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Notes on Continuous Dynamic Models: the

Benhabib-Farmer Condition for Indeterminacy

Marco Guerrazzi∗

Department of Economics

University of Pisa

Abstract

In these notes, starting from the discrete case, we provide some useful insights
on the way in which are derived the necessary (and sometime) sufficient conditions
for the solution of a maximum problem developed in continuous time. Moreover, we
exploit such conditions to solve the Benhabib-Farmer (1994) model deriving the con-
dition for an indeterminate equilibrium path. Finally, referring to the equilibrium
condition of the labour market, we explain the mechanism that in the one-sector
optimal growth model leads prophecies to be self-fulfilling.

Keywords: Maximum Problems in Continuous Time, Indeterminate Equilibria, and

Self-Fulfilling Prophecies

JEL Classification: E00, E3, 040

1 Introduction

The importance of beliefs and expectations in economics is probably one of the most

important element of the Keynesian legacy. After the publication of the General Theory

(1936), the idea that pessimistic beliefs of investors may themselves depress the level of

economic activity inspired a lot of equilibrium macroeconomic models of the business

cycle.

∗PhD student at the Department of Economics, University of Pisa, Via C. Ridolfi,10, 56124 Pisa Italy
+39 050 2216372 e-mail guerrazzi@ec.unipi.it
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In 1970s the macroeconomists of rational expectations tried to contrast this argu-

mentation providing a way to endogenise beliefs. If a state of nature is identified by a

particular configuration of “fundamentals”1 and if prices are determined in an Arrow-

Debreu (or Walrasian) equilibrium model, then the rational expectations hypothesis seem

to suggest that beliefs should be anchored to the same fundamentals2. If this were true,

then there could be no role for macroeconomic models in which there are self-fulfilling

prophecies.

However, the evidence on influence of subjective factors is ample and dates back several

centuries3. It is hard to neglect that animal spirits4, consumer sentiment and sunspots5

activity might spark fluctuations in which prices or quantities change simply because are

expected to and price signals convey no structural information.

Nowadays, indeterminate equilibria and self-fulfilling prophecies are consolidated top-

ics of the New Keynesian Economics, usually enclosed in the field of coordination failures

(Mankiw and Romer, 1991). The central message of this literature is that the equilibrium

path of a model economy is not (at least locally) determinate by the underlying fun-

damentals. According to the macroeconomists of indeterminacy, there would be a path

multiplicity consistent with the unique equilibrium position of the economy. To pin down

the actual equilibrium path it would be necessary to specify the forecasting rule used by

agents to predict the future (belief function)6.

The research agenda of indeterminate equilibria has been developed using continuous

and discrete dynamic models. An example of the former is the Benhabib-Farmer (1994)

model illustrated in these notes. On the other hand, an example of the latter is the recent

1By “fundamentals” we mean technology, preferences and endowments.
2This was the original point of the rational expectations revolution. It is possible to show that, if there

is a unique rational expectations equilibrium, expectations must be a unique function of fundamentals.
3Azariadis (1981) remembers the Dutch “tulip mania”, the South Sea bubble in England and the

collapse of the Mississippi Company as three well-documented cases of speculative price movements
which historians consider unwarranted by “objective” conditions. More recently, we can mention the
bubble of technological equities.

4Keynes did not use “animal spirits” to mean self-fulfilling beliefs; instead his view of uncertainty was
closer to Frank Knight’s concept of an event for which there is too little information to make a frequentist
statement about probabilities.

5Sunspots is meant to represent “extrinsic uncertainty”, that is, random phenomena that do not affect
tastes, endowments, and production possibilities. Of course, as Javons noted, real-word sunspots may
very well be a source of intrinsic uncertainty to the economy, affecting, for example, the agricultural
production possibilities. However, here we are interested only in a highly stylised version of sunspot
activity.

6The belief function is the tool used by agents to solve the path multiplicity.
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Benhabib-Farmer (2000) model explaining the monetary transmission mechanism. Given

the specification of time, the first step moved in these theoretical models is to derive

the conditions under which a multiplicity of equilibrium path might occurs. Thereafter,

such conditions - usually related to measures of elasticities - are compared to econometric

estimations in order to find coherence between theory and reality.

Models developed in discrete time are not very easy to solve. However, they might be

easily supported by a belief function selecting the actual equilibrium path followed by the

model economy7. On the other hand, models developed in continuous time are easier to

solve, but they lack for a belief function because there are objective difficulties to find a

closed form for the equilibrium paths.

The rules that allow to solve maximum problems in continuous time are quite simple.

However they are often applied mechanically. In these notes, starting from the discrete

case, we provide some analytical insights explaining how the necessary (and sometime suf-

ficient) first-order conditions for a maximum are derived. Distinguishing between a finite

and an infinite horizon, a particular attention is given to the meaning of the transversality

condition.

Thereafter, given these essential tools, we solve the Benhabib-Farmer (1994) model

deriving the conditions for a multiplicity of equilibrium paths. Furthermore, we explain

the underlying mechanism that leads agents’ prophecies to be self-fulfilling.

These notes are arranged as follow. Section 2 collects some basic principles helpful to

solve maximum problems in continuous time. Section 3 develops the Benhabib-Farmer

(1994) model deriving the condition for indeterminacy. Section 4 concludes.

2 Some Basic Principles on Dynamic Programming

Problems

Let f : �n×m+1 → �n be a continuous smooth function. Consider the following system of

n first-order differential equations:

·
x (t) = f [x (t) , u (t) , t] (1)

x (0) = x0

7Models developed in discrete time are also easier to simulate with numerical procedures.
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where x is an n× 1 vector of state variables, and u is a m× 1 vector of control variables.

The vector u may depend on time. If t does not appear in f (·), the system of differential

equation is said to be autonomous.

The existence of a solution to (1) is ensured by the Cauchy-Peano theorem, that is

Theorem 1 Let
·
x (t) = f [x (t) , u (t) , t] be a system of n first-order differential equations,

where f is an �n-valued function on �n×m+1. Suppose that the following conditions hold

(A1) The function f is continuous on �n×m+1

(A2) The partial derivatives ∂fi/∂xj exists and are continuous on �n×m+1 for all i

and j = 1, 2, ..., n.

(A3) The function u (t) is continuous in t

(A4) (x0, t0) ∈ �n+1

Then there exists a function φ (t) from some interval (t1, t2) containing t0 into �n such

that

(i) The function φ (t) is continuous on (t1, t2)

(ii) φ (t0) = x0

(iii) φ (t) = f [φ (t) , u (t) , t], that is, φ (t) is a solution of the system

(iv) if ψ (t) satisfies (i), (ii), and (iii) above on an interval (s1, s2), then φ (t) = ψ (t)

on (t1, t2) ∩ (s1, s2), that is, the solution which satisfies the initial condition is unique.

In these notes, we will be interested in problems of the form

max
u(t)

T∫
0

e−ρtJ [x (t) , u (t)] dt

s.to·
x (t) = f [x (t) , u (t)] , x (0) = x0

(2)

In order to find a solution to problem (2), we define a “Hamiltonian”:

H ≡ e−ρt [J (x, u) + Ψ (t) f (x, u)] (3)

where Ψ (t) is a n × 1 vector of co-state variables representing the shadow value of the

state variables. Given that the problem (the Hamiltonian) is concave, a set of necessary

and sufficient conditions is the following

∂H

∂u
= 0 where u ∈ �m (4)

Condition (4) suggests to maximise the Hamiltonian with respect to control variables.
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∂Ψ

∂t
≡

·
Ψ = −∂H

∂x
where Ψ (t) ∈ �n (5)

Condition (5) leads to a set of n differential equations for the co-state variables.

∂Γ

∂t
≡

·
Γ =

∂H

∂Ψ
where Γ (t) ∈ �n (6)

Condition (6) reproduces the original set of differential equations for the state vari-

ables.

There are also n initial conditions Ψ (0) to be chosen. When the time horizon consid-

ered in the maximization problem is limited, these are fixed by the following transversality

condition

lim
t→+T

Ψ(t) = 0 (7)

A second and sometimes easier method to solve problems as the one expressed in (2)

is to define a present value Hamiltonian8:

H̃ ≡ J (x, u) + λf (x, u)

It is straightforward that H̃ differs fromH by missing the term e−ρt. The rules allowing

to find a solution using the present value Hamiltonian H̃ are the following

∂H̃

∂u
= 0 (4’)

∂λ

∂t
≡

·
λ = ρλ− ∂H̃

∂x
(5’)

∂Γ

∂t
≡

·
Γ =

∂H̃

∂λ
(6’)

lim
t→+∞

e−ρtλ (t) = 0 (7’)

Note that conditions (4’)-(7’) follow from conditions (4)-(7) by defining λ ≡ eρtΨ. In

fact, recognising that H = e−ρtH̃, it follows immediately that

8The other expression is called current value Hamiltonian.
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∂H

∂u
= e−ρt∂H̃

∂u
= 0 ⇒ ∂H̃

∂u
= 0 (A)

·
Ψ = −e−ρt ∂H̃

∂x
(B)

By definition, λ ≡ eρtΨ, therefore, differentiating with respect to time

·
λ = ρeρtΨ + eρt

·
Ψ = ρλ+ eρt

·
Ψ

⇒
·
Ψ =

( ·
λ− ρλ

)
e−ρt

Substituting in (B), it yields( ·
λ− ρλ

)
e−ρt = −e−ρt∂H̃

∂x
or

·
λ = ρλ− ∂H̃

∂x
Q.E.D

Finally,

·
Γ =

∂H

∂Ψ
=
∂H̃

∂λ
with λ ≡ eρtΨ

One may ask where do these rules come from. In order to answer to this question, we

consider the following discrete time maximum problem

max
{ut,xt+1}T

t

T∑
t=0

(
1

1 + ρ

)t

J [x (t) , u (t)]

s.to

(8)

x (t+ 1) − x (t) = f [x (t) , u (t)]

x (0) = x0

(9)

This is a finite dimensional problem in which we choose the sequence {ut, xt+1}T
t=0

subject to the constraints implied by (9).

We can solve this problem by writing a Lagrangian
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L (·) = J (x0, u0) − λ0 [x1 − x0 − f (x0, u0)] +

+ 1
1+ρ

{J (x1, u1) − λ1 [x2 − x1 − f (x1, u1)]}+

+
(

1
1+ρ

)2

{J (x2, u2) − λ2 [x3 − x2 − f (x2, u2)]} + ....

...+
(

1
1+ρ

)T

{J (xT , uT ) − λT [xT+1 − xT − f (xT , uT )]}

(10)

By discounting the constraints, we are implicitly working towards the present value

Hamiltonian. The first-order conditions for (10) take the form

∂L(·)
∂x1

= 1
1+ρ

∂J(·)
∂x1

+ λ1

1+ρ
+ λ1

1+ρ
∂f(·)
∂x1

+ λ0 = 0

.....................

∂L(·)
∂xt

=
(

1
1+ρ

)t [
∂J(·)
∂xt

+ λt + λt
∂f(·)
∂xt

]
−
(

1
1+ρ

)t−1

λt−1 = 0

.....................

∂L(·)
∂xT+1

= −
(

1
1+ρ

)T

λT = 0

(11)



∂L(·)
∂u0

= ∂J(·)
∂u0

+ λ0
∂f(·)
∂u0

= 0

.....................

∂L(·)
∂ut

=
(

1
1+ρ

)t [
∂J(·)
∂ut

+ λt
∂f(·)
∂ut

]
= 0

.....................

∂L(·)
∂uT

=
(

1
1+ρ

)T [
∂J(·)
∂uT

+ λT
∂f(·)
∂uT

]
= 0

(12)



∂L(·)
∂λ0

= − [x1 − x0 − f (x0, u0)] = 0

.....................

∂L(·)
∂λt

=
(

1
1+ρ

)t

[xt+1 − xt − f (xt, ut)] = 0

.....................

∂L(·)
∂λT

=
(

1
1+ρ

)T

[xT+1 − xT − f (xT , uT )] = 0

(13)

For short,

∂L (·)
∂xt

= 0 ⇔ λt − λt−1 = ρλt−1 − ∂J (·)
∂xt

− λt
∂f (·)
∂xt

(11’)

∂L (·)
∂ut

= 0 ⇔ ∂J (·)
∂ut

+ λt
∂f (·)
∂ut

= 0 (12’)

∂L (·)
∂λt

= 0 ⇔ xt+1 − xt = f (xt, ut) (13’)
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Suppose we define H̃ ≡ J (xt, ut) + λtf (xt, ut), then

λt − λt−1 = ρλt−1 − ∂H̃ (·)
∂xt

(11’)

∂H̃

∂ut
= 0 (12’)

xt+1 − xt =
∂H̃

∂λt

(13’)

The transversality condition is simply the first-order condition for the choice of xT+1

∂L (·)
∂xT+1

= 0 ⇒ −
(

1

1 + ρ

)T

λT = 0

In continuous time, the conditions derived above imply that to solve the problem

max
u

T∫
0

e−ρtJ (x, u) dt

s.to·
x = f (x, u)

we have to

• define H̃ ≡ J [x, u] + λf (x, u) (present value Hamiltonian)

• ∂H̃
∂u

= 0

•
·
λ = ρλ− ∂H̃(·)

∂x

• ·
x = f (x, u) = ∂H̃(·)

∂λ

• e−ρTλ (T ) = 0 (transversality condition)

2.1 Infinite Horizon Problems

Consider the previous discrete problem extended to an infinite horizon

max
{ut,xt+1}+∞

t=0

+∞∑
t=0

(
1

1 + ρ

)t

J (xt, ut)

s.to

(14)
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xt+1 − xt = f (xt, ut)

x (0) = x0

(15)

The additional problems arising in an infinite horizon problem derive from the fact

that J (x, u) may be unbounded. In this case, no optimum may exist. However, for most

problems that we find in the optimal growth literature the maximum problem extended

in an infinite horizon may by solved applying the first-order conditions from the discrete

case, supplementing them with a different transversality condition. Suppose we let

L (·) =
+∞∑
t=0

(
1

1 + ρ

)t

{J (xt, ut) − λt [xt+1 − xt − f (xt, ut)]}

Now let {ût, x̂t+1}+∞
t=0 be candidate sequences for a solution. Then we evaluate L(u, x)

in the neighborhood of L(û, x̂), where {u, x}+∞
t=0 is an arbitrary sequence.

L(u, x) = L(û, x̂) + Lx (x− x̂) + Lu (u− û) + Φ(u, x)

Consider the terms Lx (x− x̂) and Lu (u− û). Take Lu (u− û) first. This term has

the form

+∞∑
t=0

(
1

1 + ρ

)t [
∂J (·)
∂ut

+ λt
∂f (·)
∂ut

]
Since ∂J(·)

∂ut
= λt

∂f(·)
∂ut

for all t, this term is equal to zero, that is

Lu (u− û) = 0

Some problems arise with the term Lx (x− x̂). This term has the form

−λ0 +
1

1 + ρ

[
∂J (·)
∂x1

+ λ1x1 − λ1
∂f (·)
∂x1

]
− λ1

1 + ρ
+

+

(
1

1 + ρ

)2 [
∂J (·)
∂x2

+ λ2x2 − λ2
∂f (·)
∂x2

]
+ ......

Suppose to consider the finite problem. In this case, Lx (x− x̂) would be equal to

T−1∑
t=0

(
1

1 + ρ

)t [
∂J (·)
∂xt

+ λt + λt
∂f (·)
∂xt

− (1 + ρ)λt−1

]
(xt − x̂t)−

9



−
(

1

1 + ρ

)T

λT (xt − x̂t) = 0

In the finite horizon problem, the first-order conditions guarantee that this term is

equal to zero. In the infinite horizon problem, it is not enough to set lim
T→+∞

λT = 0, since

xT may be growing too fast.

For most problems that we encounter, the transversality condition

lim
T→+∞

(
1

1 + ρ

)T

λTxT = 0

is necessary and sufficient.

In the continuous problem, this leads to9

lim
t→+∞

e−ρtλ (t) x (t) = 0

Note that this is not the same as lim
t→+∞

e−ρtλ (t) = 0.

3 The Benhabib-Farmer Model in Continuous Time

The Benhabib-Farmer (1994) model developed in continuous time investigates the prop-

erties of the one-sector growth model (Ramsey model) assuming increasing returns to

scale. The existence of aggregate increasing returns is reconciled with the competitive

behaviour of firms using two distinct organisational structures, that is, input externalities

and monopolist competition.

The model with input externalities allows for the possibility that in a symmetric

equilibrium the social technology might display increasing returns to scale. On the other

hand, the model with monopolistic competition proposes a framework which is similar to

the one developed by Dixit and Stiglitz (1977). Specifically, there are two sectors: one

produces intermediate goods by means of capital and labour, while the other sells finite

products. In the former, producers are monopolistic competitors. In the latter, there is

perfect competition. Obviously, the possibility of increasing returns to scale holds only in

the sector of intermediate goods. Since the dynamic implications of each organisational

structure are the same, we develop the simpler version with input externalities.

9Sometimes the transversality condition has been interpreted as a non-arbitrage condition (no-Ponzi
game condition). In fact, it state that the asymptotic actual value of the state variables has to be zero.
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As in the one-sector growth model, in the Benhabib-Farmer (1994) model the infinitely-

lived representative agent solves the following problem

max
c,L

+∞∫
0

e−ρt

[
log c− 1

1 + γ
L1+γ

]
dt

s.to

(1)

·
K = −δK + Y − c (2)

The representation of the instantaneous utility in (1) deserves a short comment. If we

combine separability between consumption and leisure with a Cobb-Douglas production

function, the use of a logarithmic utility function over consumption is the only formulation

of preferences that is consistent with a stationary labour supply in a growing economy.

The aggregate technology is given by

Y = KαLβ , α + β � 1 (3)

where the inequality α + β � 1 allows for the possibility of increasing return to scale at

the social level.

We distinguish the individual problem from the aggregate problem using an externality

argument. The individual technology is given by

Y = AKaLb , a+ b = 1 (3’)

where A ≡ K
α−a

L
β−b

is the productivity parameter (Solow’s residual), taken as given

by the representative agent. The terms with the upper bar represent, respectively, the

aggregate stock of capital and the aggregate labour input.

Whenever it prevails a symmetric equilibrium, that is, when K = K and L = L, the

production function reduces to equation (3).

In order to solve the individual problem, we define a present value Hamiltonian

H ≡ log c− 1

1 + γ
L1+γ − λ

[−δK + AKaLb − c
]

(4)

In this case, λ is the shadow value of capital.

The first-order conditions for a maximum (see the previous section) are the following

∂H

∂c
= 0 ⇒ 1

c
= λ (5)
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∂H

∂L
= 0 ⇒ Lγ =

λbY

L
(6)

·
K =

∂H

∂λ
⇒

·
K = −δK + AKaLb − c (7)

·
λ = ρλ− ∂H (·)

∂K
⇒ ρλ + δλ− aλY

K
(8)

lim
t→+∞

e−ρtλ (t)K (t) = 0 (9)

Conditions (5) and (6) maximise the present value Hamiltonian with respect to control

variables. Condition (7) reproduces the original differential equation for the evolution of

capital. Condition (8) defines the law of evolution for the co-state variable. Finally,

condition (9) is the transversality condition.

Using equations (5), we express the rate of growth of c as function of the rate of growth

of λ, that is

·
c

c
= −

·
λ

λ

Substituting in equation (8), it yields

·
c

c
=
aY

K
− ρ− δ (8a)

Dividing each member of equation (7) by K we have

·
K

K
= −δ +

Y

K
− c

K
(7a)

Finally, from equations (3) and (6) we derive

Y =
(
K

α−a
L

β−b
)
KaLb (3a)

cL1+γ = bY (6a)

In a symmetric equilibrium it holds

Y = KαLβ (3b)
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cL1+γ = bY (6b)

These equations determine Y and L as function of K and c.

3.1 The Decentralised Solution

Let LS and LD be, respectively, the labour supply and demand of the i-th representative

family. Let i ∈ [0, 1] index a continuum of identical families. Let KS and KD be,

respectively, the supply and demand for capital. The i-th family sells LS units of labour

to the market and accumulates KS units of capital that it rents out to other families.

Simultaneously, the i-th family demands LD units of labour and rents KD units of capital

from other families for the use of the family firm. Using this specifications, the i-th family

solves the following problem

max
c,Ls

+∞∫
0

e−ρt

[
log c−

(
LS
)1+γ

1 + γ

]
dt

s.to

(9)

·
Ks = −δKs + Y s − c+ w

(
LS − LD

)
+ r

(
KS −KD

)
(10)

Y s = A
(
KD
)a (

LD
)b

, a+ b = 1 (11)

A ≡ K
α−a

L
β−b

(12)

where w is the real wage and r is the (real) rental rate.

To solve the problem, we define again a present value Hamiltonian

H =

[
log c− 1

1 + γ

(
LS
)1+γ

]
+ (13)

+ λ
[
−δKs + A

(
KD
)a (

LD
)b − c+ w

(
LS − LD

)
+ r

(
KS −KD

)]
Under this specification, the control variables are LS, LD, KD, and c, the state vari-

able is KS and the co-state variable is λ. The conditions for a maximum, omitting the

transversality condition, are given by

∂H

∂LS
= 0 ⇒ (

LS
)γ

= λw (14)
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∂H

∂LD
= 0 ⇒ Ab

(
KD
)a (

LD
)b−1

= w (15)

∂H

∂KD
= 0 ⇒ Aa

(
KD
)a−1 (

LD
)b

= r (16)

·
λ = ρλ− ∂H (·)

∂KS
⇒ ρλ− λ (r − δ) (17)

·
Ks = −δKs + Y s − c+ w

(
LS − LD

)
+ r

(
KS −KD

)
(18)

∂H

∂c
= 0 ⇒ 1

c
= λ (19)

Notice that in a market-clearing equilibrium
(
LS − LD

)
= 0 and

(
KS −KD

)
= 0.

Conditions (14), (15), and (19) leads to

c
(
LS
)γ

= w = Ab
(
KD
)a (

LD
)b−1

(20)

The left-hand side of equation (20) is the labour supply, while the right-hand side is

the labour demand of the individual firm. See figure 1. Notice that the industry labour

demand is taken as given by the individual firm.
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Figure 1: The labour market at the individual level

Taking the logarithms of each member in (20)
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c̃+ γlS = logw = logA+ log b+ akD + (b− 1) lD

where c̃ ≡ log c, kD ≡ logKD, lS ≡ logLS, and lD ≡ logLD.

Imposing the conditions for a symmetric equilibrium, that is, K = K and L = L, we

have

c̃+ γlS = logw = log β + αkD + (β − 1) lD

where logw = log β + αkD + (β − 1) lD is the economy-wide labour demand accounting

for externalities. Remember that we assumed α + β � 1. See figure 2.
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Figure 2: The economy-wide labour market

3.2 Local Dynamics

Using equation (17), (18), and (19) we easily derive

·
c

c
=
aY

K
− (ρ+ δ) (21)

·
K

K
= −δ +

Y

K
− c

K
(22)

Let y ≡ log Y , k ≡ logK, and l ≡ logL. Therefore

15



·
c̃ = aey−k − ρ− δ (23)
·
k = −δ + ey−k − ec̃−k

In order to derive an autonomous differential system we have to express y as a function

of c̃ and k. This is possible combining the log-linearisation of the production function and

the labour market-clearing equation, that is

y = αk + βl (24)

c̃+ γl = log b+ y − l (25)

Putting together equations (24) and (25), we derive

αk + βl − y = 0

c̃+ (1 + γ) l − log b− y = 0

In matrix notation[
α 0

0 1

](
k

c̃

)
+

[
−1 β

−1 (1 + γ)

](
y

l

)
+

(
0

− log b

)
=

(
0

0

)

It is straightforward to derive[
−1 β

−1 (1 + γ)

]−1

=

[
1+γ

β−1−γ
β

1+γ−β
1

β−1−γ
1

1+γ−β

]

Therefore, (
y

l

)
=

(
β

1+γ−β
log b

1
1+γ−β

log b

)
−
[

(1+γ)α
β−1−γ

β
1+γ−β

α
β−1−γ

1
1+γ−β

](
k

c̃

)

y =
β

1 + γ − β
log b− (1 + γ)α

β − 1 − γ
k − β

1 + γ − β
c̃ (D)

l =
1

1 + γ − β
log b− α

β − 1 − γ
k − 1

1 + γ − β
c̃
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Subtracting k from each member of equation (D)

y − k = − β

β − 1 − γ
log b−

[
1 +

(1 + γ)α

β − 1 − γ

]
k +

β

β − 1 − γ
c̃

y − k = φ0 +

[
(1 + γ) (1 − α) − β

β − 1 − γ

]
k + φ2c̃

y − k = φ0 + φ1k + φ2c̃ (25)

where the multipliers are given by

φ0 ≡ − β

β − 1 − γ
log b

φ1 ≡ (1 + γ) (1 − α) − β

β − 1 − γ

φ2 ≡ β

β − 1 − γ

Using the results in (23), we may write the required pair of autonomous differential

equations as

·
c̃ = aeλ0+λ1k+λ2c̃ − ρ− δ (26)

·
k = −δ + eλ0+λ1k+λ2c̃ − cc̃−k (27)

Any trajectory {k(t), c̃(t)} that solves (26) and (27) subject to the initial condition

k(0) = k0 and the transversality condition (9) is an equilibrium path for the model econ-

omy. Moreover, the variable k is predetermined since k0 is given by the initial conditions

of the economy while c̃0 is free to be determined by the behaviour of the agents.

The Taylor first-order approximation around a generic steady-state is the following: ·
c̃
·
k

 = J

(
c̃− c̃∗

k − k∗

)

where J ∈ �2×2 is the Jacobian matrix.
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At the steady-state (c̃∗, k∗), it holds

·
c̃ = 0 ⇒ aeλ0+λ1k∗+λ2c̃∗ = ρ+ δ ⇒ eλ0+λ1k∗+λ2c̃∗ =

ρ+ δ

a

·
k = 0 ⇒ eλ0+λ1k∗+λ2c̃∗ − ec̃∗−k∗

= δ ⇒ ec̃∗−k∗
=
ρ+ δ (1 − a)

a

The previous equalities prove that the steady-state exists and it is unique. The Jaco-

bian matrix is the following

J ≡
[

φ2 (ρ+ δ) φ1 (ρ+ δ)
φ2(ρ+δ)

a
− ρ+δ(1−a)

a
φ1

(
ρ+δ
a

)
+ ρ+δ(1−a)

a

]
For brevity,

J ≡
[
j11 j12

j21 j22

]
It is well-known that the trace of the Jacobian matrix measures the sum of the eigen-

values and the determinant measures their product. For brevity,

λ1 + λ2 = j11 + j22 = TR(J)

λ1λ2 = j11j22 − j12j21 = DET(J)

Let be Q the matrix diagonalising J . Then we define(
z1

z2

)
≡ Q−1

(
c̃− c̃∗

k − k∗

)
Hence,  ·

c̃
·
k

 = QΛ

(
z1

z2

)
where Λ ≡

[
λ1 0

0 λ2

]

It straightforward to derive that

·
z1 = λ1z1 and

·
z2 = λ2z2

18



The decomposition above suggests that the eigenvalues associated to the Jacobian

matrix represent the slope of the phase diagram in the stationary points considering a

linear transformation of the original variables. See figure 3.

i
z&

unstable

stable

λ1 > 0

λ2 < 0
zi

Figure 3: The phase diagram

If λ1 and λ2 < 0, then TR(J) < 0 and DET(J) > 0. On the other hand, if λ1 < 0 and

λ2 > 0, with λ2 > λ1, then TR(J) > 0 and DET(J) < 0. Let us derive the expression for

the trace and the determinant

TR(J) = φ2 (ρ+ δ) + φ1

(
ρ+ δ

a

)
+
ρ+ δ (1 − a)

a
=

=
ρ+ δ

a
(φ1 + aφ2) +

ρ+ δ (1 − a)

a

DET(J) = φ2 (ρ+ δ)
[

φ1(ρ+δ)
a

+ ρ+δ(1−a)
a

]
− φ1 (ρ+ δ)

[
φ2(ρ+δ)

a
− ρ+δ(1−a)

a

]
=

=
(ρ+ δ)

a
[ρ+ δ (1 − a)] (φ1 + φ2)

What are (φ1 + φ2) in DET(J) and (φ1 + aφ2) in TR(J)?

φ1 + φ2 =
(1 + γ) (1 − α) − β

β − 1 − γ
+

β

β − 1 − γ
=

(1 + γ) (1 − α)

β − 1 − γ
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φ1 + aφ2 =
(1 + γ) (1 − α) − β

β − 1 − γ
+

aβ

β − 1 − γ
=

(1 + γ) (1 − α) − β + aβ

β − 1 − γ

Whenever there are no externalities α = a, therefore

φ1 + φ2 =
(1 + γ) (1 − a)

−γ − (1 − β)
=

(1 + γ) (1 − a)

−γ − a

φ1 + aφ2 =
(1 + γ − β) (1 − α)

β − 1 − γ
= − (1 − α)

We can write (φ1 + aφ2) as

φ1 + aφ2 =
(1 + γ) (1 − α) + β(a− 1)

β − 1 − γ

Adding and subtracting (a− 1) (−γ − 1)

φ1 + aφ2 =
(1 + γ) (1 − α) + β(a− 1) + (a− 1) (−γ − 1) − (a− 1) (−γ − 1)

β − 1 − γ
=

= (a− 1) +
(1 + γ) (a− α)

β − 1 − γ

Therefore,

TR(J) =
ρ+ δ

a

[
(a− 1) +

(1 + γ) (a− α)

β − 1 − γ

]
+
ρ+ δ (1 − a)

a
=

= ρ+
ρ+ δ

a

(1 + γ) (a− α)

β − 1 − γ

DET(J) =
(ρ+ δ)

a
[ρ+ δ (1 − a)]

[
(1 + γ) (1 − α)

β − 1 − γ

]
Hence,

SGN [DET(J)] = SGN

[
(1 + γ) (1 − α)

β − 1 − γ

]
In an economy without externalities

α = a < 1 and β = b < 1
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Therefore,

TR(J) = ρ and SGN [DET(J)] < 0

In this case the eigenvalues λ1 and λ2 are of opposite sign and the steady-state is a

saddle point. In other words, there is a one-dimensional manifold in the {k, c̃} space with

the property that trajectories beginning on this manifold converge to the steady-state,

but all other trajectories diverge. Therefore, the equilibrium path will be locally unique

in the neighborhood of the steady-state.

On the other hand, whenever

α > a and β − 1 − γ > 0

We have

TR(J) < 0 and SGN [DET(J)] > 0

In this case there are two negative eigenvalues and the steady-state is a sink. In other

words, all the trajectories satisfying (26) and (27) which begin in the neighborhood of

{k∗, c̃∗} converge back to the steady-state. In this case, there will be a continuum of equi-

librium paths {k(t), c̃(t)} indexed by c̃0, since any path converging to {k∗, c̃∗} necessarily

satisfies the transversality condition (9). Completely stable steady-states giving rise to a

continuum of equilibrium paths will be termed “indeterminate” and in this case we say

that the stable manifold has dimension two10.

Summing up, the condition α > a is necessary for the indeterminacy of the equilibrium

path. The condition β−1−γ > 0 is also necessary and it is predisposed for an immediate

economic rationalization. In fact, it states that the labour demand slopes up more than

the labour supply. See figure 3.

3.3 Why Prophecies are Self-Fulfilling?

It is quite striking that the conditions for an indeterminate equilibrium path should lead to

precise implications for the labour market outlook. However, if we reflect on the inherent

logic underlying the standard Neoclassical growth model, the reasons of such a link are

straightforward. In particular, a suggestive explanation has been suggested by Aiyagari

(1995).

10In this case, all the trajectories could be optimal.
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In the standard one-sector Neoclassical growth model, the position of the labour de-

mand schedule is fixed by the stock of capital. On the other hand, the position of the

labour supply schedule is fixed by level of consumption. In the absence of shocks, an

unique level of consumption determines a unique position for the labour supply schedule.

This position, in turn, determines the unique equilibrium level of employment. There-

fore, there will be a unique level of output and investment (from the resource constraint),

which means a unique level of capital stock for the next period. From this argument, it is

clear that the key to indeterminacy is that there can’t be a unique position of the labour

supply schedule, which means that there can’t be a unique level of consumption.

Sometimes it has been argued that optimistic or pessimistic expectations might lead

households to spend more or less in consumption. Obviously, this will shift their labour

supply schedules. In order to have an equilibrium path driven by self-fulfilling beliefs,

these shifts have to lead to labour, output and investment effects that ratify the original

optimistic or pessimistic expectations.

How this might happen? Presumably, current income and expectations on future

income are what influence consumption most. In order for the households to consume

more initially, they have to be optimistic either that current and future labour incomes

will be high or that current and future interest rates will be low. In the labour market

depicted in figure 1 optimistic expectations leading households to consume more, will lead

the labour supply to shift inward. This lowers the current level of employment. Thus,

current output and investment are lowered. Thereby, future capital stock and, hence,

future employment, output, and so on, are lowered. Furthermore, future interest rates

are raised since the capital stock is lowered. These outcomes are clearly inconsistent with

the original optimistic expectations.

The above arguments suggest a way in which optimist (or pessimistic) expectations

may be self-fulfilling. Consider the labour market depicted in figure 3. In this case,

optimistic expectations will shift the labour supply inward. This will raise the employment

level and the output. By raising current output, optimistic expectations can also raise

the future capital stock and possibly lower interest rates. These effects are consistent

with the higher initial consumption. Therefore, the original optimistic expectations are

self-validating.
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4 Conclusions

The model developed in the previous section has been widely criticised. The degree of

increasing returns to scale required to generate an upward sloping labour demand seems to

be implausible if compared to empirical evidence (Basu and Fernald, 1997). Furthermore,

the picture of the labour market illustrated in figure 3 suggests that supply shocks are

related to higher real wage and employment levels. This is at odds with the circumstantial

evidence that characterised the period after the oil shocks (Aiyagari, 1995)11.

There is also another criticism that could be addressed to models with indeterminate

equilibrium paths: the assumption of an always-clearing labour market. In other words,

there is no role for unemployment in models allowing prophecies to be self-fulfilling. There

are some important exceptions to this rule, each of them developed exploiting the trans-

action approach to unemployment formulated by Pissarides (1990). In particular, we refer

to the works proposed by Burda and Weder (2002) and Giammarioli (2003). The former

focuses on the complementarity among labour market institutions, the resulting (search)

equilibrium unemployment and the propagation of the propagation of business cycles.

The latter shows the possibility of an indeterminate equilibrium path whenever the social

matching function displays a certain degree of increasing returns to scale with respect to

vacancies.

It is well known that search unemployment falls in the category of “frictional” un-

employment (Bertola and Caballero, 1994). In fact, in the matching framework, the

responsive for unemployment is the absence of a mechanism (say a market) in which the

decisions of workers and firms might be coordinated. The task of building models with

indeterminate equilibrium paths and involuntary unemployment is still in progress12.
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