4

and we note that, for ω 6= 0, ΠU > ΠS(ω, τS(ω)) (a discontinuity oc-
curs in the profit function at ω̄(t)). The entrant would prefer to set

product differentiation so low that the autarchic equilibrium arises
(i.e. ω > ω̄(t)) more than differentiating at the level ω = ω̄(t) and
face the duopoly (which is degenerate in some sense, since exports

are nil). But by setting ω = 0, he can do ever better, because when
it produces an independent product from the incumbent he will earn

monopolist’s profits in the home market (producing at the marginal
cost c) and monopolist’s profits in the foreign market (facing a to-

tal marginal cost of c + t, cost of production plus transport costs).
Hence ω = 0 maximizes profits.

IV.B. The Cournot game

We maximize dispersion duopoly profits under Cournot competi-
tion with respect to ω. We recall that the non-cooperative equilib-

rium concept applies only when the trade condition is checked, i.e.
t ≤ τS(ω), otherwise we have monopoly. In other words, the level

ω∗(t) maximizing profits has to verify the following conditions:

ω∗(t) = arg max
ω

ΠS(ω, t) if ΠS(ω, t) ≥ ΠT (27)

ω∗(t) > ω̄(t) otherwise (28)

where ω̄(T ) is the threshold level of product differentiation compat-
ible with intra-industry trade.
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Setting T = 0 in (21) it can be readily checked that for zero

transport costs profits are maximized when varieties are made inde-
pendent. This result was already obtained under price competition.

Let us now consider the more general case of positive transport
costs. For extensive calculations report to Appendix C.

Maximization of dispersion profits (21) yields the following first

order condition:

∂ΠS(ω, T )

∂ω
=

2Φ(ω, T )

(2 − ω)3(2 + ω)3

where Φ(ω, T ) is a parabola with upward concavity if ω 6= 0.

Let us consider what happens when ω = 0. In this case Φ(ω, T )
reduces to

Φ(0, T ) = 16(ξ − C)[T − (ξ − C)] < 0

and hence
∂ΠS(ω, T )

∂ω

∣

∣

∣

∣

ω=0

< 0

We now turn to the case of a positive ω. Since the parabola has a
positive root t2(ω), and a negative root t1(ω) we can conclude that

the derivative of dispersion profits will be decreasing in ω for every
T < t2(ω) and increasing in ω when T > t2(ω). In other terms t2(d)

is the locus of minima. We plot both t2(d) and τS(d) in Fig. 4, the
term (ξ − C) being just a scale factor. The two candidates to be
global maxima, for a given t, are then the vertical axis (ω = 0) and

the trade condition line τS(ω).
We derive the following Proposition.

Proposition 2 Under Cournot competition, for every level of trans-
port costs T < ξ − C, dispersion profits are always maximized at

ω = 0, that is the entrant firm will always choose to maximally
differentiate its product from the incumbent.

Proof. Profits computed along the trade condition amount to

ΠS(ω, τS(ω)) =
1

4
(ξ − C)2
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Figure 4: The trade condition and the t2(d) curve

that, after having multiplied by the scale factor, exactly equal monopoly

profits. When the quantity sold abroad goes to zero, the model re-
duces to monopoly. Comparing monopoly profits with those earned

by the firm when ω = 0, it is straightforward to verify that the latter
will be greater, since they are equivalent to the sum of profits made
by a monopolist firm in two distinct markets, one where it produces

at marginal cost C, the other where it produces at marginal cost
(C + T ).

If transport costs are low enough (T < 1/2(ξ−C)) it is impossible
to get autarchy (monopoly) by decreasing differentiation, and also

intra-industry trade in homogeneous products becomes feasible. For
a given T , comparing profits when ω = 0 with those when ω =

1, it is easy to show that they will be higher in the former case,
because each firm acts as a monopolist (even though it faces different

marginal costs according to the region where it sells the product),
as opposed to the latter case, where they are duopolists producing

the same homogeneous good.

The conclusion in this proposition should be compared with what

is found in section IV.A.. A main relevant difference is worth
mentioning. In the model expressed in terms of competition in
prices, when the product differentiation parameter tends to the up-



22 G. A. Minerva

per bound compatible with intra-industry trade under dispersion

ω̄(t), we do not retrieve monopoly profits. The reason is the follow-
ing. Under Cournot, along the trade condition the residual demand

the firm faces (in its own local market) is exactly that of a mo-
nopolist, because by definition on τS the quantity sold by the rival
firm is zero. This is not the case under Bertrand, since the residual

demand function on the trade condition is not equivalent to that
of monopoly, because there still exists a positive price differential

between the foreign and home variety.

The fact that there are strong incentives for product differentia-

tion in the first stage of the game seems plausible, though somehow
flawed by the partial equilibrium approach of the model, that ig-

nores competition from other sectors, which is sensible to judge
stronger the more the product is different from the one produced

by the incumbent.

V. Location and product differentiation under Marshal-

lian externalities

The main message from the discussion above is that firms maxi-

mize product differentiation in the absence of any incentive fostering
agglomeration and some product homogeneity. To figure out the ex-
istence of regional clusters, as in Belleflamme, Picard, and Thisse

(2000), we suppose that there are Marshallian externalities at work,
leading to a reduction in marginal cost whenever firms are located

together. We focus on competition in quantities. With a slight
abuse of notation, we use lower case variables c and t instead of the

normalized ones C and T . The difference between agglomeration
and dispersion profits is:

ΠK(cK(ω), ω, t)− ΠS(cS, ω, t) (29)

where the arguments in the profit function are marginal cost, prod-
uct differentiation, and transport costs respectively.
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V.A. Level of the spillover inducing agglomeration

As a first step, we compute the magnitude of the spillover neces-
sary to induce agglomeration whatever product differentiation is.

We make the simplifying assumption that it costs zero to pro-

duce one unit of the good under agglomeration (cK = 0) and c
under dispersion (cS = c). This entails no loss of generality with re-

spect to saying that firms produce at marginal cost a when located
together, and (a + c) when dispersed, but the former case is more

tractable analytically. In this manner c measures productivity gains
of agglomeration.

The spillover c◦ inducing agglomeration, if it exists, is that level

of marginal cost under dispersion so that:

∀c < c◦(t), ∃ ω′ ∈ (0, 1) such that ∀ω < ω′, ΠK − ΠS > 0

∀ω > ω′, ΠK − ΠS < 0

∀c > c◦(t), ∀ω : ΠK − ΠS > 0.

If the spillover is high enough, then it is convenient to locate to-

gether for every level of product differentiation. If the spillover is
not too high, then product differentiation will determine location.

We compute the value of product differentiation so that the dif-
ference in (29) is positive. It turns out that it must be ω(c) < ω′(c)

where

ω′(c) ≡
2c2 + 2ct − t2 − 4cξ +

√

−4c2t2 − 4ct3 + t4 + 8ct2ξ

c2 + ct − 2cξ

and c 6= 0. Clearly, if ω′ ≥ 1, dispersion is never possible. Given

that ω′ is monotonically increasing in c5, the spillover c◦ inducing
agglomeration for every level of product differentiation solves the
equation:

ω′(c◦) = 1.

5The derivative of ω(c) with respect to c is ∂ω(c)/∂c = ω(c)f(c), with f(c) a positive
function.
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The admissible solutions are:

c◦1(t) = ξ −
1

2

(

t +
√

(t − 2ξ)2 − 8t2
)

c◦2(t) = ξ −
1

2

(

t −
√

(t − 2ξ)2 − 8t2
)

But c◦2 does not satisfy the constraint τK, making feasible the export
under agglomeration, since it turns out that:

c◦2(t) > ξ − t.

We conclude that the level of the spillover necessary to induce
agglomeration is c◦1(t). Since it is a function of transport costs,

when they are sufficiently low, agglomeration is more likely, because
the condition c > c◦ is verified more easily. This result was already

established in BPT.

V.B. Specifying a spillover function

We now depart from BPT in assuming that localization economies

are not constant, since they come to depend on product differentia-
tion, i.e. on the distance in the product space. Marginal cost under

agglomeration cK depends on product differentiation according to
two specific functional forms. One is a linear function of the type

cK(ω) = (1 − ω)c

the other is quadratic and reads

cK(ω) = [1 − 4(ω − ω2)]c

with 0 ≤ cK(ω) ≤ c under both cost structures. We plot the two
functions in Fig. 5.

V.B.i. Linear spillover

With a linear spillover, marginal cost cK is zero when products
are perfectly homogeneous, and it stays at the same level c of disper-
sion in the case of independent products. Agglomeration economies



Location and Differentiation with Externalities 25

-

6

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

c

cK(ω)

ω1

Figure 5: Marginal cost cK(ω) under linear and quadratic spillover functions.

are linearly decreasing in product differentiation, and the rate of
cost reduction is constant and equal to −c. First, we establish

whether agglomeration or dispersion occurs for a fixed level of prod-
uct differentiation. Then we look at the profit maximizing level of

product differentiation, in so making implicitly the assumption that
the entrant sets product differentiation in the first stage of the game.

After algebraic computations, being skipped here, the condition

ensuring that (29) is greater than zero is t < t◦(c, ω) where:

t◦(c, ω) ≡
1

4

[

−c(2 − ω)2 + (2 − ω)
√

c(−12c + 16ξ + 4cω + cω2)
]

If t > t◦(c, ω) then the difference (29) is negative, and dispersion
turns to be more profitable than agglomeration.

Since t◦ is a decreasing function of product differentiation6, this
demonstrates that there exists an intermediate range of transport

costs where agglomeration is more profitable than dispersion de-
pending on product differentiation. In particular, this is true when

t◦(c, 0) < t < t◦(c, 1): by increasing (decreasing) ω we make disper-
sion (agglomeration) the most profitable choice. In terms of Fig. 6,

when we come to cross the t◦(c, ω) curve, the equilibrium configu-

6At least for all the parameters configurations we tried with.
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ration switches. The lower and upper bounds take the values:

t◦(c, 0) = − c +
√

4ξc − 3c2

t◦(c, 1) =
1

4

(

−c +
√

16ξc − 7c2
)

Our results imply, in addition, that an entrant firm producing

a homogeneous product, under a linear spillover, will locate in the
same region of the incumbent only if transport costs are sufficiently

low, that is t < t◦(c, 1).

We now want to determine the profit maximizing level of product
differentiation an entrant would set.

Product differentiation has two contrasting effects on agglomer-

ation profits. One is negative, since by increasing product differ-
entiation the reduction in marginal cost is smaller. The other is

positive, and is related to the benefits of weaker competition. A
very important point is to note that, when ω = 0, ΠK = ΠS: when

varieties are indeed independent products, it does not really matter
to be located together or separately, interaction among products

being absent. In the first part of the paper we established that,
without spillover, firms maximize product differentiation. Now we
are left to check whether decreasing differentiation, with localization
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economies reducing marginal cost, increases agglomeration profits.

If this is not the case, then the profit maximizing choice will be still
to maximize differentiation.

In order to study the effect of ω on agglomeration profits ΠK , we
decompose them in the home component Πh

K (profits made in the
home market), and in the foreign component Πf

K (profits made in

the foreign market). We get the following:

dΠK

dω
=

(

∂Πh
K

∂ω
+

∂Πf
K

∂ω

)

dω

where

∂Πh
K

∂ω
+

∂Πf
K

∂ω
=

2 [(3c − ξ)(ξ − c + ωc) + (3c + t − ξ)(ξ − c − t + ωc)]

(2 + ω)3

(30)
We prove the following result concerning optimum product dif-

ferentiation ω∗ in the linear case.

Proposition 3 Under Cournot competition and a linear spillover
function, the optimum level of product differentiation ω∗ is the fol-

lowing.
i) If c ≥ ξ/3, then ω∗ = 1, that is firms will produce a homoge-

neous product.
ii) If c ≤ ξ/3 − t/6, then ω∗ = 0, that is firms will produce

independent products.
iii) There exists a point c◦, where ξ/3− t/6 < c◦ < ξ/3, such that

ω∗ = 1 for c > c◦, and ω∗ = 0 for c < c◦. At c = c◦ the derivative

of agglomeration profits with respect to ω is zero, that is profits stay
constant irrespectively of product differentiation.

Proof. Proof of i) descends from an inspection of (30). If c > ξ/3

the derivative is positive, for every ω.
To prove ii) we need to rearrange the derivative of profits in the

following form.

∂ΠK

∂ω
=

2 {[ξ − (1 − ω)c][(3c− ξ) + (3c + t − ξ)] − (3c + t − ξ)t}

(2 + ω)3
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If c ≤ (ξ − t)/3− t/6, the term [(3c− ξ) + (3c + t− ξ)] is negative,

and the derivative as well.
To prove case iii), we apply the Weierstrass theorem. We know

that g(c) ≡ ∂ΠK/∂ω is negative at c = ξ/3−t/6 and positive at c =
ξ/3. Moreover g(c) is a continuous function. In order to apply the
existence theorem we need just to prove that g(c) is monotonically

increasing:

∂g(c)

∂c
= (4 − ω)(2ξ − t) − 12c(1 − ω)

being positive when

c <
4 − ω

2(1 − ω)

(

ξ

3
−

t

6

)

As a last step we note that

4 − ω

2(1 − ω)

(

ξ

3
−

t

6

)

>
ξ

3

Since the derivative is zero whatever is ω, this means that profits
are constant at c◦.

The economic interpretation of this proposition suggests that, if

the cost reduction attainable with agglomeration is significant, then
the competition effect is overwhelmed by the cost saving one, and

the entrant goes for minimum differentiation. The reverse holds if
c is low. We proved the existence of a case where demand and cost

conditions are such that the two effects exactly offset each other, so
that ω does not affect profits, and the equilibrium level of product
differentiation is indeterminate. A peculiarity of the profit maxi-

mizing level of product differentiation in the linear case is its ”all
or nothing” appearance: the two levels of ω∗ are either 0 or 1.

V.B.ii. Quadratic spillover

With a quadratic spillover, the reduction in marginal cost is the

highest when varieties show an intermediate level of product differ-
entiation. Hence firms take advantage from cost reductions while
not suffering excessively from competition.



Location and Differentiation with Externalities 29

Again, we have to study the condition making agglomeration

profits higher than dispersion ones for a fixed level of product dif-
ferentiation. The difference (29) is greater than zero if t < t◦(c, ω),

where

t◦(c, ω) ≡ −c(2 − ω)2(1 − ω) + (2 − ω)
√

c(1 − ω)(4ξ − 3cω2 − cω3)

and less than zero when transport costs are greater than this thresh-

old. Given that t◦(c, ω) is decreasing in product differentiation7, and
t◦(c, 1) = 0, there does not exist a level of transport low enough so
to make agglomeration possible for every level of product differen-

tiation. Actually, at least when products are homogeneous, it is
convenient to separate in space, since, under the quadratic spillover

function, producing a homogeneous good has no gain in terms of
cost reduction. We remain only with the condition leading to dis-

persion whatever product differentiation is, t > t◦(c, 0), where

t◦(c, 0) = 4(−c +
√

ξc)

We now compute profit maximizing differentiation. Given the

symmetry of the quadratic spillover function around ω = 1/2, a
given cost reduction corresponds to two distinct levels of product

differentiation. It is straightforward to verify that the most prof-
itable level of product differentiation to be selected is the lower one,

since it corresponds to a higher product differentiation. Hence, we
restrict the analysis to the interval ω ≤ 1/2, where the marginal
cost function is decreasing in ω.

We are able to derive the following Proposition.

Proposition 4 Under Cournot competition and a quadratic spillover

function, the optimum level of product differentiation ω∗ is the fol-
lowing.

i) If c ≤ c◦, where

c◦ ≡
5(2ξ − t) −

√

(8ξ − 7t)(8ξ − t)

18
7As in the case of the linear spillover function, we checked this through numerical examples.
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then ω∗ = 0, that is firms will produce independent products.

ii) If c > c◦, then 0 < ω∗ < ωU < 1/2, which amounts to saying
that firms will introduce some product homogeneity to benefit from

the spillover. Moreover ω∗(c) is increasing in c until it reaches the
upper bound ωU , i.e. the minimum differentiation compatible with
intra-industry trade.

Proof. The profit maximizing level of product differentiation is
found by solving the first order condition:

∂ΠK

∂ω
= 0 (31)

This is true when

(32ω4 + 96ω3 − 192ω2 + 104ω − 18)c2+ (32)

(−10t + 20ξ + 20ωt − 40ωξ)c − t2 + 2ξt − 2ξ2 = 0

First of all we solve in c the inequality

∂ΠK

∂ω

∣

∣

∣

∣

ω=0

≤ 0

The condition above ensures that ω∗ = 0 maximizes profits. There

are two roots solving (32), c1 and c2, with c1 < c2, but the biggest
one does not satisfy the constraint c2 < ξ − t. Hence we get that

c ≤
5(2ξ − t) −

√

(8ξ − 7t)(8ξ − t)

18
≡ c◦

Obviously, if c > c◦, optimum differentiation will be greater than
zero. Proving that ω∗ < 1/2, simply requires to evaluate ∂ΠK/∂ω
at ω = 1/2, and check that it is negative whatever is c.

To prove that ω∗(c) is increasing in c, it suffices to show that

∂ΠK(ω∗)

∂ω∂c
> 0 (33)

Remember that, by increasing c and ω, the trade condition becomes
tighter, and ωU hits exactly the trade condition, where the minimum
differentiation compatible with intra-industry trade is reached.
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After some computations, it can be shown that

∂ΠK

∂ω∂c
> 0 (34)

when

c <
5(2ξ − t)

18 − 68ω + 56ω2 + 16ω3
≡ h(ω)

and ω < 1/2. It is easy to see that c1 < h(ω), and this concludes
the proof.

When marginal cost is a quadratic function of product differen-
tiation, the optimum level of ω∗ is smoothly increasing in c. The

explanation underlying the difference in behaviour between the lin-
ear and quadratic spillover lies in the shape of the rate of marginal

cost reduction: under the quadratic spillover the rate of reduction
is 4c(2ω − 1), which is not constant.

For similar reasons, the derivative of profits with respect to prod-

uct differentiation becomes negative, whatever is c, at ω = 1/2. Ac-
tually, the rate of marginal cost reduction shrinks as ω is tending

to 1/2 from the left, and reaches zero in the limit. So, in the limit,
the only effect corresponding to an increase in ω is the competition
one, decreasing profits.

VI. Concluding remarks

This paper has shown first how product differentiation results

from the interaction of two firms competing either in prices or in
quantities in the last stage game, in a framework of two regions of
equal size, with consumers showing a symmetric preference relation

over the differentiated varieties: maximum differentiation is chosen
both under Bertrand and Cournot settings.

With respect to this part, we shall not ignore the side effects
that, by taking δ (or ω) as control variable, are introduced into the

model. Changing δ, as was already outlined by Dixit (1979), shifts
the demand function upward. Another critique that can be moved
is that, by changing δ we are modifying ex-ante consumers’ love for
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variety. A more satisfactory treatment of the issue would probably

involve a utility function having two distinct parameters, one repre-
senting an exogenous ex-ante preference, the other representing the

endogenous realized variety in production.
Then we went on showing, in a simple model making the phe-

nomenon particularly clean, how Marshallian externalities lead to

agglomeration and partial imitation in a model featuring otherwise
maximum differentiation.

We have shown how location depends on transport cost, keep-
ing exogenously given product differentiation, and then equilibrium

product differentiation was derived as a function of the autonomous
part of marginal cost c. The robustness of the results to different
specification of the externality was tested. To this end, we consid-

ered two forms, a linear one and a quadratic one. Under the linear
spillover, a kind of ”all or nothing” differentiation arises, because

either a homogeneous product is produced or an independent one.
Under the quadratic spillover, a smooth relation between au-

tonomous marginal cost and product differentiation emerges.
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Appendix

A Derivation of non-negativity constraints

The non negativity constraints for quantities and mark-ups are

in the dispersion case:

qf
S > 0 ⇒ t <

(α − c)(2 − ω2 − ω)

(2 − ω2)
≡ τS(ω) (35)

pf
S − c − t > 0 ⇒ t < τS(ω)

qh
S > 0 ⇒ α − c > 0

ph
S − c > 0 ⇒ α − c > 0

In agglomeration, the following constraints must be met simultane-
ously:

qf
K > 0 ⇒ t < α − c ≡ τK (36)

pf
K − c − t > 0 ⇒ t < τK

qh
K > 0 ⇒ α − c > 0

ph
K − c > 0 ⇒ α − c > 0

The condition ensuring the non negativity of dispersion equilibrium
is more restrictive than the one ensuring a similar feature for ag-

glomeration.

B Maximization of dispersion profits under price com-

petition

The partial derivative of dispersion profits with respect to the
product differentiation parameter ω is equal to

∂ΠS

∂ω
= −

Φ(ω, t)

(4 − ω2)3(1 − ω2)2

where

Φ(ω, t) = − 2(α − c)(1 − ω)2(2 + ω3)(1 − ω + ω2)t+

− (12 − 7ω2 + 2ω4 − ω6)ωt2 + 2(α − c)2(1 − ω)2(2 + ω)3(1 − ω + ω2)
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Φ(ω, t) is a parabola with downward concavity if ω 6= 0, taking t

as the independent variable, and ω ∈ [0, 1] as a parameter. We call
t1(ω) and t2(ω) the two intercepts with the horizontal axis. They

are solutions to the equation Φ(·) = 0:

t1,2(ω) = −
f(ω) ± g(ω)

h(ω)

with

f(d) = (α − c)(1 − ω)2(2 + ω)3(1 − ω + ω2)

g(d) = (α − c)(4 − ω2)(1 − ω2)
√

(4 − ω2)(1 − ω + ω2)(1 + ω + ω2)

h(d) = 2ω(12 − 7ω2 + 2ω4 − ω6)

It is readily seen that t1(ω) < 0. But also t2(ω) > 0, because after
some algebraic computations it can be shown that f(ω) < g(ω).

Assigning some value to the positive multiplicative constant (α−
c), the function t2(ω) may be plotted, as we do in Fig. 3. We prefer
to provide directly the graphical representation of the function, more

than embarking in a cumbersome analytical study. Another useful
relation is that:

t2(ω) < τS(ω), ∀ω.

To show this, it is simply a matter of computation.

C Maximization of dispersion profits under quantity com-

petition

The derivative of dispersion profits with respect to the product

differentiation parameter is:

∂ΠS(ω, T )

∂ω
=

2Φ(ω, T )

(2 − ω)3(2 + ω)3

If ω 6= 0, then Φ(ω, T ) is a parabola with upward concavity, tak-

ing t as the independent variable and ω as a parameter. Its exact
expression is:

Φ(ω, T ) = (12ω + ω3)T 2 + 2(ξ − C)(2 − ω)3T − 2(ξ − C)2(2 − ω)3
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The roots of the equation Φ(ω, T ) = 0 are:

t1,2(ω) =
−(ξ − C)(2 − ω)3 ∓

√

(ξ − C)2(2 − ω)3(2 + ω)3

12ω + ω3

An immediate result is that t1 < 0. After some manipulations
it can be also proved that t2 > 0, and t2(ω) < τS(ω) for every
ω ∈ (0, 1].
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