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Abstract

This paper studies the dynamics of economic growth based on spe-
cialization in a network structure belonging to the family of Cellular
Automata. The basic mechanism for the diffusion of specialization is
the one identified by Allyn Young (1928): the specialization of some
agents represents an increase in the extent of the market for others and
may facilitate their specialization. We show that the the diffusion of
specialization generally increases: i) with an increase of the dimension
of the neighborhood, ii) with a reduction of the extent of the market
necessary for specialization and iii) with a reduction of the extent of
the market necessary to remain specialized (or with a reduction of the
intensity of competition). The same parameters affect the qualitative
features of the dynamics: the network configuration may not settle
to a steady state and display a complex network dynamics. We also
discuss the role of initial conditions of the dynamical system and the
activation rules, that we relate to the organization of the economic
activity.
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I. Introduction

As is well known, one of the main insights of Adam Smith’s

Wealth of Nations was that the most important engine of economic
growth is the division of labor. In particular, Smith argued that

the division of labor is limited by the extent of the market. Young
(1928) made a significant advance by reformulating this statement.

Young claimed that the division of labor is actually limited by

the division of labor. He pointed out that, by specializing, an in-
dividual agent increases the supply of a certain commodity, but at

the same time s/he increases the demand for other commodities.
Specialization allows an agent to obtain a surplus of a specific good

above her/his consumption: hence s/he can trade the surplus for
other specialized agents’ surpluses. In other words, the specializa-

tion of some agents generates an increase in the extent of the market
for other agents and can therefore cause their specialization, which
in turn may stimulate the specialization of others, etc. According to

Young, the dynamics of specialization keeps the economic system in
a state of constant change, as the productive activity is continuously

reorganized. This mechanism generates economic growth which can
therefore be defined as a disequilibrium process.

In this paper we utilize the insights of Smith and Young to build
a simple model of a network belonging to the family of Cellular

Automata (CA). In this network nodes are agents and links are po-
tential trade relationships. The network may evolve as the state of
the nodes changes: that is, agents who are initially nonspecialized

may change their state by specializing in the production of one par-
ticular good, and establish trading relationships with other agents.

Hence, economic growth takes place as specialization diffuses within
the network.

We consider three main variables: the dimension of the neigh-
borhood of each agent, a threshold value for the extent of the mar-

ket necessary to specialize, and a threshold value for the extent of
the market necessary to remain specialized, the latter being related
to competition from other specialized agents which may cause de-
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specialization. We show that: the diffusion of specialization and

economic growth generally increase i) with the an increase of the
dimension of the neighborhood, ii) with a reduction of the extent

of the market necessary for specialization and iii) with a reduction
of the extent of the market necessary to remain specialized, or with
a reduction of the intensity of competition. However, the same

parameters affect the qualitative features of the dynamics: the net-
work configuration may not settle to a steady state and remain in a

condition of constant change, as argued by Young. In other words,
we show that the process may indeed involve a complex network

dynamics.
We also discuss some aspects related to the organization of the

economic activity, that is the localization of specialized and nonspe-

cialized agents in the initial conditions of the dynamical system, and
the activation rules, which represent the sequence in which agents

in the model make decisions regarding their changes of state.
The paper is organized as follows: Section II. describes the histor-

ical background for the model proposed here; Section III. introduces
the model; Section IV. reports the results of the simulations; Section

V. provides a discussion of the results; Section VI. contains some
concluding remarks.

II. Historical Background

The theory of growth and division of labor takes a center stage in
economics with the publication of Adam Smith’s Wealth of Nations

in 1776.1 In Smith’s view the principal factor affecting growth of
per capita income is labor productivity, which increases with the

division of labor.
For Smith there exists an important relation between the struc-

ture of social and economic interaction, the extent of the market,
and the viability of the process of growth. According to him, the

important precondition for the development of the division of la-
bor in a society is “a certain propensity in human nature: ... the

1This section draws on Lavezzi (2003).
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propensity to truck, barter and exchange one thing for another”

(WN I.i.1).

This allows individuals to specialize and benefit from trading

their surplus products, that is the production in excess of their
own consumption. Such surpluses originate from the increased pro-

ductivity due to the specialization. In Smith’s opinion, individuals
choose to specialize, given a structure of social interactions, on the

basis of a process of learning. When an individual learns that he
enjoys higher consumption levels by exchanging a part of his pro-

duction, i.e. he has the “certainty of being able to exchange all that
surplus part of the produce of his own labour, ..., for such parts of
the produce of other men’s labour as he may have occasion for”, he

is encouraged “to apply himself to a particular occupation” (WN
I.ii.3).

In particular, economic growth may be stimulated even by the

creation of a network of similar individuals, that is individuals
not endowed with innate or acquired talents, specialized skills, etc.

Smith in fact maintains that individuals are similar at birth. The
differences “which [appear] to distinguish men of different profes-
sions, when grown up to maturity, is not upon many occasions so

much the cause, as the effect of the division of labour” (WN I.ii.4).
Once connected, individuals can sort themselves out in different

occupations, and increase their aggregate production and consump-
tion. The consequential step in Smith’s analysis consists in the

generalization of the relevant aspect of this reasoning: namely, that
the extent of the market limits the division of labor.

Smith’s argument is the following: as noted, an agent has the
incentive to specialize if he possesses “power of exchanging” the

surplus, i.e. if sufficient demand exists, allowing the agent to trade
part of his surplus product in exchange of other goods. In particu-

lar, as will be emphasized by Young, coordinated specialization of
different productive units generates contemporaneous increases in

the supply of commodities, since specialization increases productiv-
ity, and in the demand for other commodities, since specialization
implies demanding the goods whose production is given up. The
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increased supply may provide the necessary means to support the

exchange. From this discussion the social dimension of the division
of labor and economic progress emerges clearly, as they involve im-

portant organizational aspects of economic activities, like the degree
of coordination and communication among agents.

It can be argued that Smith anticipated the modern theory of

endogenous growth in many respects. However, important develop-
ments on the nature of this process are due to Allyn Young (1928).

As noted, Young emphasized some aspects of Smith’s argument and
specifically reformulated Smith’s theory in these terms: the division

of labor is limited by the division of labor. This amounts to recog-
nizing that the extent of the market is at least partially endogenous,
and that therefore an increase in the extent of the market is not only

to be understood as removal to barriers to free trade, construction
of roads, railways, etc.

The important implication is that:

“the counter forces which are continually defeating the

forces which make for economic equilibrium are more per-
vasive and more deeply rooted in the constitution of the
modern economic system than we commonly realise. Not

only new or adventitious elements, coming in from the out-
side, but elements which are permanent characteristics of

the ways in which goods are produced make continuously
for change. Every important advance in the organisation

of production ... alters the conditions of industrial activity
and initiates responses elsewhere in the industrial struc-
ture which in turn have a further unsettling effect. Thus

change becomes progressive and propagates itself in a cu-
mulative way.” ( Young (1928), p. 531. Italics added).

Hence for Young, not only economic growth is endogenous, but
the endogenous forces generate disequilibrium in the sense that, in

the growth process, the structure of the economy and the technolog-
ical opportunities cannot a priori be considered fixed.2 Hence, for

2This point relates to the strong criticism made by Young to the equilibrium approach
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Young an understanding of the growth process requires to see the

economy in its “togetherness”( Young (1999a), p. 45), in particu-
lar as a large interactive system made of specialized, interdependent

productive units. Young in fact discussed also the process of indus-
trial differentiation which characterizes economic growth. In the
economic network, changes originating at a local level, may initiate

“responses elsewhere”, that is the economy may be characterized by
productive and technological feedbacks which propagate across the

nodes of the network. Economic growth is associated to an evolu-
tion of this system and proceeds as a disequilibrium, or complex in

modern terms, process.

III. Economic Specialization in a Network

To take into account Smith and Young’s insights, we consider a
simplified economy in which agents are located on a one-dimensional

circular lattice. We assume that there are two goods, denoted as
good 1 and good 2. Agents’s utility is a function of consumption

of both goods. Agents can either produce two goods in a nonspe-
cialized fashion, or specialize in the production of one good. If the
agent is nonspecialized, then s/he may produce small quantities of

both goods, if specialized s/he can produce a large quantity of a
single good.

Hence, agents can be in one of three possible states: state 0 :

the agent is nonspecialized and produces both goods; state 1 : the
agent is specialized in the production of good 1; state 2 : the agent
is specialized in the production of good 2.

Every agent i interacts with a certain number of other agents in

a neighborhood denoted as Ni. The dimension of Ni is given by D,
and includes i.3 Agent i decides to become or remain specialized

if there is sufficient demand in Ni. However, to capture Young’s
insight, we posit that demand for a certain good comes mostly from

advocated by Marshall and the Marshallians.
3This means that the radius of the neighborhood is (D − 1)/2: every agent is connected to

(D − 1)/2 agents on the right and (D − 1)/2 agents on the left.
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specialized producers of the other good, as specialized production

generates a large surplus available for trade. Nonspecialized agents
can exert only a low demand for both goods, as their production of

both goods is low.

In addition, we assume the existence of counter-forces to the pro-
cess leading to specialization. Namely, agents de-specialize if there
is insufficient demand in their neighborhood, in particular if there

are “too many” agents of the same type in their neighborhood. We
broadly define this effect as the result of competition, which causes

the “elimination” of some specialized agents, who then become non-
specialized.4

In every period t one agent is “active” and has the possibility to

make a transition across states. The transition rules which govern
the change of state are of the following type:

xi(t + 1) = F {xi(t), D(Ni(t))},

where xi (t) is the state of agent i in period t, F {.} is the tran-

sition function and D(Ni(t)) is a vector indicating the demand for
both goods expressed by agents in Ni in period t. Thus, this is a

“totalistic” rule (see, e.g. Wolfram (2002)[p. 40]): the agent consid-
ers an aggregate indicator of the neighborhood, and disregards the

exact location of the agents in Ni.

D(Ni) depends on a set of parameters: d10 > 0 and d20 > 0,
representing the demand of good 1 and 2 coming from 0-agents;

d21 > 0 and d12 > 0 respectively referring to the demand of good
2 from 1-agents and for good 1 from 2-agents; finally, d11 < 0 and
d22 < 0, representing demand for good 1 from 1-agents and for good

2 from 2-agents. The latter parameters take on negative values as
specialized agents evaluate the presence of agents of the same type

in their neighborhood as negative potential demand.5

4There is a similarity with the death of agents for overpopulation in Conway’s classic game
of life. For simplicity we assume that agents specialized in the production of one good cannot
specialize in one period in the production of the other good.

5In other words, specialized agent i evaluates the presence of agents of the same type in
Ni not only as expressing zero demand for his/her good, but also as potentially reducing the
demand from other agents who may choose to trade with them in some other period. A fully
specified model would feature the consideration on the part of agent i of the perspective losses
of trade possibilities due to the proximity to other agents of the same type. Here this aspect is
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We define two threshold values for demand related to the decision

to specialize and to despecialize. To capture the role of the extent
of the market on the decision to specialize, we introduce t01 > 0 and

t02 > 0 which, respectively, denote the threshold levels of demand
for good 1 and good 2 which may induce a 0-agent to specialize. The
decision to despecialize instead requires a demand above t11 > 0 and

t22 > 0, which respectively represent the threshold levels of demand
for good 1 or good 2 in the neighborhood of a 1-agent or a 2-agent,

that causes the decision to remain specialized. In other words, if
the demand for good 1 (good 2) is below t11 (t22), then a 1-agent

(2-agent) becomes a 0-agent. Even if both thresholds are referred
to production decisions on the part of the agents, we keep them
distinct as we want to include in the decision to remain specialized

the effect of the competition of other agents, which we represent as
negative demand. 6

Therefore, each agent evaluates her/his neighborhood in terms
of the production and consumption possibilities, represented by the

vector of potential demand for both goods, and chooses a state.7

IV. Simulations

With the simple rules defined in the previous section, it is possible

to simulate the dynamics of this economy. Our aim is to study the
characteristics of the growth process, namely whether the system
is led toward complete or incomplete specialization, and whether

growth occurs with or without fluctuations. As it will be clear,
the conditions for economic growth are to be found in the interac-

tion among the critical parameters: the dimension of the neighbor-
hood D, the threshold levels for specialization t01 and t02, and the

left on the background, and is synthesized as negative demand.
6For a given number of agents identical to i in Ni, a low value of t11 and t22 implies that

the active agent can remain specialized more easily, and therefore we consider low values of t11
and t22 as “weak competition”.

7In the simulations in the next section, we assume that if the demand for both goods is
above the threshold, than the active 0-agent chooses to specialize in the production of the good
with the higher demand.
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threshold levels for despecialization t11 and t22. The same parame-

ters determine the emergence of fluctuations. We will also see that
initial conditions, that is the initial localization of specialized and

nonspecialized agents, and the activation rules may play a role.

We discuss two cases in which the activation of the agents is
asynchronous, that is one agent is activated in each period t. This
aims to capture the Youngian insight on the possible presence of

“waves” of specialization which arise in some part of the network
and then propagate in the economy. Moreover, as Axtell (2001), p.

241, points out, in real socio-economic systems agents’ activations
are not likely to be regulated by the same internal clock. There-

fore, the use of asynchronous activation also appears to be a way to
add realism to the model, with respect in particular to a standard
cellular automata (CA), in which all cells are activated contempo-

raneously.

We analyze the cases of deterministic and random activation. In
both cases the initial values of the parameters generating the entries

of vector D(Ni) are: d10 = 1; d20 = 1; d21 = 3; d11 = −2; d12 = 3;
d22 = −2, while the initial values of the thresholds are: t01 = 5;

t02 = 5; t11 = 4; t22 = 4.

Following our introductory discussion, we have assumed that
d12 > d10 and that d21 > d20, that is specialized agents generate

a higher demand than nonspecialized agents. Notice that d11 and
d22 are negative: a 1-agent attaches a negative value to the pres-
ence of other 1-agents in Ni, which certainly do not demand good

1 and represent competitors, and the same holds true in the case of
2-agents.8

In the simulations we consider two types of initial conditions. In

one case all agents are randomly assigned a state. We can think
of a situation in which, in Smithian terms, agents are potentially

specialized in the production of one good or not specialized. When

8We also assume that 0-agents evaluate the presence of 1-agents (2-agents) negatively for
what concerns the potential demand for good 1 (good 2). In particular, they attach a weight
(0.5 for now) to d11 (d22), representing the expectation that, if they specialize in good 1 (good
2), they find a 1-agent (2-agent) in their neighborhood in the following period.



Complex Dynamics and Economic Specialization 11

activated, they start a learning process based on the evaluation of

the real possibilities given by the structure of their neighborhood,
and then make a decision. Alternatively, we consider the case in

which there is an initial small cluster of specialized agents, possi-
bly one, and analyze a typical diffusion process. Again, the initial
condition may be considered an instance in which one or a few con-

tiguous agents evaluate the possibility to specialize. We will see that
the initial conditions, that is the initial localization of specialized

agents may be important.

IV.A. Asynchronous activation: deterministic, Mobile Au-

tomata

We consider the framework described above in the context of a
Mobile Automata (MA) (see, e.g. Wolfram (2002), pp. 71-77). A
MA is a particular CA, in which only one cell is active in every

period. A MA needs a rule which describes the movement of the
active cell across the lattice. As noted, a MA is perhaps a better

framework to introduce feedback effects. A MA allows for the pres-
ence of “waves” of specialization, that originate in some part of the

economy and then possibly propagate.

In a “round” of the program every agent is activated exactly once,

and every round lasts a number of periods given by the number of
agents, denoted by N . In the figures that follow we represent the
network as a row of agents, being understood that the last agent on

the right is connected to the first on the left. The active agent at
t = 1 is the first on the left (agent 1), then the active cell moves

to the right (the active agent at t = 2 is agent 2, etc.) The color
white indicates 0-agents, while gray and black respectively indicate

1-agents and 2-agents. The figures should be read from the top
to the bottom to see the evolution over time of the configuration of

the network, where a configuration is the network structure in terms
of the type of agents. We report the configurations corresponding
to successive rounds, that is after allowing each agent to make a
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transition.9 Also, we compute the aggregate per capita output at

the end of every round, and plot its dynamics over time.10

20 40 60 80 100 120 140 160 180 200
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Figure 1: MA, N=200, t=30000,
D=5, t01 = t02 = 5; t11 = t22 =
4, i.c.: IC1

0 50 100 150

2.65

2.7

2.75

2.8

Figure 2: Time series of per
capita output

Figures 1 and 2 represent an example in which the system con-
verges to a steady state, and the steady-state output stabilizes at

2.79.11 For comparison with subsequent cases, we define the ran-
domly generated initial conditions in Figure 3 as IC1.12

In Figures 3 and 4, we increase the dimension of the neighborhood
to D = 7. For given threshold values, this corresponds to an increase

of the potential market for each agent, which has the possibility to
interact with a larger number of agents.

9For example, if there are 200 agents, we represent the configurations at periods 1, 201, 401,
etc.

10We compute output in the following way: the production of good 1 and 2 by an unspecialized
agent counts 1 (hence their total production counts 2), while production by specialized agents
counts 3. Therefore, the range for per capita output is [2, 3].

11With D = 3, the system reaches a steady state with much lower specialization and output
stabilizes at 2.1.

12These and the following figures are representative examples chosen from numerous simula-
tions.
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Figure 3: MA, N=200, t=30000,
D=7, t01 = t02 = 5; t11 = t22 =
4, i.c.: IC1
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Figure 4: Time series of per
capita output

We can observe that the dynamics changes radically: the system
does not stabilize, and fluctuations appears. The instability of the

system is reflected in the continuous changes which take place in
the configurations of the network, and in the fluctuations in the

simulated time series of aggregate output. The aggregate output
increases, as the theory suggests, and now has an average of 2.89.

The appearance of fluctuations may be explained by the increase in
the probability of transition which accompanies the increase of the
neighborhood in relation to the thresholds, as any individual agent

is exposed to more variability, being affected by a higher number of
agents and to their possible transitions.

In the last examples the threshold levels t01 and t02 are quite low if

compared to the dimension of the neighborhood (D = 7). Increasing
these values to t01 = 7 and t02 = 7 stabilizes the system, which now

converges toward a steady state with incomplete specialization, and
eliminates fluctuations. Figures 5 and 6 report the results starting
from the same initial conditions of Figure 3.
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Figure 5: MA, N=200, t=30000,
D=7, t01 = t02 = 7; t11 = t22 =
4, i.c.: IC1
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Figure 6: Time series of per-
capita output

Now output stabilizes at 2.87, slightly below the average output
in Figure 3. This is due to the higher level of demand necessary to

induce specialization. The reason for the elimination of fluctuations
is the following: when the threshold is low with respect to D, as

noted, agents are exposed to the variability of more agents. This
variability is high as the threshold for specialization is low. For a
given D the increase in t01 and t02 reduces the variability of the

system.

Also, the increase in t01 and t02 reduces aggregate output.13 Intu-
itively, an increase in t01 and t02 should always reduce the diffusion
of specialization, for a given value of D. However, this happens in

general but, from various simulations, it appears that there can be
exceptions. In fact, with a low threshold for specialization, more

agents specialize but this may cause more “competition”, which
causes the despecialization of others. The final effect is likely to be

nonlinear, and will in general depend on the balance between the
two forces and the initial conditions.14

In general, a higher instability appears to be positively associated
to the “easiness” of changes of state. In fact, if we maintain the

threshold level for specialization at t01 = t02 = 7, and increase the
level of the demand necessary to keep a specialized agent in the

13If we set t01 = t02 = 9, output stabilizes at 2.67
14We will see in the next section a case in which an increase in t01 and t02 actually increases

the degree of specialization and aggregate output. This is related to the initial conditions and
to the pattern which may be established in the initial periods. If this pattern features high
specialization, the fact that 0-agents find more difficult to specialize may keep the system stable
and highly productive.
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same state, for instance by putting t11 = t22 = 7, then we obtain

the dynamics in Figures 7 and 8 where instability reappears. A
higher threshold for despecialization (t11 or t22) means that it is more

difficult for a specialized agent to “survive” (and then it is easier
to change state), as s/he needs a “high” demand, and therefore it
proxies a case of stronger competition. In fact, if an agent has many

identical agents in her/his neighborhood, this reduces the demand
s/he may have from the neighborhood. With a low threshold, the

agent may remain specialized with low demand, hence with many
competitors.
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Figure 7: MA, N=200, t=30000,
D=7, t01 = t02 = 7; t11 = t22 =
7, i.c.: IC1
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Figure 8: Time series of per-
capita output

Notice that per capita output stabilizes at a lower level than in
Figures 6, and is equal to 2.78. In this case, ceteris paribus, an
increase in the intensity of competition reduces aggregate output as

we are focusing here on the “destructive” role of competition, and
abstract from its positive role for instance in stimulating productiv-

ity, innovativeness, etc.

For a comparison with Figures 3 and 4, in which instability was
already present, we can consider the case of an identical value for

the thresholds for specialization, t01 = t02 = 5, and a higher value
for the threshold for despecialization, t11 = t22 = 7. Figures 9 and

10 show that instability increases, as the landscape of the configu-
rations appears more complex, and average output decreases, as the
average now is 2.85 compared to 2.89 in Figure 4.
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Figure 9: MA, N=200, t=30000,
D=7, t01 = t02 = 5; t11 = t22 =
7, i.c.: IC1
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Figure 10: Time series of per-
capita output

IV.B. Diffusion of specialization with Deterministic Acti-

vation

To study the process of economic growth, we also consider the

case in which there exists an initial small cluster of specialized
agents. In this case we are interested in the conditions which favor

the diffusion of specialization in the economy and hence economic
growth. As a first case we use the parameters of Figures 1 and 2,

that is t01 = t02 = 5 and t01 = t02 = 4, when only one specialized
1-agent is present in the initial period. When the dimension of the

neighborhood is very small, D = 3, no diffusion takes place, and
the system converges to a steady state with no specialized agents.
The aggregate output is 2, the minimum (we omit the figures).15

If we increase the dimension of the neighborhood to D = 5, with

only one 1-agent in the initial period, specialization diffuses and
the system reaches a steady state with incomplete specialization

(output stabilizes at 2.67). See Figures 11 and 12. Notice that
growth appears suddenly, but this is due to the representation of
the dynamics and to the activation rule.16

15The same result obtains with two contiguous 1-agents. When the initial cluster features
one 2-agent between two 1-agents, then they remain specialized but no diffusion takes place.

16Recall that we are representing periods 1, 201, 401, etc., since we want to reproduce only
the configurations after each round. With the activation rule of MA, when the active cell
reaches the initially specialized agent, coming from the left of the figure, then a regular pattern
is established on the right of the agent and follows the movement to the right of the active cell.
We will see that there is a difference when we use random activation.
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Figure 11: MA, growth, N=200,
t=30000, D=5, t01 = t02 = 5;
t11 = t22 = 4, i.c.: one 1-agent
(99)
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Figure 12: Time series of per-
capita output

Hence, ceteris paribus, an increase in the potential extent of the
market proxied by the dimension of the neighborhood favors the

diffusion of specialization and economic growth. Notice that, with
these particular initial conditions, the level of steady-state output
is lower than in Figure 2, obtained with the same parameters.17

Now we keep the threshold level for specialization low (t01 =

t02 = 5) and increase the dimension of the neighborhood to D = 7.
With randomly generated initial conditions this change produced

important modifications in the dynamics. In this case, if we start
from only one 1-agent, the system does not converge to a steady

state, but reaches quasi-full specialization and displays very little
instability, and output has an average of 2.98.18 In the last two
examples, as in the previous section, we can see that ceteris paribus,

an increase in D causes an increase in aggregate output.

If we start from an initial cluster of two 1-agents, we obtain
Figures 13 and 14.

17Basically the same results obtain with two contiguous 1-agents.
18A similar result obtains when there is an initial cluster of one 1-agent and one 2-agent. We

omit the figures.
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Figure 13: MA, growth, N=200,
t=30000, D=7, t01 = t02 = 5;
t11 = t22 = 4, i.c.: two 1-agents
(99,100)
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Figure 14: Time series of per-
capita output

With these parameters, we observe that the system does not
settle to a steady state. In particular, in initial periods there is
a regularity emerging in areas of the network around the center.

However, a “wave” spreads from the location of the initial cluster
and breaks down the regular pattern, generating persistent instabil-

ity. The average output is 2.91, hence very close to the maximum.
Clearly, we see the importance of initial conditions, as the small

number of agents in the central position in conjunction with certain
values of the parameters, brings the system toward quasi-maximum

output although with fluctuations. The addition of only one 1-agent
causes a remarkable change in the dynamics although the appear-
ance of instability is not very robust to a change of the localization

of the initially specialized 1-agents.19 The reason is that, with these
parameters, the “admissible” regular grid of specialized agents fea-

tures an alternation of two 1-agents and two 2-agents. However, it
may happen that, depending on the location of the initial cluster in

relation to the first agent activated, a series of three agents of the
same type appears. This causes the despecialization of some agent

which in turn generate feedbacks to other agents.

This wide instability disappears if we increase the threshold for

specialization which, as noted in the previous section, reduces the
probabilities of transition of 0-agents. With t01 = t02 = 7 and

19In fact, with the parameters of Figures 13 and 14 it is possible to obtain an almost regular
pattern with output stabilizing at 2.98 (we omit the figures), when the initial cluster is located
at positions 98 and 99, instead that at 99 and 100.
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t12 = t21 = 4 the system converges toward a stationary state with

with (almost) full specialization (output converges to 2.99). See
Figures 15 and 16.
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Figure 15: MA, growth, N=200,
t=30000, D=7, t01 = t02 = 7;
t11 = t22 = 4, i.c.: two 1-agents
(99,100)
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Figure 16: Time series of per-
capita output

Also in this case an increase in the thresholds t01 = t02 stabilizes

the system, but does not reduce the final output, as it may have
been predictable. In this case the combination of the parameters

and the localization of the initial agents is such that an “ordered”
structure emerges, in which almost only specialized agents exist
and alternate in the network. However, if we further increase the

threshold for specialization and set t01 = t02 = 9, then the threshold
is so high to check the diffusion process (figures omitted). Therefore,

the effect of t01 = t02 on the level of output and its fluctuations may
depend on initial conditions. For given parameters, as noted, the

effect of the increase in t01 and t02 is likely to be nonlinear.

With t01 = t02 = t11 = t22 = 7, the system converges to a steady
state with much lower specialization (output converges to 2.5) (we

omit the figures). This is a different result with respect to the
previous section when these parameters produces a high instability

(although in both cases an increase of t11 and t22 reduces output).
However, also in this case this depends on initial conditions. When

we have two initial clusters of two 2-agents, then these parameters
are associated to high instability (the average output is 2.74). See
Figures 17 and 18.
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Figure 17: MA, growth, N=200,
t=30000, D=7, t01 = t02 = 7;
t11 = t22 = 4, i.c.: four 1-agents
(49,50,149,150)
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Figure 18: Time series of per-
capita output

Finally, if we return to a lower dimension of the neighborhood,

D = 5, and keep the same parameters and initial conditions of
Figures 15 and 16, where the threshold for specialization is higher

than in Figures 13 and 14, the diffusion process does not take place,
as only few agents in the neighborhood of the initially specialized

agents specialize, and output stabilizes at 2.01. In addition, with
these parameters, when there is only one 1-agent in the initial con-
ditions, no other agent specializes (we omit these figures).20

IV.C. Asynchronous activation: random activation

To check the sensitivity of the results in the previous section to
the activation rule, here we maintain the hypothesis that in every
period only one agent is active, but we introduce random activation.

In every round, given by a number of periods equal to N , every
agent is activated once, but the order of activation is random and

changes in every round. Basically, the program generates a ran-
dom permutation of the indices of all agent. Then, the activation

starts from the agent whose index appears first in this sequence,
then moves to the second element, etc. As before, the round ends

when the Nth agent has been activated. Clearly, by introducing

20The latter case is an example in which, for a given D, t01, and t02, the extent of the market
is low because the number of specialized agents in the neighborhood is low. Adding one 1-agent
causes the specialization of some other agent in the neighborhood, even if it is not sufficient to
activate a diffusion process involving the whole economy.
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randomness and we are not in the realm of standard CA, which are

completely deterministic.
If we use the same parameters and the same initial conditions

IC1 of Figures 1 and 2, then the system still reaches a steady state
(we omit the figures). The average aggregate output from many
simulations is 2.81, a value very similar to the stable value of 2.79

reached with MA.
When we increased D with MA, we generated instability in the

system and an increase in (average) aggregate output. Here we
obtain a similar result. Figures 19 and 20 contain an example of the

dynamics with the same parameters and the same initial conditions
of Figures 3 and 4. RA stands for random activation.
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Figure 19: RA, N=200, t=30000,
D=7, t01 = t02 = 5; t11 = t22 =
4, i.c.: IC1
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Figure 20: Time series of per-
capita output

We can observe that the system displays instability without the

somewhat regular patterns found in Figure 3. The time series is
more irregular than in Figure 4, although in both cases output sta-
bilizes around 2.9 (other simulations confirm this result).

This allows for the following consideration: (i) the parameters
of the model are able to determine the average of the aggregate

output; (ii) they are also responsible for the presence of fluctuations:
in particular D in relation to the thresholds; (iii) different types of

fluctuations originate from different activation rules. In the case of
MA, the fluctuations are more regular than in the case of random

activation.
Putting t01 = t02 = 7 eliminates the fluctuations and stabilizes

the system at a lower per capita output as in the case of MA (from
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many simulations in which output stabilizes at some level, the modal

value of this stable level is 2.875). See Figures 21 and 22.
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Figure 21: RA, N=200, t=30000,
D=7, t01 = t02 = 7; t11 = t22 =
4, i.c.: IC1
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Figure 22: Time series of per-
capita output

By putting t01 = t02 = t11 = t22 = 7 we re-obtain fluctuations
(more irregular), and output stabilization at an even lower level
(from many simulations, the average output is about 2.79, similar

to the output with MA, even if the standard deviations of the time
series differ). See Figures 23 and 24.
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Figure 23: RA, N=200, t=30000,
D=7, t01 = t02 = 7, t11 = t22 =
7, i.c.: IC1
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Figure 24: Time series of per-
capita output

If we maintain the parameter values of Figures 23 and 24 and try

different randomly generated initial conditions, we generally obtain
a stationary time series of per capita output with mean equal to

2.78/2.79. However it seems that the standard deviation of the series
is more volatile, with a range from 0.020 to 0.029. In general, the

variation in the time series depends on the initial conditions and,
for given initial conditions, on the randomness of the activations
across simulations.
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The same parameters may in fact be associated with a stable con-

figuration. Figures 25 and 26 present the case of initial conditions
indicated as IC2.
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Figure 25: RA, N=200, t=30000,
D=7, t01 = t02 = 7, t11 = t22 =
7, i.c.: IC2
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Figure 26: Time series of per-
capita output

From other simulations with the same initial conditions IC2, it
is possible to obtain fluctuations caused by the random activation.

However, it is also possible to re-obtain a stable configurations with
a different dynamics from the one in Figures 25 and 26. See Figures

27 and 28.
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Figure 27: RA, N=200, t=30000,
D=7, t01 = t02 = 7, t11 = t22 =
7, i.c.: IC2
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Figure 28: Time series of per-
capita output

Hence, also in this case there exists sensitivity from the initial

conditions, which is also related to the activation rule. As noted, the
parameters of the model are however able to determine some broad

characteristic of the dynamics, as the level of diffusion of special-
ization and of aggregate output, but the emergence of fluctuations
may in this case be related to the parameters and to the activation
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rule and initial conditions.21

IV.C.i. Diffusion of specialization with random activation

In this section we study the diffusion process starting from one

or a few specialized agents. We follow the same steps of Section
IV.B., and begin with the usual parameters, d10 = 1; d20 = 1; d21 =

3; d11 = −2; d12 = 3; d22 = −2; t01 = 5; t02 = 5; t11 = 4; t22 = 4. If
there is only one 1-agent in the initial period, then with D = 3 the
diffusion process does not start, as in the case of MA.22

If we increase the dimension of the neighborhood, and set D = 5,

then the diffusion process takes place, as shown in Figures 29 and
30.
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Figure 29: RA, N=200, t=30000,
D=5, t01 = t02 = 5, t11 = t22 =
4, i.c.: one 1-agents at (99)
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Figure 30: Time series of per-
capita output

We may observe that, the diffusion takes place gradually, and
that the system stabilizes at 2.76 (this is confirmed from other sim-
ulations).23 The diffusion is gradual because of the activation rule:

the active cell moves randomly, and not from the left to the right as
with MA. This means that, as before, the first agents who can make

a transition are those near the initial specialized agent. However,
now it may not be the case that the more regular pattern of MA is

21At this stage we do not try to disentangle the role of initial conditions from the role of the
activation rule. This is left for future work.

22Also, as with MA, the process does not start with two contiguous 1-agents, and with a
small cluster given by one 2-agent between two 1-agents. In the latter case they are the only
specialized agents in the steady state. We omit the figures.

23With two 1-agents the result is similar.
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established.24

If we increase further D to 7, then we obtain the results reported

in Figures 31 and 32.
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Figure 31: RA, N=200, t=30000,
D=7, t01 = t02 = 5, t11 = t22 =
4, i.c.: one 1-agents at (99)
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Figure 32: Time series of per-
capita output

Output does not stabilize and reaches the average level of 2.80

(hence output increases with an increase in D). In this case, the
threshold for specialization is so low compared to D, that it is not
necessary to be close to the initial 1-agent to become specialized.

Therefore growth appears suddenly as with MA. Notice that here
putting D = 7 generates instability, while with MA it was necessary

to have two 1-agents (although this result was sensitive to their
localization). If we put two agents in the initial cluster of specialized

agents results do not change.

If we increase the thresholds for specialization to t01 = t02 = 7
and leave t11 = t22 = 4, then we have the results in Figures 33 and

34.

24With the active cell moving from left to right, this pattern featured the specialization of
some agents on the right of the initial 1-agent, which allowed other agents on their right to
specialize and so on. Now it may be the case that, those agents who were activated exactly
after the specialization of some agents on their left, are activated when there are no specialized
agents in their neighborhood, and therefore they do not make transitions. The agents on their
right also do not make transitions, etc.
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Figure 33: RA, N=200, t=30000,
D=7, t01 = t02 = 7, t11 = t22 =
4, i.c.: one 1-agents at (99)
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Figure 34: Time series of per-
capita output

We can see that the system stabilizes at a lower level of output

which, from different simulations, is about 2.81. Then, as with MA,
the increase in t01 and t02 contributes to the stabilization of the

system and, again, the increase in the thresholds for specialization
does not reduce aggregate output.

If we increase the threshold levels for despecialization and set

t11 = t22 = 7, then we obtain the Figures 35 and 36.
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Figure 35: RA, N=200, t=30000,
D=7, t01 = t02 = 7, t11 = t22 =
4, i.c.: one 1-agents at (99)
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Figure 36: Time series of per-
capita output

In the last case, the system generally does not stabilize (with

the exception of few simulations), and output reaches an average of
2.74, that is it decreases with an increase of “competition”.

However, with t01 = t02 = t11 = t22 = 7 and D = 7, one interest-
ing case may arise with random activation. It may happen that the

initial 1-agent is activated when there are only 0-agents in her/his
neighborhood. Then, s/he despecialize and no other agent special-
izes in the economy, for the given thresholds (however, from various
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simulations this case seems rare). In the latter case, this probability

may be further reduced if more than one agent is present in the ini-
tial cluster of specialized agents (notice also that the probability for

the initial 1-agent to be activated when surrounded by zero agents,
increases when D is smaller). This can be considered an example
in which the random activation precludes the economy from taking

off. More coordination, with agents in the neighborhood of the ini-
tial 1-agent specializing before her/him, could profoundly alter the

ultimate results and generate economic growth.

V. Discussion

From the simulations in the previous section, we may draw the
following conclusions: the diffusion of specialization and the level of

per capita output increase in general with: i) an increase in the di-
mension of the neighborhood; 2) a reduction in the threshold levels

for specialization, represented by parameters t01 and t02; 3) a re-
duction in the threshold levels for despecialization, proxing for the
strength of competition, that is reduction in t11 and t22.

These results are quite predictable, given the assumptions of the

model. However, we have found that these parameters influence
also the qualitative features of the dynamics, in particular the con-

vergence toward a steady state or the emergence of more complex
types of dynamics, in which the system does not settle to a steady

configuration but remains in a state of constant change. Also, we
have found that the initial conditions and the activation rules may
in some cases be relevant.

Let us discuss the issue of complexity. As remarked, the instabil-

ity or complexity in the network dynamics depends on the easiness
of making transitions. In this respect, we have observed that, for

example, an increase in the dimension of the neighborhood which,
given the assumptions, predictably favors specialization and growth,

may also increase the instability of the system. This happens when
the dimension of the neighborhood interacts with a relatively low
value of the threshold for specialization or with a relatively high



28 A. M. Lavezzi

level of competition, proxied by a high level of the threshold for

despecialization. Hence, a complex dynamics may arise from a par-
ticular combination of the parameters of the model.

The model proposed is highly simplified, but we argue that it may
nonetheless provide some support to the intuition of Ally Young on

the nature of the process of economic growth based on specializa-
tion. The simple feedback mechanism in a network proposed in this

paper shows that, indeed, the aggregate dynamics may look similar
to the one described by Young. At this stage, we suggest that this
approach may represent a step toward a theory which is alterna-

tive to that advanced in the modern theory of endogenous growth,
where growth and specialization are represented as an equilibrium

process.25

As noted, these results hold in general, but in some cases the
initial conditions and the activation rule may have a role although,
broadly, the results listed above do not seem to be strongly affected

by the activation rule.26 This is related to the more general issue of
the organization of the economic activity. By organization we refer

to the localization of economic agents in the initial period and to
the dynamics of agents’activation.

For instance, we have observed that steady states consist in reg-
ular patterns in which specialized and nonspecialized agents alter-

nate. That is, given the parameters, one pattern could feature the
alternation of couples of agents specialized in different goods (with

the possible presence of nonspecialized agents. See for example Fig-
ure 15).

Given the local interaction and the feedbacks among agents, it
may happen that the regular pattern, possibly corresponding to

complete specialization, is never established. However, it may be
the case that different initial conditions or the order of activation of

the agents is such that the regular pattern is established in one case
and is not established in another, given the same set of parameters

25See for instance the model of growth and specialization in Romer (1987).
26There is also a difference in the type of fluctuation that emerge, with fluctuations in the

deterministic case appearing more “regular”.
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(including the dimension of the network N) (see for instance Figure

13 and the related discussion).

In general, growth in this context appears essentially as a noner-

godic process. Given the same set of parameters and different initial
conditions, the system may have a similar dynamics from the qual-

itative point of view, e.g. it may converge to a steady state, but it
may differ from the quantitative point of view, i.e. it may converge

to different levels of specialization and aggregate output (compare
Figures 1 and 2 with Figures 11 and 12). Also, for what concerns
the qualitative features of the dynamics, in the case of random ac-

tivation we have seen that with the same initial conditions and the
same set of parameters, the dynamics may be qualitatively different

(see Figures 25 and 27).

Summing up, as briefly mentioned in the discussion of Smith, we
argue that an understanding of the mechanism of growth based on
specialization requires the consideration of important organizational

aspects of the economy. As economic growth is often characterized
by take-offs, we suggest that successful economies have not been

only characterized by favorable conditions in terms of resources and
productive factors, but may also have had a favorable organization

of the productive activity.

VI. Concluding Remarks

In this paper we have explored the possibility to study growth
based on division of labor in a simple network structure. We high-

lighted the factors which can be at the roots of economic growth,
as the extent of the market, but also showed that the same param-
eters affecting the diffusion of specialization and the level of output

can be responsible for the emergence of complex dynamics of the
network and output fluctuations at the aggregate level.

We showed that, indeed, economic growth is likely to take the

shape of a complex process, and be characterized by constant change
in the structure of the economy. We take this as a partial confir-
mation of some of Smith and Young’s insights, on the nature of the
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growth process.
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