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Abstract

In this paper we adopt the probabilistic framework of Calvó-Armengol
and Jackson (2004) to study the effects of job contact networks on out-
of-unemployment transitions. In particular we evaluate the role of
different network topologies vis-a-vis state-dependent probabilities of
receiving information on vacancies, which we relate to different firms’
recruitment strategies. We find that social connections produce siz-
able increases in upward mobility from unemployment and, in general,
symmetric network topologies perform better than asymmetric ones.
In addition, and most interestingly, these results strongly depends on
the different hypotheses on the firms’ hiring process strategy. Fur-
thermore, in scale-free networks the probability of transitions out of
unemployment increases in the exponent of the power-law degree dis-
tribution, but its value is much lower than what obtainable in Poisson
random networks.
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I. Introduction

Starting from Granovetter (1974), sociologists have highlighted
the importance of social networks as sources of information on jobs
in labor markets.1 More recently, economists have devoted consid-

erable attention to this topic, so that the study of the effects of
social ties in labor markets has become a fruitful research area in

economics.2

An important issue in the studies on social networks in labor
markets is network structure, that is, how and to what extent net-
works’ characteristics, such as its topology and the type of connec-

tions (e.g. “strong” or “weak” ties, see Granovetter (1973)), play
a role in explaining the economic effects of networks. For instance,

the effects of network’s symmetry and asymmetry in the network
topology have been often discussed qualitatively in the sociologi-

cal literature (e.g. Granovetter (2005)), but the quantitative effects
that this property may produce on individual economic outcomes
has so far not received the same attention.

In this paper we analyze the effects of social networks’ topology

on transitions out of unemployment, which represent a specific as-
pect of mobility in labor markets. In particular we compare, by

means of numerical simulations, the effects of different character-
istics of network geometries on the probability of transitions out
of unemployment. For small networks we focus on symmetric and

asymmetric networks, while for large networks we compare scale-free
and random networks. Moreover, by considering different options

for firms for advertising their vacancies (see below), we also provide
a first step in evaluating the role that firms’ recruitment strategies

can play in such a (socially networked) context.

Our main results can be summarized as follows. Firstly, social

connections produce sizable increases in upward mobility from un-
employment and, in general, symmetric network topologies perform

1Such importance is also confirmed by a number of empirical studies. See, e.g., Montgomery
(1991) for further discussion and references.

2See, e.g, Ioannides and Loury (2004) for a survey.
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better than asymmetric ones. In addition, and most interestingly,

these results strongly depends on the different hypotheses on the
firms’ hiring process strategy. In particular, when firms exclusively

adopt a referral hiring strategy, by allowing only employed workers
to receive information on vacancies, and the network is small, the
probability to leave unemployment remarkably drops, the role of the

network in allowing workers to leave the state of unemployment is
very limited, and the geometry of the network is almost irrelevant.

On the contrary, when the dimension of the community is suffi-
ciently large, symmetric social networks may preserve a positive

probability of leaving unemployment, while asymmetric networks
reduce, or even eliminate, mobility. Finally, in scale-free networks
the probability of transitions out of unemployment increases in the

exponent of the power-law degree distribution, but its value is much
lower than what obtainable in Poisson random networks.

The remainder part of the paper is organized as follows: Section

II. clarifies the location of the paper in the literature; Section III.
presents the theoretical model; Section IV. contains the results of

the simulations; Section V. provides further discussion of the main
results and provides some concluding remarks and directions for
future research.

II. Related Literature

Several studies on occupational and earnings mobility exist in
economics (see Atkinson et al. (1992) for a survey). In particu-

lar many studies, focusing on specific aspects of mobility, such as
transitions out of low-pay jobs (e.g., Cappellari (2007)), or transi-

tions out of unemployment (e.g., Lynch (1989)), have empirically
investigated the role of different observable individual character-

istics (e.g. gender, race, education, work experience), and indus-
trial/labor market structures in explaining differences across indi-
viduals in job/employment mobility.

An important finding, common to many of such studies, is that
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unobservable heterogeneity matters.3 In this regard, studies on so-

cial networks may provide an important contribution to the analysis
of mobility as, for example, networks’ characteristics may explain:

“why workers of a particular type in a particular location (assum-
ing networks correlate with location) may experience different em-
ployment transitions than the same types of workers in another

location, all other variables held constant”( Calvó-Armengol and
Jackson (2004), p. 433).4

However, economic studies that explicitly investigate the effects

of the presence and the structure of social networks on mobility
are rare.5 Our paper based on the works of Calvó-Armengol (2004),

Calvó-Armengol and Jackson (2004) and is closely related to Bramoullé
and Saint-Paul (2006). Furthermore, it also partly extends previous

work of ours ( Lavezzi and Meccheri (2007)).6

Calvó-Armengol (2004) and Calvó-Armengol and Jackson (2004)
introduce a probabilistic framework in which social networks fa-

cilitate the transmission of information on job vacancies among
workers, and show that there exists a strictly positive correlation
of individual employment outcomes for agents in a same network

component, both in the steady state and the transitional dynamics.
Moreover, they also study how the geometry of the correlation pat-

terns relates to the geometry of the network. Instead, in Lavezzi and
Meccheri (2007) we adopt the Calvó-Armengol and Jackson (2004)’s

framework to study the quantitative effects of network symmetry on
aggregate output and wage inequality.

However, these studies (including ours) do not explicitly concen-

trate on the effects of network’s geometry on mobility from unem-

3With respect to transitions from unemployment, another important result is that there is
substantial negative duration dependence (e.g., Lynch (1989)).

4From the econometrician’s point of view, the estimation of social effects is complicated
by the possibility that individuals choose to get together, but the determinants of this choice
is generally unobserved. This may lead to sorting along relevant unobservables to drive the
empirical correlation between individual outcomes (e.g., Mansky (1993) and Moffit (2001)).

5In the sociological literature see, e.g., Wegener (1991) and Zippay (2001).
6 Calvó-Armengol and Jackson (2007) develop a model to study the effects of the social

structure on mobility via investment in human capital. However, conversely from our paper in
which the analysis is focused on intragenerational mobility, their focus is on intergenerational
mobility.
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ployment to employment.7 Furthermore, they concentrate on small

networks, while here we also consider larger (scale-free and random)
networks. Finally, they all assume that job arrival probabilities for

each individual do not depend on being employed or unemployed.

In this paper, instead, we consider state-dependent probabilities

to access information on jobs. Specifically, we assume that employed
individuals have in general a higher probability to obtain informa-

tion on job vacancies than unemployed individuals. This intends
to capture the situation in which firms mainly adopt a recruitment

“referral” strategy, by asking first to their employees to refer some
applicant linked to them. This is consistent with the case studied
in Montgomery (1991) where firms adopt a referral hiring process

because they have imperfect information on applicants or, e.g., the
case in which employers aim at economize on advertising costs. For

instance, in a study of displaced workers in manufacturing, Zip-
pay (2001), p. 103, reports that: “One local plant has formalized

and systematized [the] networking process. When job openings oc-
cur, the social security numbers of current employees are put into a
lottery, and those whose numbers are drawn can refer two acquain-

tances for the position”. Hence, the introduction of this aspect in
the model allows to consider the effects of firms’ different strategies

of advertising vacancies, and to evaluate this channel with respect
to other traditional channels such as advertising in magazines, the

Internet, etc.

Our paper shares important aspects also with Bramoullé and

Saint-Paul (2006). Both papers adopt the probabilistic framework
of Calvó-Armengol and Jackson (2004) to study the effects of social

connections on mobility in labor markets, and both focus on tran-
sitions out of unemployment. However, the mechanisms through

which social networks may affect exit rates from unemployment are
different. In particular, in Bramoullé and Saint-Paul (2006): (i)

unemployed workers may obtain a job only through social connec-
tions and, (ii) social networks are random, with ties endogenously

7 Calvó-Armengol and Jackson (2004) present results on the effects of the structure of social
networks on unemployment rates but, in any case, discuss fewer cases than in the present study.
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evolving according to the (un)employment status of the agents.8 In

our paper, instead, we consider both the case in which information
on vacancies may reach individuals only through “personal” hir-

ing channels, such as social networks, and the case in which other
sources of information may be present, e.g. newspapers, agencies,
the Internet, etc. In addition, as in Calvó-Armengol and Jackson

(2004), we consider exogenous and fixed networks as, differently
from Bramoullé and Saint-Paul (2006), we aim to study the effects

of different networks’ geometries on mobility.9

III. Social Networks and the Labor Market

In this section we present a version of the model of Calvó-Armengol

and Jackson (2004), in which the probability of receiving informa-
tion on jobs depends on the agents’ employment status.

III.A. Labor turnover

Time is discrete and indexed by t = 0, 1, 2, ..., T . The economy is
populated by infinitely-lived agents (workers) with similar observ-
able traits, indexed by i ∈ {1, 2, ..., n}.10 In each period a worker

can be either employed or unemployed. Thus, by indicating with si

the employment status of worker i in period t, we have two possible

agents’ states:

si =

{

e, employed
u, unemployed.

The labor market is subject to the following turnover. Initially,
all workers are employed.11 Every period (from t = 0 onwards) has

8Specifically, Bramoullé and Saint-Paul (2006) assume that the probability of tie formation
between two employed individuals is greater than between an employed and an unemployed,
producing an “inbreeding bias”effect.

9 Bramoullé and Saint-Paul (2006)’s model is instead a more suitable framework to study
the issue of duration dependence.

10In what follows we omit the time subscript t, whenever this does not generate confusion.
11This assumption is irrelevant in many examples we will discuss but, for simplicity, we make

it as some of cases will feature zero-employment as an absorbing state.
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two phases: at the beginning of the period each worker can receive

information on a vacancy with arrival probability a ∈ [0, 1). Param-
eter a captures information on vacancies not transmitted through

the network, that is information from firms, agencies, newspapers,
etc. If unemployed, the worker takes the job, while, if employed,
s/he passes the information to a friend/relative/acquaintance who

is unemployed, according to a rule, which will be specified below.
At the end of the period every employed worker loses the job with

breakdown probability b ∈ (0, 1).

In this paper we consider different assumptions on the probability

a. Let us define asi
, si ∈ S = (e, u), the probabilities of hearing

about a job when, respectively, unemployed or employed. These

values can be ordered as ae ≥ au ≥ 0, on the assumption that
being employed can offer an advantage of hearing about jobs. In

particular, we will study the following cases:

1. ae = au = a > 0 ;

2. ae > au > 0;

3. ae > au = 0.

Case 1 corresponds to that studied by Calvó-Armengol and Jack-
son (2004), while Case 3 is studied by Bramoullé and Saint-Paul
(2006), with different assumptions (randomness and endogeneity)

on the social network. In Cases 2 and 3 employed workers have in
each period a higher probability of hearing about vacancies than

unemployed workers. As mentioned, with these two cases we aim
at capturing a situation in which employers adopt a recruitment

“referral” strategy, by asking first to their employees to refer some
applicant. This produces an advantage of the employed over the

unemployed in accessing information on vacancies. Moreover, it
makes (employed) social connections the main, or unique, source of
information on job opportunities for unemployed workers.



Social Networks’ Topology and Recruitment Strategies 9

III.B. Social Links and Job Information Transmission

Social networks may be characterized by a graph g representing
agents’ links, where gij = 1 if i and j know each other, and gij = 0

if they do not. It is assumed that gij = gji, meaning that the
acquaintance relationship is reciprocal. Given the assumptions on

arrival probabilities, the probability of the joint event that agent
i in period t learns about a job and this job ends up in agent’s j
hands, is described by πij:

πij(si) =











au if 〈j = i ∪ si = u〉
ae

gij
∑

k:sk=u gik
if 〈si = e ∪ sj = u〉

0 otherwise

In the first case, worker i hears about a job with probability au

when unemployed and keeps the job. In the second case, instead,
worker i is employed and hears with probability ae about a job, that

s/he passes only to an unemployed worker j( 6= i) among her/his
connections (i.e. in her/his neighborhood). We assume that i ran-

domly chooses j among all her/his unemployed contacts.12 Hence,
the probability that worker j receives information from worker i is
equal to

gij
∑

k:sk=u gik
. Clearly, πij = 0 in all remaining cases.

To sum up, a worker who hears about a vacancy makes direct use
of it if s/he is unemployed. Otherwise, s/he passes the information

to someone who is connected to her/him. The choice of the worker
to whom pass the information is “selective”, in the sense that in-

formation is never passed to someone who does not need it (that is,
someone who is already employed),13 but it is random with respect

to the subset of the connected workers who are unemployed.

12The same results would obtain if, since there is no cost in passing information, we assume
that i passes the information to all her/his unemployed contacts and then the firm randomly
chooses among them to fill the vacancy.

13For the sake of simplicity, we assume that in each period a worker can observe the state
of agents in her/his neighborhood at the end of the previous period. In other words, s/he
cannot observe if they have already received an offer from someone else. If all of the worker’s
acquaintances do not need the job information, then it is simply lost. It is also lost if it is
passed to someone that has received information on other jobs.
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workers can pass/receive information to/from the
network

t.1 t.2 t.3 t.4

workers can lose the job

workers can receive information on vacancies

workers either produce or are unemployed

Figure 1: Timing

Figure 1 shows the timing of the events for a generic period t (for

convenience, the period has been represented as composed by four
different consecutive sub-periods, with sub-periods t.1, t.2 and t.4

having negligible length).

III.C. Transitions Out of Unemployment

The process governing agents’ transitions across the states of em-
ployed and unemployed can be represented as a Markov chain with

two states: S = (u, e). Formally, given the graph g, the transition
matrix for agent i in period t has the following form:

Pi
g =

[

pi
uu,g pi

ue,g

pi
eu,g pi

ee,g

]

(1)

where, e.g., pi
ue,g is the probability for agent i in state u at the end

of period t, to be in state e at the end of period t + 1 (the other
probabilities have analogous interpretation).

The elements of the second row of Pi
g are given, respectively,

by b and (1 − b). Transition probabilities in the first row, instead,

depend on the joint effect of the probabilities of receving information
on jobs, both directly and through the social network.14 The latter

depend, in each period, on the number of connections of agent i
(i.e. on his/her degree), on the degree of agent i’s contacts, on the

number of unemployed agents in both agent i’s neighborhood and
in the neighborhoods of agent i’s contacts.

14The latter are computed analytically in Calvó-Armengol (2004) on the assumption that
each agent in the neigborhood of i is employed and has a information on a job to pass.
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In what follows, we present estimates of average transition prob-

abilities, based on the frequencies of transitions across the states of
employed and unemployed over simulated time series for each agent.

We will focus on the values of p̂i
ue,g, the estimated values of pi

ue,g (exit
probability, for short), in different networks. In this simple setting,
these values are sufficient to evaluate the overall level of mobility in

the labor market.15

IV. Simulations

In this section we present the results of various simulations of
the model. For a given network g, and a given set of parameters’

values, we estimate the transition matrices for individual agents and
the average matrix for the entire population, denoted by P g, whose
elements are denoted by pkh,g, (k, h) ∈ S.16

IV.A. Transitions Out of Unemployment without Social

Networks

Consider a population of n = 4 agents, with no social interactions
(we call the empty network G0). In the simplest case in which

au = ae = a, for given values of a = 0.10 and b = 0.015,17 the
average transition matrix is given by:

PG0
=

[

0.9017, 0.0983
0.0150, 0.9850

]

. (2)

15That is, values of p̂ue,g in different networks capture the same information obtainable from
mobility indices based on the entire transition matrix, such as ML = 1 − |λ2|, where λ2 is the

second largest eigenvalue of the transition matrix, MT = k−tr(P )
k−1 , where k is the number of

states, or MD = 1 − |det(P )|
1/(k−1)

. See, e.g., Checchi et al. (1999), p. 357.
16Average transition probabilities are estimated by the frequencies of transitions in the sim-

ulated time series of all agents. When this does not cause confusion, we will omit the subscript
g.

17These values are taken from Calvó-Armengol and Jackson (2004), p. 430. In their words:
“If we think about these numbers from the perspective of a time period being a week, then an
agent loses a job roughly on average once in every 67 weeks, and hears (directly) about a job on
average once in every ten weeks”. We simulate the model for a large number of periods, setting
T = 500, 000. All simulations are programmed in R (http://www.r-project.org/), codes are
available upon request from the authors.
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The value of pue is given by a(1− b), that is by the probability of

hearing about a job multiplied by the probability of not being fired
at the end of the period.18

IV.B. Transitions Out of Unemployment in Symmetric

and Asymmetric networks

Now we analyze the transition matrices when agents belong to a
social network, in particular we examine different network topolo-
gies for different values of au and ae. Consider, as a first example,

the networks in Figures 2 and 3, taken from Example 1 in Calvó-
Armengol (2004).

1

2

3

4

Figure 2: Network GA

1

2

3

4

Figure 3: Network GB

Networks GA and GB are characterized by the same number of

agents, n = 4, and links, N = 4, and the same average degree,
z = 2.19 However, they have a different geometry: network GA is

a symmetric network, since all agents have the same degree, while
network GB is an asymmetric network. In particular, network GB

is obtained from GA by simply rewiring one link. This introduces
an asymmetry, as in network GB agent 2 has degree 3 and agent

3 has degree 1, while agents 1 and 4 maintain the same degree.
18The exact value of p̂ue should be 0.0985. The discrepancy depends on small departures

from the law of large numbers.
19The average degree of a network is the average of the agents’degrees. The simple formula

to obtain z is: z = 2N/n.
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In other words, agents 1, 2 and 4 form a cluster of interconnected

agents, from which agent 3 is partially excluded. In addition, there
exists a difference in the degree of the agents to whom every agent

is connected. In network GA any agent has two links with agents of
degree 2. Differently, in network GB agents 1 and 4 have one link
with an agent of degree 2 (respectively agents 4 and 1), and one link

with an agent of degree 3, agent 2. Agent 2 has two links with two
agents, 1 and 4, having degree 2, and one link with agent 3, who

has degree 1.

In this paper we measure the level of symmetry by the centraliza-

tion index, Cg, introduced by Freeman (1979) and discussed, e.g.,

by Wasserman and Faust (1994), p. 180. This index assumes the
value of zero when the network is symmetric (as Network GA), and

the value of one when the network is a star, that is all the existing
links connect a central agent to any other agent. In network GB,
Cg = 0.6667.

As a first step, we examine the consequences of modifying the
values of job arrival probabilities in networks GA and GB. Our
aim is to evaluate changes in such probabilities vis-a-vis changes in

network topology. Previous studies already provide us with some
insights: in particular, Calvó-Armengol (2004) shows that Network

GA produces better results in terms of (average) unemployment and
welfare, while Lavezzi and Meccheri (2007) show that, as an impli-

cation of Calvó-Armengol (2004)’s results, network GA is associated
to higher average output and less inequality.20

Hence, we expect network GA to generate a higher value of pue

than network GB (and, in general, symmetric networks to display
higher values of pue than asymmetric networks), as job opportuni-

ties are more evenly spread in a symmetric than in an asymmetric
network. However, we are also interested in evaluating the size of
this effect, with respect to changes in a, as this may provide some

guidance on the contribution of social networks on unobserved het-
erogeneity across agents, and information on the role of firms’ hiring

20In Lavezzi and Meccheri (2007) we also discuss the relevance for these results of the hy-
pothesis that agents are homogeneous.
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strategy.

Case 1: ae = au > 0. In this case, we assume that all individuals
receive information on job vacancies independently of their employ-

ment status (ae = au = 0.10), as in Calvó-Armengol and Jackson
(2004).21 PGA

and PGB
denote the average transition matrices as-

sociated, respectively, to networks GA and GB.

PGA
=

[

0.7511, 0.2489
0.0149, 0.9851

]

(3)

PGB =

[

0.7636, 0.2364
0.0151, 0.9849

]

(4)

Note that, obviously, both networks are associated to a higher value

of the exit probability than in the case with no links in Eq. (2): the
estimated probability p̂ue increases from about 10% to about 25%,
indicating that the effect of the network is sizable. As we discuss

below, this value is essentially associated to the value of z, and not
to the fact that this network is dense, in the sense that most of the

possible links are present.22

In addition, as predicted, even if the two networks are very simi-

lar, the symmetric network GA is associated to a higher probability
to exit unemployment than the asymmetric network GB. The in-

troduction of social connections, therefore, improves individual per-
spectives on average. With an asymmetric network, however, the
average improvement conceals differences at individual level. Table

1 reports the estimated exit probabilities for each individual, p̂i
ue,

i = 1, .., 4.23

agent 1 2 3 4
p̂i

ue 0.2457 0.3149 0.1780 0.2433

Table 1: Individual exit probabilities in Network GB. ae = au = 0.10

21Here and in what follows, we maintain b = 0.015 and T = 500, 000.
22The density of a network is the ratio of existing links to the maximum possible number of

links (see, e.g., Wasserman and Faust (1994), p. 164). The density in GA and GB is 0.667.
23We do not report results on individual agents in the symmetric network GA as, clearly,

they correspond to the average values in Eq. (3).
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In network GB, p̂2
ue increases, while p̂3

ue decreases, as the degree

of agents 2 and 3 is, respectively, increased and decreased. Note
also that p̂1

ue and p̂4
ue decreased, although the degree of agents 1 and

4 is unchanged. This depends on the fact that, in network GB, they
face more competition in the possibility of receiving information
on jobs from agent 2.24 Overall, in a comparison between GA and

GB , the negative contributions from agents 1, 3 and 4 outweigh
the positive contribution from agent 2 on the transtion probability

from unemployment.

Case 2: ae > au > 0. Now we consider the case in which employed
individuals have a higher probability to hear about a job vacancy,
although also unemployed individuals may directly receive some in-

formation on vacancies. In particular, we make the following as-
sumptions on job arrivals probabilities: ae = 0.10 and au = 0.05.

The new values of PGA
and PGB

are reported in Eqs. (5) and (6).

PGA
=

[

0.7992, 0.2008
0.0149, 0.9851

]

(5)

PGB
=

[

0.8164, 0.1836

0.0149, 0.9851

]

(6)

Note that the exit probability p̂ue drops of approximately 5 per-
centage points, which reflects the drop in au.

25 Table 2 contains the

results on individual transition probabilities in network GB.

agent 1 2 3 4
p̂i

ue 0.1955 0.2645 0.1284 0.1918

Table 2: Individual exit probabilities in Network GB. ae = 0.10, au = 0.05

24See Calvó-Armengol and Jackson (2004).
25Obviously, by properly reducing au and, simultaneously, increasing ae, we could obtain a

case with ae > au > 0 in which the average exit probability increases, instead of decreasing, with
respect to Case 1. For example, with au = 0.05 and ae = 0.15, we obtain p̂ue ≈ 0.28, for network
GA, and p̂ue ≈ 0.25, for network GB . Our choice to only reduce au has not, however, relevant
qualitative effects on the main aspects we aim to investigate, that is comparing individual
employment outcomes with different network’s structures.
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By comparing Eqs. (5) and (6) with Eqs. (3) and (4) it is

possible to verify that the reduction in the value of au (for given
ae) reduces on average the probability to leave unemployment, and

that in symmetric networks this probability is, on average, higher
than in the asymmetric network GB. However, agent 2 in GB enjoys
a higher exit probability than the average agent in GA in Case 1.

Hence, for some agents, an increase in degree may counterbalance
a reduction in au, so that they have a higher exit probability in

an asymmetric network than in a symmetric network with a higher
value of au.

26

Case 3: ae > au = 0. Now we consider the case in which only em-
ployed individuals may hear about a job vacancy (ae = 0.10 and

au = 0). As a consequence, unemployed individuals can find a job
only if they receive information on job vacancies from someone an

employed member of their neighborhood. This case represents an
extreme version of the one analyzed in Case 2, and corresponds
to the situation studied by Bramoullé and Saint-Paul (2006) who,

as remarked, consider an endogenous random network and, conse-
quently, can not compare different networks’ topologies.

When au = 0 the dynamics undergoes a radical qualitative change,
as the configuration of the system in which all agents are unem-

ployed becomes absorbing. However, given that we are considering
a large number of periods, we are interested in evaluating whether

the system is actually absorbed whithin 500,000 periods, which may
represent a sufficient interval for practical purposes. This is relevant

as it allows to highlight another aspect of network topology. That
is, given that, for t → ∞, the system is absorbed with probabil-
ity one, the topology and the size of the network may affect the

speed at which this absorption occurs. In particular we find that:
(i) an increasing size of the network can contribute to increase the

capacity of the system to “resist” asborption; (ii) when the network
is asymmetric, absorption takes place faster. Some examples will

26This result ceases to hold, for example, when we set ae = 0.10 and au = 0.025. We omit
the presentation of the whole set of results for this case.
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clarify this point.27

In networks GA and GB we observed absorption in all cases,
with no appreciable differences in the length of the periods before

absorption. In this case the network is very small, and differences
in the topology do not matter. However, given that absorption in

the zero-employment state is conditional on having all agents un-
employed in the same period, when the number of agents increases,

the occurrence of such event becomes less likely. With the same
parameters, we find that the first structure in which the event of
zero-employment has a low probability features 8 agents.28 Eq. (7)

contains the results obtained with the symmetric network GC in
Figure 4.
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Figure 4: Network GC

PGC
=

[

0.8490 0.1510

0.0150 0.9850

]

(7)

In this case the network alone can generate a positive probability
for workers to leave the state of unemployment, with an estimated
value of p̂ue ≈ 15%, even if unemployed workers do not have direct

access to information on jobs.29

27The following examples are based on series of 5 simulations for various types of networks,
with T = 500, 000, ae = 0.10, b = 0.015 and z = 2.

28With n = 5, 6 we observed absorption in all cases, with n = 7 we observed absorption in
four cases while, with n = 8, we observed absorption in one case only (at period 158, 968).

29If the agents in network GC were separated in two groups of four agents connected as in
network GA, the system would preserve symmetry in a sense, but it would be absorbed as it
would replicate the results for network GA. This confirms the importance of the size of the
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If we introduce a moderate amount of asymmetry in the net-

work, for example by rewiring one link, we can obtain a structure
such as GD in Figure 5. In particular, network GD has a level of

centralization equal to Cg = 0.19.30
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8

Figure 5: Network GD

In this case absorption appears as likely as in GC .31 The tran-

sition matrix, when absorption does not take place, becomes as in
Eq. (8), with a predictable decrease in p̂ue.

PGD
=

[

0.8620 0.1380
0.0150 0.9850

]

(8)

However, when we increase the amount of asymmetry, absorption
becomes the most likely event. By rewiring another link in Network

GD, we obtain network Network GE in Figure 6, in which Cg = 0.38.
In this case absorption becomes the most likely event.32

This result is clearly confirmed in the extreme case of asymmetry
given by the star network in Figure 7, for which Cg = 0.95.33

symmetric network and points to the role of “structural holes” (see Burt (1992)), that is agents
connecting otherwise separated groups. We thank Salvatore Modica for suggesting us this case,
and refer to Lavezzi and Meccheri (2007) for further discussion.

30Clearly, network GD has the same value of z as GC . The same holds for networks GE and
GF that follow.

31For network GD, we observed absorption in one out of five simulations, at period 130, 705.
32For network GE , we obtained absorption in four out of five simulations. The estimated

value of the exit probability when absorption does not take place is p̂ue = 0.1239.
33In Figure 7 we added one link between agents 2 and 3 with respect to the pure star topology

to preserve the value of z = 2. This makes Cg different from one.
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Figure 6: Network GE
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Figure 7: Network GF

With network GF we obtained absorption in all simulations.
However, if we compare the average number of periods before ab-

sorption in GE and GF , we have, respectively, 230, 292 and 67, 097.
This highligths that, as mentioned, a more asymmetric structure

makes absorption faster.

These results provide first insights on the role of networks’ topol-

ogy and size in affecting transitions out of unemployment.34 How-
ever, to what extent are they generalizable? For example, since

we have analyzed networks characterized by the same average de-
gree, it is not clear at once the role played in this context by the

density of links of the network. While these aspects are considered
in greater detail in the next section on complex (larger) networks,
the following simple examples may provide, in this regard, other

indications.

34Note that, if we consider the state si = u as “employed in a low-pay job”, and the state
si = e as “employed in a high-pay job”, our results could also be interpreted in terms of low-
pay/high-pay transitions. Indeed, we have examined a more general case with three states
(unemployed, employed in a low-pay job and employed in a high-pay job). This requires the
introduction of several parameters, such as different values of a across states and across jobs
but, in relation to the main topic of our study (i.e. the role of networks’ structure), does not
provide significantly different insights from those obtainable with two states. In other words,
the changes of the transition probabilities in different networks mimic those presented here.
This depends on the very simple structure of the labor market assumed here. We defer the
reader to the concluding section for further discussion on this point.
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Figure 8: Net. GG
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Figure 10: Net. GI
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Figure 11: Net. GL

Figures 8 − 11 represent four different network’s geometries for
n = 12 and z = 2 with increasing values of Cg.

35 For each of those

networks, Table 3 reports, respectively, the centralization index, the
exit rate from unemployment (for the representative simulation) and

the average number of periods before absorption (the number of
absorptions out of five simulations is reported in pharentesis).

network Cg p̂ue periods before abs.
GG 0 0.1506 NA (0)
GH 0.22 0.1325 NA (0)
GI 0.65 0.0718 422,813 (2)
GL 0.98 0 83,421 (5)

Table 3: Results with Networks GG − GL (ae = 0.10, au = 0).

Results from networks GG−GL confirm previous insights. Specif-

ically, making network’s topology more asymmetric reduces, on the
one hand, the exit rate from unemployment and, on the other hand,

increases the probability of absorption and, when the system is likely
to be absorbed, reduces the (average) number of periods before ab-

sorption. Moreover, comparing results of network GG against those
of network GC (with eight agents), gives us further evidence on the
role of network’s dimension (i.e. number of agents in the network),

which aligns with previous claims. Although networks GC and GG

are both perfectly symmetric (with a centralization index equal to

zero), we never obtained absorption for GG, while, even if with small

35We have also simulated other networks with (a)symmetry degrees falling in between those
presented here. Results are in line with those here described.
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probability (one case out of five simulations), absorption is resulted

a possible event for network GC .36

We have seen that, for ae > au = 0, T = 500, 000, and for given
values of z, an increase in n can allow the system to avoid abso-

prtion. In addition, increasing values of Cg, for given n and z, can
make absorption more probable. Next we analyze the consequences

of increasing z, for fixed n and comparable values of Cg, which would
amount to increasing the density of the network. Consider network
GM in Figure 12.
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Figure 12: Network GM

Its topology is comparable with networks GI and GL. Indeed, in
network GM , Cg = 0.87, a value close to CGI

= 0.65 and CGI
= 0.98:

all three networks are characterized by a relatively high “amount”
of asymmetry. However, while z = 2 in GI and GL, in GM z = 3.

This difference plays a crucial role. While, as we have seen above,
absorption in the zero-employment state is a likely with GI and

very likely with GL, we never obtained absorption with network
GM . Figure 13 summarizes the results of various simulations.37

36Notice also that, both networks generate approximately the same value of p̂ue ≈ 15%, when
not absorbed.

37We present results of five simulations with increasing values of Cg for different values of z.
The procedure to increase Cg is the same discussed in the presentation of Figures 4-7. For this
reason, we did not obtain closely matching values of Cg across simulations for different z.
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Figure 13: Relation between p̂ue and Cg for different levels of z and au. Labels
indicate z and the value of au (ex. “510” means: z = 5 & au = 0.10, etc.) n = 12,
ae = 0.10.

Figure 13 shows that:

1. when z increases, density increases, and p̂ue on average in-
creases;

2. for given z, there exists a negative relationship between p̂ue and
Cg;

3. the higher z, the less likely is the system to be absorbed when
au = 0;

4. there is some evidenence that, as z increases the difference in
the values of p̂ue at high values of Cg is less sensitive to au being

0.05 or 0;

5. when z = 2, ae = au = 0.10, and Cg = 0, the value of p̂ue is

about 25% (see the first observation of the line labelled “210”).
This is the same value found with the same parameter values
but with n = 4 (i.e. with Network GA in Figure 2.) Results not



Social Networks’ Topology and Recruitment Strategies 23

presented here show that the same value of p̂ue is also found

with n = 5, 6, 7, 8. This shows that, when the system does
not feature an absorbing state, the nature of interactions in

social networks is actually local as, from the point of view of
the individual agent, what matters is her/his degree and not
the size of the network.38

These results may also provide some insights on the issue of short-

term vs. long-term unemployment. Specifically, the possibility to
become a long-term unemployed becomes particularly serious the

more likely the conditions for absorption in the zero-employment
state apply.39 Hence, when considering the effects that may generate
or reduce long-term unemployment, we highlight which networks’

characteristics can be crucial in this respect.

In this regard, we have also examined an alternative scenario, in
which the probability au decreases with the length of the unemploy-

ment spell. This may happen because spending time as unemployed
progressively prevent workers from receiving information on jobs.40

In particular, denoting the length of the unemployment spell by ts,
we studied the case in which au(ts) = au/ts, which is one of many

possible functional forms in which dau/dts < 0. Results related to
a comparison between such a case and that in which au is positive

and fixed (au = 0.10) are presented in Figure 14.41

38See also the remarks in footnote 36.
39Studies on transitions from unemployment have found “duration dependence”, that is the

dependence on the probability of leaving unemployment from the length of the unemployment
spells. Bramoullé and Saint-Paul (2006) treat this issue by assuming that the probability to form
links is higher between two employed workers than between an employed and an unemployed
worker. Calvó-Armengol and Jackson (2004), p. 433, show that, with fixed networks, there is
duration dependence in the sense that a long spell of unemployment for a worker signals that
most agents in her/his neighborhood are likely to be unemployed. Hence, the longer the spell,
the higher the probability that her/his connections will keep possible information on jobs for
themselves.

40Theories on human capital, for instance, point out that workers’ human capital depreciate
over time when they are unemployed, and this reduces firms’ propensity of making job offers
to those workers.

41Figure 14 refers to a comparison between different (four) network structures (different
centralization index), with n = 6 and z = 2. Each value (for each network) is the average exit
rate of unemployment out of a total of three simulations. Due to computational constraints,
we set T = 100, 000.
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Figure 14: Comparison among different networks’ structures with au = 0.10 and
au varying with workers’ unemployment spell. n = 6, z = 2.

As expected, when arrival probabilities for unemployed work-
ers decrease according to unemployment spell, (average) exit rates

from unemployment remarkably reduce (e.g. because long-term un-
employment becomes a relevant possibility for some worker in the

network). However, this is much more evident the higher is the
network’s asymmetry (i.e. the higher is the network’s centraliza-

tion index). More in detail, a comparison of the extreme values of
Cg shows that the decrease of p̂ue is more than proportional when

arrival probabilities for unemployed workers are decreasing in ts.

In conclusion, these results provide us with different indications
concerning the role of networks’ topology, dimension and density of

agents’ connections in affecting out-of-unemployment transitions.
The next section analyzes complex networks, which have a much
larger size than those analyzed so far.



Social Networks’ Topology and Recruitment Strategies 25

IV.C. Transitions Out of Unemployment in Complex Net-

works

In this section we focus on complex networks. The definition of

complex networks applies to large networks with different character-
istics from regular structures like lattices, characteristics typically

identified as statistical properties (see, e.g., the survey of Newman
(2003)).

In particular, we compare two archetypical network structures:

random networks and scale-free networks. A random network, orig-
inally introduced by Erdös and Rényi (1959), is obtained by con-

sidering a set of n nodes and a random number of links, each link
existing with probability q.42 These networks, for large n, are char-

acterized by a Poisson degree distribution of the form: pk = zke−z

k! ,
where pk is the fraction of agents having degree k, and z is the
average degree. Scale-free networks are instead characterized by a

power-law degree distribution. That is, the degree distribution can
be represented as pk = k−α, where α is a positive number. These

networks are defined scale-free because, by rescaling the indepen-
dent variable, k in this case, the form of the function pk remains

unchanged.

The scale-free property has been detected by various types of net-
works, including social networks (see, e.g., Newman (2003), p. 177).

For the present discussion, it is important to remark that networks
with scale-free degree distributions are network which display a high

level of inequality in the distribution of links. In particular, when
the distribution is scale-free, the tail of the distribution is “fat”,

indicating that a non-negligible number of agents have a dispro-
portionately high number of links. Moreover, being the distibution
scale-invariant, the same level of inequality found at low levels of

k is also found at high k. These characteristics put the scale-free
networks in sharp contrast to random networks as the latter, in

42Another type of random network is obtained by considering a fixed number of nodes and
a fixed number of edges which are randomly attached to the existing links. See, e.g., Newman
(2003), p. 187.
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particular, do not display fat tails in the degree distributions.43

It is well-known that actual social networks have statistical prop-
erties that make them very different from random networks. How-
ever, it is still useful to utilize random networks as a benchmark

because they represent a structure which abstracts from any par-
ticular behavior of the agents in the construction of their social

networks. For example, the scale-free property may emerge when
agents’ behavior displays “preferential attachment”, that is when

links are preferentially formed with individuals already having a
relatively high number of connections.44

In our analysis we considered the average degree of a random

network as it well represents the characteristics of the network (while
this does not hold for scale-free networks), and the value of the

coefficient α for scale-free networks. In particular, we evaluated
the relationship between pue and the average degree z in random

networks, and between pue and the exponent α of the power-law
degree distribution in scale-free networks. Figures 15 and 16 display
the results.45

43When plotting the cumulative degree distribution of a random network on a log-linear scale,
this appears as a straight line. Differently, to obtain a straight line in the cumulative degree
distribution of a scale-free networks, this has to be plotted on a log-log scale.

44But see Jackson and Rogers (2007) for a hybrid model that combines features of random
and scale-free networks.

45Both figures contain the results for 40 networks. All networks have been generated with
the package igraph, and have been simulated with the parameters: n = 2000, T = 5000.
For scale-free networks, the coefficient of the power-law has been estimated from the realized
network structure. To keep a minimal level of comparability between the networks in the two
figures, we imposed to each random network represented in Figure 15 the same average degree
of one of the networks of Figure 16. Note that, as predictable, we never observed absorption
with 2000 agents.
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Figure 15: Relation between pue and z
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Figure 16: Relation between pue and α

Figures 15 and 16 highlight various results:

1. there exists a clear positive relation between p̂ue and z, indi-

cating that an increase in the (average) number of links, and
then of the density, has positive effects on transitions out of

unemployment.

2. There exists a positive relation between p̂ue and α, which ap-
pers more irregular than the former.46 A higher level of α indi-

cates that the dimension of the fat tail is lower and, therefore,
scale-free networks with higher exponents can be considered

in this sense less “asymmetric”. Indeed, albeit quite irregular,
there exists a negative relationship between the level of α and
the centralization index. Figure 17 reports the estimate of this

46Figures 15 and 16 contain nonparametric estimates of the relationship, respectively, between
p̂ue and α and between p̂ue and z, for different values of the parameters ae and au. The estimates
are accompanied by the variability bands, which differ from the confidence bands, but provide
a good indication the precision of the estimates. See Bowman and Azzalini (1997), pp. 75-76,
for details.
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relationship, highligthting that the largest drops in centraliza-

tion approximately take place for 2.2 6 α 6 2.6, which are the
values for which, in Figure 16, we observe the largest increases

in p̂ue.
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Figure 17: Relation between Cg and α

3. The relation between p̂ue and z appears concave. In addition,
as z increases, the difference between the values of p̂ue corre-

sponding to Cases 1, 2 and 3 tends to vanish. This indicates
that: i) an increase in the average number of links has higher

marginal effects on pue for lower levels of z; ii) for sufficiently
dense random networks, the difference between employed and

unemployed in accessing information on jobs has little effect on
the probability of leaving unemployment. The latter result may

depend on the fact that, for low levels of z and for the given
level of n, the random network may be disconnected, that is
some agents may have degree zero.47

47In random networks, there exists a threshold probability level depending on n, below which
the network is disconnected, given by qC(n) = logn

n (see, e.g. Vega-Redondo (2007), p. 38).
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4. Also the relation between p̂ue and α appears concave, but the

degree of concavity seems lower when ae > au = 0. In addition,
the differences in the values of ae and au seem to matter more

in scale-free networks.

5. The levels of p̂ue attainable with scale-free networks reach a
maximum value of approximately 25%, and are remarkably

lower than those obtainable in random networks. The latter,
with moderately values of z of about 14 may even raise the

value of p̂ue to approximately 70%.

The next section summarizes the results, provides further discus-
sion and concludes.

V. Discussion and Concluding Remarks

In this paper we have provided a first attempt to investigate the
effects of social networks on a specific aspect of occupational mo-

bility, that is transitions out of unemployment. In particular, in
the theoretical framework originally proposed by Calvó-Armengol

and Jackson (2004), we have explored various aspects of network
topology in a context where firms may adopt recruitment strate-

gies that favor the employed over the unemployed in the access to
information on vacancies.

Our study confirms that social networks can play an important

role in facilitating workers to leave unemployment. However, it
also provides a number of qualifications to this general, well-known

result. Let us summarize our main findings:

1. for a given average degree of the network, the average prob-

ability of leaving unemployment is increasing in the level of
symmetry of the network (although some workers in asymmet-

ric networks may find themselves in more advantageous posi-
tions);

In our case, with n = 2000, qC(n) = 0.038. Since z = q(n − 1), the threshold level of z is
approximately equal to 7.6.
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2. for a given dimension of the network, an increase in z and

therefore of the density increases the probability of transition
out of unemployment;

3. the adoption of hiring stategies which favor employed workers
in accessing information on jobs reduces on average the prob-

ability of leaving unemployment;

4. when the probability for unemployed workers to directly receive
information on jobs is zero, than the system can be absorbed

in the zero-employment state. In this case:

(a) an increase in the size of the network can hinder absorption
for realistically long periods of time;

(b) for a given size of the network, an increase in asymmetry
reduces the capacity of the system to avoid absorption

and, given the certainty of absorption, it increases the
speed at which it takes place;

5. in scale-free networks the probability of leaving unemployment

is incresing in the exponent of the power-law degree distri-
bution, but its value is much lower than what obtainable in

comparable random networks.

In particular, the scale-free property emerges, as noted, when a
“preferential attachment” mechanism of link generation is at work.
This requires that links are preferentially formed with agents hav-

ing a higher number of existing links. From a social perspective,
this may occur if individuals actually choose to preferentially link to

“well-connected” agents, or simlpy because “well-connected” agents
are easier to reach because they have many links. In any case, as

long as this aspect is relevant in actual societies and as long as job
contact networks are important, this characteristic of social interac-

tions provides a negative contribution to occupational mobility, by
reducing in our case the probability of leaving unemployment with
respect to the “pure” form of random networks.
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In general, such results confirm that network’s symmetry can en-

hance the circulation of information in job contact networks and
produce better employment outcomes (in this case, measured in

terms of exit probabilities from unemployment). By implication,
this also suggests that the role of hiring channels such as newspa-
pers, agencies, the Internet, firms’ advertising, etc., as opposed to

job contact networks, becomes more relevant for smaller communi-
ties (or groups of agents with same observable characteristics), in

particular when they are also characterized by a larger dispersion
of social connections across community’s members.

Finally, our results may also provide some insights on related is-
sues, such as long-term unemployment and “duration dependence”.

In particular, as analyzed at the end of Section IV.B., networks’
topology and firms’ recruitment strategies can play a crucial role in

this respect. Namely, the possibility to become a long-term unem-
ployed is higher, the more asymmetric is the structure of network to

which the worker belongs and the more likely firms adopt a referral
recruitment strategy (or the more the probability of receiving infor-

mation about jobs decreases according to workers’ unemployment
spell).

As this paper represents a first step toward the analysis of net-
works’ topology, firms’ recruitment strategies and labor market mo-

bility, it is relevant to briefly discuss some potential ways of ex-
tending this paper, which represent the directions of our current

research. First, although, as explained above, the assumption that
firms mainly adopt a referral recruitment strategy can be consistent
with actual firms’ behaviors, it could be interesting to analyze also

the opposite case, in which unemployed agents receive information
on vacancies more often than the employed ones (because, for in-

stance, the former put more effort in finding these openings), and
compare results with those of this paper.

More generally, there are other aspects of firms’ hiring strategy

that our model does not capture. For instance, firms often make
job offers to workers already employed in other firms. Clearly, in-
troducing this aspect into the analysis, on the one hand, would make



32 A.M. Lavezzi e N. Meccheri

the framework more complicated, since issues concerning employ-

ment contracts termination and renegotiation should be taken into
consideration but, on the other end, would produce more general

results.
Secondly, while in this paper the analysis of the role of networks’

topology has only focused on symmetric vs. asymmetric networks,

the effects of other well known networks’ topology characteristics,
particularly relevant in social networks, (e.g., the “small world”

property, or the presence of “structural holes”) are worth consider-
ing.

Third, it would be interesting to explore in more details the im-
plications of workers and/or jobs heterogeneity, since this may con-
tribute to analyze the role of social networks in explaining phenom-

ena such as wage mobility and mobility out of low-pay jobs that,
as discussed above, have given rise to a substantial literature. It

is important to stress, however, that, in order to obtain more ex-
haustive results about those issues, major changes (that are largely

outside the scope of this paper) are needed. For example, aspects
related to workers/jobs matching or to internal labor markets pro-

cedures must be necessarily included into the analyses. By contrast,
as emphasized in footnote 34, simply introducing job heterogeneity
in this framework does not produce significant modifications to our

results.
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