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Abstract

This paper analyzes the equilibrium distribution of wealth in an econ-
omy where firms’ productivities are subject to idiosyncratic shocks, re-
turns on factors are determined in competitive markets, dynasties have
linear consumption functions and government imposes taxes on capital
and labour incomes and equally redistributes the collected resources
to dynasties. The equilibrium distribution of wealth is explicitly cal-
culated and its shape crucially depends on market incompleteness.
With incomplete markets it follows a Paretian law in the top tail and
the Pareto exponent depends on the saving rate, on the net return on
capital, on the growth rate of population and on portfolio diversifica-
tion. On the contrary, the characteristics of the labour market mostly
affects the bottom tail of the distribution of wealth. The analysis also
suggests a positive relationship between growth and wealth inequal-
ity. The theoretical predictions find a corroboration in the empirical
evidence of Italy and United States in the period 1987-2004.
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I. Introduction

There have been several attempts, in the economic literature,
to explain the statistical regularities of the distribution of wealth

first showed by Pareto (1897) (see the pioneering works by Sar-
gan (1957), Wold and Whittle (1957) and for a review Atkinson
and Harrison (1978) and Davies and Shorrocks (1999)). However,

as remarked in Davies and Shorrocks (1999), “research has shifted
away from a concern with the overall distributional characteristics,

focusing instead on the causes of individual differences in wealth
holdings”. One of the main reasons of the loss of interest in this

field is the lack of a precise economic interpretation of the stochas-
tic processes driving the individual wealth. In the words of Davies

and Shorrocks (1999) “[these] models lack of an explicit behavioural
foundation for the parameter values and are perhaps best viewed as
reduced forms”. This makes the stochastic models of the distribu-

tion of wealth useless both to understand the causes of an increase in
income/wealth inequality and to provide some guide to public pol-

icy. Vaughan (1978) and Laitner (1979), and, more recently, Wang
(2007) and Benhabib and Bisin (2007), represent an attempt to

overcome this critique.

The present paper discusses a model where the aggregate be-
haviour of wealth is the result of market interactions among a large

number of dynasties and firms subject to idiosyncratic shocks. While
taking the complexity of market interaction fully into account, our
model takes a behavioral perspective on consumers, by assuming

a simple linear consumption function. This allows us to explicitly
calculate the equilibrium distribution of wealth when returns on fac-

tors are determined in competitive markets and government taxes
capital and labour incomes and redistributes the revenues to dy-

nasties equally. As suggested in Aiyagari (1994), the shape of the
equilibrium distribution crucially depends on market incomplete-

ness. In particular, with capital markets without any frictions and
transaction costs but labour income subject to uninsurable shocks
the equilibrium distribution of wealth is Gaussian, a result at odds



Distribution of Wealth and Incomplete Markets 5

with empirical evidence (see, e.g., Klass et al. (2006)). On the con-

trary when frictions and transaction costs impede full diversification
of dynasties’ portfolios, the shape of the top tail of the distribution

follows a Paretian law. The Pareto exponent, which represents an
(inverse) index of the degree of inequality of the top tail of the distri-
bution, is computed explicitly, thus allowing us to draw conclusions

on the effects which different parameters have on wealth inequality.
We find, for example, that an increase in the taxation of capital

income or in the diversification of dynasties’ portfolios increases
the Pareto exponent, whereas the impact of the saving rate or the

growth rate of the population crucially depends on technology.

The bottom tail of the equilibrium distribution of wealth is in-

stead crucially affected by the characteristics of labour market and,
in particular, by the cross-section distribution of wages. With a

labour market completely decentralized, so that individual wages
immediately respond to idiosyncratic shocks to firms, the support

of the equilibrium distribution of wealth includes negative values;
on the contrary if all workers receive the same wage equal to the

expected marginal return of labour, i.e. bargaining in the labour
market is completely centralized and workers do not bear any risk,
shocks are only transmitted through return on capital and the dis-

tribution of wealth is bounded away from zero.

Finally, we show that, if the growth rate of the economy is en-
dogenous, there is a negative relationship between the latter and

the Pareto exponent, i.e. wealth inequality.

In the final section we compare our theoretical results with the

empirical evidence. We study the recent trends of wealth inequality
in Italy (1987-2004) and United States (1989-2004); the analysis is

respectively based on the Survey of Household Income and Wealth
(SHIW) and on the Survey of Consumer Finances (SCF). In both

countries the top tail of the distribution of wealth follows a Pareto
distribution, whose estimated Pareto exponent is decreasing in the

considered period. The theoretical picture offered by the model
suggests that the factors at the root of this decline are i) a decrease
in the taxation of capital income in both countries, and ii) a change
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in technology in favour of return on capital, for Italy, or a decrease

in the saving rate, for the U.S.. The demographic factor does not
seem to play a relevant role in both countries. Finally, we argue

that the increase in the size of the bottom tail of the distribution of
wealth in both countries (more evident in Italy) can be explained
by the increase in the cross-section variance of their distribution of

labour incomes.

The theoretical model is in the spirit of Vaughan (1978), but he
considers only two classes of individuals and returns on factors are
not determined in competitive markets. Shorrocks (1975) proposes

a similar approach, but he does not consider a general competi-
tive equilibrium. The same remark applies to Pestieau and Pos-

sen (1979) and Champernowne and Cowell (1998). Garcia-Peñalosa
and Turnovsky (2005) proposes a model similar to ours, but they

assume an AK technology and, overall, aggregate shocks to produc-
tion. Wang (2007) and Benhabib and Bisin (2007) present models
close to ours, where the equilibrium distribution of wealth shows fat

tails, but both consider exogenous returns on factors. In particular
both Wang (2007) and Benhabib and Bisin (2007) assume that the

return on wealth is constant and that labour income follows an ex-
ogenous stochastic process ( Wang (2007)) or is zero ( Benhabib and

Bisin (2007)). Finally, Levy (2003) discusses the properties of the
stochastic process governing the individual accumulation of wealth

in order to have a Pareto law. He finds that all agents must have
the same investment talent. In our model this happens because
capital market are competitive: this ensures that every dynasty

has the same investment opportunities. In this respect we gen-
eralize Levy (2003)’s results considering also labour incomes and

calculating the analytical expression of the equilibrium distribution
of wealth. Chatterjee et al. (2005) review several studies of the

distribution of wealth with an emphasis on empirical distribution
and on simple mechanistic stochastic processes which can repro-

duce them. A general conclusion is that the Pareto distribution
arises from the combination of a multiplicative accumulation pro-
cess and an additive term, as in Kesten processes (see Cont and
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Sornette (1997)). The same mathematical structure emerges in our

model, where returns on financial investment enter in a multiplica-
tive manner whereas labour market affects the dynamics additively.

Finally, Atkinson (2007) provides a detailed discussion on the dy-
namics of the distribution of wealth in some OECD countries and
of their possible theoretical explanations; his findings largely agree

with the results of our theoretical model and with our empirical ev-
idence. Piketty (2006) et al. provide further evidence on the factors

affecting the dynamics of wealth inequality in France.

The paper is organized as follows: Section 2 presents the theo-

retical model; Section 3 shows the evolution of wealth distribution
and characterizes the properties of the equilibrium distribution of

wealth. Section 4 discusses the empirical evidence supporting our
theoretical results. Section 5 concludes. All proofs are relegated in
the appendix.

II. The Model

We model a competitive economy in which firms demand capital

and labour. We assume all the wealth is owned by dynasties, who
inelastically offer capital and labour and decide which amount of

their disposable income is saved. Wages and returns on capital
adjust to clear the labour and capital markets respectively. For the
sake of simplicity we consider just one type of capital and no risk-free

asset.1 Hence human capital can be represented by different labour
endowments and/or included in the capital stock (in the latter case

it is accumulated at the same rate of physical capital).

From a technical point of view, we follow a standard approach

to model a stochastic economy, see, e.g., Chang (1988) and Garcia-
Peñalosa and Turnovsky (2005). In particular, we derive continuum

time stochastic equations for the evolution of the distribution of
wealth first specifying the dynamics over a time interval [t, t + dt)

and then letting dt→ 0.

1The inclusion of a risk-free asset does not modify in any substantial way the properties of
the economy.
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II.A. Firms

Consider an economy with F firms. Every firm j has the same

technology q (·). Its output over the period [t+ dt), dyj(t), is the
joint product of its technology and of a random idiosyncratic com-

ponent dAj (t):

dyj(t) = q[kj(t), lj(t)]dAj(t), (1)

where kj(t) and lj (t) are respectively the capital and the labour
of firm j at time t and dAj is a random shock to production. We

assume that at time t firm j knows only the distribution of dAj (see
Section II.D. for the characteristics of the stochastic components of

the economy).

The presence of a labour augmenting exogenous technological
progress can be taken into account assuming that lj (t) = l∗j (t) exp (ψt),

where ψ is the exogenous growth rate of technological progress. Here
we shall confine our discussion to the ψ = 0 case. Indeed, all the

following analysis remains the same, except for the meaning of the
per capita variables, which are to be interpreted in efficient units of

labour (see Chang (1988), p. 163).

We make the standard assumption that q (·) is an homogeneous

function of degree one (i.e. technology has constant returns to
scale), with positive first derivatives and negative second deriva-
tives with respect to both arguments. Hence:

q (k, l) = lg (λ) with g′ (λ) > 0 and g′′ (λ) < 0, (2)

where q (k/l, 1) = g (λ) and λ = k/l is the capital per worker.

Every firm j maximizes its expected profits dπj over the period

[t, t+ dt):

max
kj(t),lj(t)

E [dπj (t)] = max
kj(t),lj(t)

q[kj (t) , lj (t)]E [dAj (t)]−kj (t) dr (t)−lj (t) dw (t) ,

(3)
at given dr (t) and dw (t), the expected return on capital and the
expected wage respectively over the period [t, t+ dt). From the first
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order conditions of Problem (3) we have that:

dr (t) =
∂q

∂kj (t)
E [dAj (t)] and (4)

dw (t) =
∂q

∂lj (t)
E [dAj (t)] . (5)

Since q (·) is an homogeneous function of degree one we have:

q[kj (t) , lj (t)] =
∂q

∂kj (t)
kj (t) +

∂q

∂lj (t)
lj (t) , (6)

which with Eqq. (3), (4) and (5) implies that the expected profits
of each firm are zero.

After the realization of shock dAj firm j gets its output and
it rewards its factors according to their marginal productivity (see

Eqq. (4) and (5)):

drj (t) =
∂q

∂kj (t)
dAj (t) =

dr (t) dAj (t)

E [dAj (t)]
and (7)

dwj (t) =
∂q

∂lj (t)
dAj (t) =

dw (t) dAj (t)

E [dAj (t)]
. (8)

Under Eqq. (7) and (8) the realized profits are zero and both

capital and labour are bearing risk. This arrangement for the re-
turns on capital reflects, for example, the case where all lenders of
capital are shareholders (i.e. no risk-free bonds are available) and

profits are entirely distributed.
For the return on labour Eq. (8) assumes state-contingent wages.

This captures the observed volatility in earnings (see, e.g. Deaton
(1991)), but it contrasts with the general wisdom that wages are

set independent of the realized state of Nature because workers are
risk-adverse. The implications of staggered wages, i.e. when workers

bear no risk, will be considered in Section III.B.iii..

II.B. Dynasties

The economy is populated by N dynasties. We use a subscript
i to denote dynasty i. Let li and pi be respectively the average
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endowment of labour and the current average wealth of member of

dynasty i.2 Her gross income, dyi, over the period [t, t+ dt) is given
by:

dyi (t) = pi (t)
F
∑

j=1

θi,j (t) drj (t) + li

F
∑

j=1

φi,j (t) dwj (t) , (9)

where θi,j (t) is the fraction of wealth pi invested in firm j at time

t (
∑F

j=1 θi,j = 1) and φi,j (t) is the fraction of labour that dynasty

i employs in firm j at time t (
∑F

j=1 φi,j = 1). Coefficients φi,j (t)

and θi,j (t) should be thought of as the resulting allocation arising
from market interactions at time t. For given vectors of returns

on capital and wages, φi,j (t) and θi,j (t) depend on the individual
preferences. In particular, risk-adverse dynasties would prefer a

maximally diversified portfolio, i.e. θi,j (t) = 1/F , and a labour en-
dowment maximally spread across all firms, i.e. φi,j (t) = 1/F (their
expected income is indeed independent of portfolio and labour allo-

cation). On the other hand possible transaction costs and frictions
in the labour and capital markets, i.e. market incompleteness, may

result in a more concentrated allocation.3 Actually, the degree of
concentration, as a reflection of market incompleteness, will play a

major role on the equilibrium distribution of wealth.4

The disposable income is the result of taxation and redistribu-

tion. We assume that capital and labour income are taxed at a
flat rate τk and τl respectively. The resources collected from taxes

are redistributed to dynasties by lump-sum transfers. Therefore the
dynasty i’s disposable income dyDi over the period [t, t+ dt) is given

2Different amounts of labour could be interpreted as different level of abilities (productivities)
among individuals. In fact, the wage rate is defined in terms of an unit of labour service: the
labour income for dynasty i is equal to lidw.

3For example, the cost of information in capital market can be seen as a fixed cost which
may limit market participation, see Arrow (1996).

4 Guiso et al. (2001) report ample empirical evidence that actual household portfolios do
not conform with the theoretical prediction of optimizing risk-adverse dynasties in complete
markets.
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by:5

dyDi = (1 − τk) pi

F
∑

j=1

θi,jdrj+(1 − τl) li

F
∑

j=1

φi,jdwj+
τk
N

F
∑

j=1

kjdrj+
τl
N

F
∑

j=1

ljdwj

(10)

We assume that dynasty i consumes according to the following

Keynesian consumption function:6

dci = dc̄+ cdyDi + dcppi, (11)

where c ∈ (0, 1) is the marginal propensity to consume with respect
to disposable income, dc̄ captures the presence of a minimum con-

sumption dc̄ ≥ 0, which is independent of the level of income and
dcp is the marginal propensity to consume with respect to wealth.

The choice of a simple linear “reduced form” consumption func-
tion for dynasties in Eq. (11) reflects the main focus of the paper,

which is not on optimizing behaviour under uncertainty,7 but rather
on explaining the aggregate behaviour of wealth as the result of
market interactions among a large number of dynasties and firms

subject to idiosyncratic risk. Eq. (11) represents therefore a first
cut which includes the key ingredients of consumption behaviour,

5In the following we will omit the time index of the variables if this is not source of confusion.
6The consumption function in the original Keynesian version does not include a term for

wealth.
7The derivation of consumption function from an inter-temporal optimization problem under

uncertainty lacks of a closed solution, excluding a very limited number of cases. This would
prevent us from finding an analytical expression of the equilibrium distribution of wealth.
Moreover, Chang (1988) shows that Eq. (11) with dc̄ = dcp = 0 can represent the consumption
function of an intertemporal optimizing agent with infinite lifetime when utility function is CES
and technology is Cobb-Douglas; in such case Chang (1988), p. 163, shows that the saving rate
(1 − c) is equal to the intertemporal elasticity of substitution. Wang (2007) and Benhabib and
Bisin (2007) represent other examples where the agent’s optimizing behaviour leads to a linear
consumption function in wealth and labour income like in Eq. (11). Cagetti and DeNardi (2005)
survey the models of the distribution of wealth with intertemporal optimizing individuals. The
key insight of this approach is that saving rate is decreasing with income/wealth. This is in
contrast with the empirical evidence discussed in Section IV.; moreover, this does not allow
to explain the Pareto-like shape of the upper tail of the distribution of wealth (see Cagetti
and DeNardi (2005)). This is confirmed by an extension of our model where dcp is made an
increasing function of pi, i.e. saving rate is decreasing with pi. In an intertermporal optimization
framework under uncertainty with many assets, further problematic issues of consistency with
empirical evidence arise, such as the equity premium puzzle (see, e.g., Romer (2005), Cap. 7)
and inertia in asset allocation (see, e.g., Brunnermeier and Nagel (2008)).
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as disposable income and wealth, in a simple linear fashion.8 Most

importantly, the cost of using a behavioural rule for consumption is
more than outweighed by the understanding we shall derive on the

elements (e.g. parameters of production, the saving or tax rates)
that drive the wealth distribution.9 Finally, the linear consump-
tion function finds an empirical corroboration in the Italian data,

as shown in Section IV..

Given Eq. (11), dynasty i accumulates her wealth according to:

dpi = sdyDi − dc̄− dnipi, (12)

where the first term, sdyDi (s ≡ 1 − c), reflects the relationship
between savings and disposable income (s ∈ (0, 1) is the marginal

saving rate). The last term, dnipi, arises from the term dcp, but
it also includes demographic effects; if dñi represents the number

of newborns over the period [t, t+ dt) in dynasty i, then dni =
dñi + dcp. Therefore we are implicitly assuming that every member

of dynasty i is endowed with the same level of wealth. The term
dnipi may also include any other effect which can directly affect

dynasty i’s wealth, as a possible real estate tax (see Benhabib and
Bisin (2007)).10 For the sake of simplicity, in the following we will
refer to dni as a demographic component.

8From another point of view Eq. (11) can be thought of as the leading order expansion of
a generic consumption function with arguments disposable income and wealth, which neglects
higher order differentials.

9A limit of our approach is that it ignores the possible effects on saving rates, due to changes
in the fiscal policy. However, ex-ante such effects are ambiguous. In the empirical section we
show that, in response to a decline in the tax rates both in Italy and in U.S., the saving
rate has increased in Italy and decreased in U.S.. In Italy such increase could be partially
explained by precautionary saving, caused by the increase in the expected volatility of future
incomes (see Jappelli and Pistaferri (2000b)) and by the change in social security in 1990s
(see Attanasio and Brugiavini (2003)). In this regard, for our purposes it is preferable to take
saving rates as a behavioural parameter to be estimated, being the latter observable, rather
than to consider other variables, such as the expectations of future incomes, and/or changes in
welfare policy, which are not easily measurable.

10We thank Prof. Shyan Sunder for pointing us such possibility.
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II.C. Equilibrium

In the equilibrium of capital markets we have that:

P =
N
∑

i=1

pi =
F
∑

j=1

kj = K, (13)

while in the equilibrium of labour market:

N
∑

i=1

li =
F
∑

j=1

lj = L. (14)

From Eqq. (7) and (8) we have:

E [drj] = dr ∀j and (15)

E [dwj] = dw ∀j. (16)

From Eqq. (4), (5), (15) and (16) we have that:

kj
lj

=
K

L
=
P

L
= λ ∀j, (17)

that is every firm j uses the same production technique λ; the latter

is also the firms’ endowment of capital per unit of labour. For
convenience we also define the per capita wealth p̄ = ΣN

i=1pi/N =

P/N and the per capita labour endowment l̄ = ΣN
i=1li/N = L/N .

In equilibrium firm j rewards its factors at the following rates:

drj = dAjg
′ (λ) and (18)

dwj = dAj [g (λ) − λg′ (λ)] . (19)

The allocation of capital and labour among firms should be such
to satisfy the equilibrium conditions (13)-(17). For example, the

case in which each dynasty i works just in a single firm j∗ (i) (i.e.
φi,j∗(i) = 1 and φi,j = 0 for j 6= j∗ (i)) may not be compatible with

market equilibrium because this may not ensure that every firm has
the optimal ratio of capital and labour λ (see Eq. (17)). On the
other hand the optimal allocation in complete markets, where each
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(risk-adverse) dynasty invests an equal share of her wealth in each

firm (i.e. θi,j = 1/F ) and contributes the same amount of labour
to each firm (i.e. φi,j = 1/F ), is always compatible with market

equilibrium. With incomplete markets (i.e. if frictions and transac-
tion costs prevents dynasties from investing and/or working in all
firms), consistency with market equilibrium implies that the coeffi-

cients θi,j and φi,j carry some dependence on the dynamics of pi. In
this situation, market equilibrium is not sufficient to determine un-

ambiguously the value of coefficients θi,j and φi,j. In what follows,
we will not explicitly model frictions and transaction costs. Rather,

we shall treat θi,j and φi,j as parameters of the economy specifying
the degree of concentration of capital investment and labour allo-
cation among firms induced by frictions and transaction costs. We

find it convenient to introduce the variables

Θi,i′ =
F
∑

j=1

θi,jθi′,j, Ωi,i′ =
F
∑

j=1

θi,jφi′,j and Φi,i′ =
F
∑

j=1

φi,jφi′,j. (20)

These characterize the degree of intertwinement of economic inter-
actions, i.e. how random shocks propagate throughout the economy.

For example Θi,i′ is a scalar which represents the overlap of invest-
ments of dynasty i with those of dynasty i′.

II.D. The Continuum Time Limit

Let us now make the dependence of differentials on the time

infinitesimal dt explicit. In particular, we take:

dr = ρdt; (21)

dw = ωdt; (22)

dn = νdt; (23)

dc̄ = χdt and (24)

E [dAj] = adt ∀j, (25)

where ρ is the interest rate, ω the wage rate, a > 0 a scale parameter,
ν > 0 the growth rate of population plus the marginal effect of
wealth on consumption and χ ≥ 0 the minimum consumption.
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For productivity shocks we define:

dζj =
dAj − E [dAj]

a
(26)

so that E [dζj] = 0. We assume that random shocks dζj are inde-
pendent across both firms and time, i.e. dζj are independent Wiener

increments with the following properties:

E [dζjdζj′] = ∆dtδj,j′δ (t− t′) and (27)

where ∆ is the variances of productivity shocks, δj,j′ = 1 if j = j′
and δj,j′ = 0 otherwise, whereas δ (t− t′) is Dirac’s δ distribution.

Finally, from Eqq. (7)-(8), (21)-(25) and (26) we have:

drj = ρdt + ρdζj and

dwj = ωdt+ ωdζj.
(28)

Given these definitions the dynamics of dynasty i’s wealth is
given in Proposition 1.

Proposition 1 The dynasty i’s wealth obeys the following stochas-
tic differential equation:11

dpi
dt

= s
[

(1 − τk) ρpi + (1 − τl)ωli + τkρp̄+ τlωl̄
]

−χ−νpi+ηi, (29)

where ηi is a white noise term with E [ηi (t)] = 0 and covariance:

E [ηi (t) ηi′ (t
′)] = δ (t− t′)Hi,i′ [~p] , (30)

where

Hi,i′ [~p] = ∆s2
{

(1 − τk)
2ρ2pipi′Θi,i′ + (1 − τl)

2 ω2lili′Φi,i′ +

+ (1 − τk)(1 − τl)ρω [pili′Ωi,i′ + lipi′Ωi′,i] +

+
τkρ+ τlω/λ

N
[(1 − τk)ρ(piϑi + pi′ϑi′) + (1 − τl)ω(liϕi + li′ϕi′)]+

+
[τkρ+ τlω/λ]2

N2

F
∑

j=1

k2
j

}

,

11Here we adopt the notation of Langevin equations, see Gardiner (1997), p. 80.
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and

ϑi =

N
∑

i′=1

Θi,i′pi′, ϕi =

N
∑

i′=1

Ωi,i′pi′. (31)

Proof. See Appendix A.
Eq. (30) shows that the correlation in the shocks hitting two

dynasties i and i′ arises either because both are investing in the

same firms (Θi,i′), or because one is investing in the firm in which
the other is working (Ωi,i′) or because both are working in the same

firm (Φi,i′). Terms ϑi and ϕi are respectively the average capital of
the firms where dynasty i is investing and working.

III. Infinite Economy

In this section we analyze the properties of the infinite economy,
that is of an economy where N and F → ∞. In particular, we

assume that F = fN , where f is a positive constant. This assump-
tion is not a relevant limitation of the analysis because in a real

economy N and F may be of the order of some millions (in general
F represents the number of possible different types of investment).

For the sake of simplicity we assume that dynasties do not differ

among themselves in their endowment of labour li, in the diversifi-
cation of their portfolios Θi,i, in the allocation of their wealth among

the firms where they are working Ωi,i and in the number of firms
where they are working Φi,i, i.e. we assume that:

li = l̄ = 1 ∀i; (32)

Θi,i = Θ̄ ∀i; (33)

Ωi,i = Ω̄ ∀i and (34)

Φi,i = Φ̄ ∀i. (35)

Notice that Θ = 1 means no diversification of the dynasties’
portfolios, whereas Θ = 1/F (i.e. Θ → 0 for F → ∞) corresponds

to maximal diversification of portfolios; similarly, Φ = 1 means that
each dynasty is working in just one firm (the opposite implausible
case is Φ = 0, when each dynasty works in all firms).
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We focus on the properties of equilibrium, i.e. on the behaviour

of the infinite economy in the limit t → ∞. We first derive the
evolution of the aggregate variables and we then focus on two types

of economies: i) the stationary/exogenous growth economy and ii)
the endogenous growth economy.

III.A. Evolution of Aggregate Variables

In order to derive the dynamics of per capita wealth p̄ from Eq.
(29) we have:

1

N

d

dt

N
∑

i=1

pi =
dp̄

dt
= s (ρp̄+ ω) − vp̄− χ+ η̄, (36)

where

η̄dt =
1

N

N
∑

i=1

[dpi −E (dpi)] =
s(ρ+ ω/λ)

N

F
∑

j=1

kjdζj.

Proposition 2 shows under which conditions the term η̄dt in Eq.

(36) can be neglected, so that in the limit of infinite economy the
dynamics of p̄ is deterministic.12

Proposition 2 Assume that there exists a constant θ̄ > 0 such that

∀t:
N
∑

i=1

θi,j ≤ θ̄ ∀j, N (37)

and that:

lim
N→∞

N
∑

i=1

(pi
P

)2

= 0. (38)

12With idiosyncratic shocks to firms the occurrence of skewed distributions of firm sizes has
been suggested to be an important source of fluctuations in aggregate variables (see Gabaix
(2008)). In our model it can be shown that under the assumption that every dynasty i allocates
an equal share of its wealth to a limited number of firms, i.e. θi,j = Θ in 1/Θ firms and θi,j = 0
in F−1/Θ firms, and the distribution of wealth has a power law behavior in the upper tail (as it
will happen in our economy), the firm size distribution has a power law behaviour in the upper
tail with the same Pareto exponent of wealth distribution. However, Assumption 38 rules out
aggregate fluctuations. A detailed analysis of the firm size distribution and of economies with
aggregate fluctuations goes beyond the scope of the present paper and it is doomed to future
research.
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Then ∀ǫ > 0

lim
N,F→∞

P (|dp̄− [s (ρp̄+ ω) − vp̄− χ] dt| > ǫ) = 0

and, in the limit N,F → ∞, the per capita wealth p̄ almost surely
follows a deterministic dynamics given by:

dp̄

dt
= s (ρp̄+ ω) − χ− vp̄. (39)

Proof. See Appendix B.
Assumption (37) states that the total share of dynasties’ invest-

ment in each firm is bounded above, that is investments across firms

cannot be too concentrated.13 Taking the sum on j in Assumption
(37) yields θ̄ ≥ 1/f = N/F , i.e. the number of firms must grow at

least as fast as the number of dynasties.
Assumption (38) states that as the number of dynasties goes to

infinity the share of wealth of every dynasty on the total wealth of
the economy must converge to zero. More technically, Assumption
(38) is a law of large numbers and, in particular, it is an assumption

on the shape of the top tail of the distribution of pi. In fact, if the
probability distribution density of pi behaves for large p as f(p) ∼
p−α−1 with α > 1, as we will find later in Propositions 4 and 12,
then Assumption (38) holds. If Assumption (38) does not hold then

per capita wealth follows a stochastic process and the dynasty i’s
wealth will fluctuate both because of the idiosyncratic shocks and

because of the fluctuations of the aggregate variables.
Substituting for ρ and ω in Eq. (39) from Eqq. (15)-(16) and

(21)-(25) we get:
dp̄

dt
= sag (p̄) − χ− vp̄, (40)

which is the well-known equation of the Solow growth model (with-

out capital depreciation) and augmented with the minimum con-
sumption χ.14 Stiglitz (1969) shows that Eq. (40) can generate

13As extreme example consider the case where all dynasties invest in the same firm j = 1 all
their capital, i.e. θi,1 = 1 and θi,j = 0 for j > 1 ∀i. Then Condition (37) is violated for j = 1.

14ag (p̄) = aq
(

k̄, 1
)

is the per capita output adjusted for the effective supply of labour of each
individual, i.e. it would be per-capita output if L = N
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many different dynamics according to the parameters’ value and to

the shape of production function g(·). In particular, the per capita
wealth of economy p̄ could i) converge to a positive value/growing

at an exogenous rate, ii) grow at an endogenous rate or, finally, iii)
converge towards zero; the long-run equilibrium could also depend
on the initial level of the per capita wealth. To our purposes econ-

omy iii) is trivial, so that in the following we analyse only economies
i) and ii).

III.B. Stationary/Exogenous Growth Economy

Heuristically the condition to have an equilibrium with constant
per capita wealth is that the growth rate of per capita wealth be-

comes negative for large value of p̄. Moreover, depending on the
value of the production function in zero, we can have zero, one or

two equilibria (but at most one will be stable). With an exogenous
technological progress at a rate ψ, p̄ is the per capita wealth mea-
sured in efficient units; therefore in equilibrium the per capita wealth

will grow at the exogenous growth rate of technological progress ψ.

Proposition 3 states the conditions for the existence of an equi-

librium with a constant and positive per capita wealth.

Proposition 3 Assume that g(·) satisfies Assumption (2), the dy-
namics of the per capita wealth of the economy obeys Eq. (40) and

that

lim
p̄→∞

g′ (p̄) <
ν

sa
. (41)

Then if

g (0) >
χ

sa
(42)

an equilibrium with constant and positive per capita wealth exists.

Otherwise if:

g (0) <
χ

sa
(43)

and if

∃p̄1 < p̄2 such that sag (p̄h) = χ+ vp̄h for h = 1, 2, (44)
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then p̄2 and p̄1 are respectively a local stable and unstable equilib-

rium. The economy converges towards an equilibrium with a per
capita wealth equal to p̄2 if and only if p̄ (0) > p̄1, while if p̄ (0) < p̄1

the economy converges towards an equilibrium with zero per capita
wealth.
If a stable equilibrium with positive per capita wealth exists, then the

equilibrium per capita wealth, p̄∗, solves:

sag (p̄∗) = χ+ vp̄∗, (45)

while the interest rate and the wage rate are respectively given by:

ρ∗ = ag′ (p̄∗) and (46)

ω∗ = a [g (p̄∗) − p̄∗g′ (p̄∗)] (47)

Proof. See Appendix C.

Figures 1 and 2 provide the intuition of results in Proposition 3.

p̄

B

A

p̄∗

E C

D

O

Figure 1: economy with a global stable
equilibrium.

p̄

B

A

p̄2 = p̄∗

E2 C

D

p̄1

E1

O

Figure 2: economy with a local stable
equilibrium.

Figure 1 shows the economy with a single global stable equilib-

rium, whereas Figure 2 refers to the economy with two equilibria,
only one of which is stable (E2). In the latter economy, in order to

have an equilibrium with a positive per capita wealth, it is necessary
that the initial per capita wealth is higher than p̄1.

Proposition 3 shows that p̄∗ positively depends on s and a and
negatively on ν.15 The equilibrium interest rate ρ∗ negatively de-
pends on p̄∗; on the contrary, the effect of a on ρ∗ is ambiguous

15This is straightforward given Eq. (45) and Assumption (2) on g (·).
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because it has a positive direct effect, but also a negative induced

effect: in fact, the increase in p̄∗, caused by the increase in a, tends
to decrease ρ∗. Finally, the equilibrium wage rate ω∗ increases with

p̄∗.

III.B.i. The Equilibrium Distribution of Wealth

In the following we characterize the equilibrium distribution of

wealth of dynasty i, when the economy converges toward a constant
and positive per capita wealth p̄∗; we then show that Assumption

(38) is satisfied in equilibrium.

Proposition 4 Assume that the infinite economy converges towards
a positive and constant per capita wealth p̄∗ given by Eq. (45), and

that χ < s [ω∗ + τkρ
∗p̄]. Let f (pi) be the equilibrium distribution of

pi. Then:

• if Θ̄, Ω̄ = Φ̄ = 0 (complete markets) then:

f (pi) = δ (pi − p̄) . (48)

• if Θ̄, Ω̄ = 0 and Φ̄ > 0 (capital markets without frictions and trans-
action costs) then:

f (pi) = N e−
(z0−z1pi)

2

z1a0 ; (49)

• if Θ̄, Ω̄, Φ̄ > 0 (incomplete markets) then:

f (pi) =

[

N
(a0 + a1pi + a2p2

i )
1+z1/a2

]

e
4

[

z0+z1a1/(2a2)√
4a0a2−a2

1

]

arctan

(

a1+2a2pi√
4a0a2−a2

1

)

;

(50)

where

z0 = s [ω∗ + τkρ
∗p̄] − χ;

z1 = ν − s (1 − τk) ρ
∗;

a0 = ∆s2 (1 − τl)
2 ω∗2Φ̄;

a1 = 2∆s2(1 − τk)(1 − τl)ρ
∗ω∗Ω̄ and

a2 = ∆s2 (1 − τk)
2 ρ∗2Θ̄,
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where N is a constant defined by the condition
∫∞
−∞ f (pi) dpi = 1.

Proof. See Appendix D.

Condition s [ω∗ + τkρ
∗p̄] > χ is not a source of limitation of the

analysis: it ensures that dynasties with zero initial wealth have an

expected positive saving, i.e. they can escape from the zero wealth
trap.

When risk-adverse dynasties can fully diversify both their income
from capital investment and labour (i.e. θi,j = φi,j = 1/F ), in an

infinite economy, they can eliminate all sources of risk, i.e. Θ̄, Ω̄ =
Φ̄ = 0. Therefore their income is deterministic and, in equilibrium,

they all end up with the same wealth, i.e. pi = p̄.

When capital markets are without any frictions and transaction

costs, but each dynasty can work in a limited number of firms, risk-
adverse dynasties fully diversify their portfolios (θi,j = 1/F ) but

labour income remains subject to uninsurable idiosyncratic shocks;
then in an infinite economy Θ̄, Ω̄ = 0 and Φ̄ > 0. As a consequence,

the equilibrium distribution of wealth is affected only by shocks on
wages and it attains a Gaussian shape with mean z0/z1 = p̄ and
variance a0/ (2z1).

In the more realistic incomplete market case, i.e. Θ̄, Ω̄, Φ̄ > 0, for

large pi f (pi) ∼ p−α−1
i follows a Pareto distribution whose exponent

is given by:

α = 1 + 2z1/a2 = 1 + 2
ν − s (1 − τk) ρ

∗

∆s2(1 − τk)2ρ∗2Θ̄
. (51)

We observe that z1, a2 > 0 (see Condition (41) and Eq. (46)) and
hence α > 1: this ensures that Assumption (38) is indeed satisfied
in equilibrium.

Assumptions (32)-(35) eliminate cross-dynasty heterogeneity in

Eq. (50); hence, the latter can be directly compared with the empir-
ical distributions of wealth discussed in Section IV.. However, it is

worth noting that if dynasties were heterogeneous in their portfolio
diversification, i.e. Θi,i 6= Θi′,i′, then the top tail distribution would
be populated by the dynasties with the highest Θi,i, that is by those
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dynasties with the less diversified portfolios (Θi,i = 1 means that

dynasty i has just one asset in its portfolio). This finding agrees
with the empirical evidence on the low diversification of the port-

folios of wealthy households discussed in Guiso et al. (2001), Cap.
10.

Remark 5 shows the dependence of α on the main variables and
parameters of the model.

Remark 5 The size of the top tail of the distribution of wealth mea-
sured by (the inverse of Pareto exponent) α is an increasing function

of ∆ and Θ̄, and a decreasing function of τk. Changes in s and v
have, on the contrary, an ambiguous effect on the size of the top tail

of distribution of wealth.

A lower diversification of the dynasty i’s portfolio, measured by

Θ̄, tends to decrease α and therefore to increase the inequality in the
top tail of distribution.16 The opposite holds for τ k (see Benhabib

and Bisin (2007)). Labour income does not play any role, whereas
the gross return on capital ρ∗ does. An increase in the latter tends
to increase the size of the top tail (i.e. ∂α/∂ρ∗ < 0). In this respect

the ambiguous relationships between α and s is the result of two
competing effects: when s increases a direct effect tends to decrease

α, while an induced effect tends to increase α; the latter is caused
by a decrease in the return on capital ρ∗, in turn caused by an

increase in the equilibrium per capita wealth p̄∗. When ν increases
the contrary happens. Without specifying the technology it is not
possible to determine which effect prevails. These results highlight

the importance to endogenize the returns to factors in order to study
the effect on inequality of changes in the saving rate and in the

growth rate of population (e.g., compare our results with the one
in Atkinson and Harrison (1978), Cap. 3). In the following we

analyse the case of CES technology.

16 Pestieau and Possen (1979) also address the dependence of the distribution of wealth on
portfolio choices, though in a rather different framework. Castaldi and Milakovic (2006) suggest
that also the frequency of the changes in the composition of the wealthiest portfolios can affect
the Pareto exponent.
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III.B.ii. CES Technology

The CES production function is given by q(k, l) = [εkγ + (1 − ε) lγ]1/γ

with ε ∈ (0, 1) and γ ∈ (−∞, 1]; the elasticity of substitution in pro-

duction is equal to 1/ (1 − γ). For γ → 0 we have the Cobb-Douglas
production function q(k, l) = kεl1−ε. The function g(λ) is therefore

given by g (λ) = [ελγ + 1 − ε]1/γ, while in the Cobb-Douglas case

g (λ) = λε. The CES production function satisfies Assumption (2).

Condition (41) for exogenous growth is satisfied for ε1/γ < v/ (sa)

when γ ∈ (0, 1], while it is always satisfied when γ ≤ 0 given that
v, s and a > 0. Condition (42) for one stable global equilibrium is

satisfied for (1 − ε)1/γ > χ/(sa) when γ ∈ (0, 1], while it is never

satisfied when γ ≤ 0. With Cobb-Douglas technology, i.e. γ =
0, Conditions (41) and (43) for the existence of two equilibria are
always satisfied, but p̄1 = 0.

Assume that χ = 0; then in the equilibrium with positive per
capita wealth:

p̄∗ =

[

1 − ε

(ν/sa)γ − ε

]1/γ

; (52)

ρ∗ = εaγ
(ν

s

)1−γ
; (53)

ω∗ = a (1 − ε)1/γ

[

(ν/sa)γ

(ν/sa)γ − ε

]1/γ−1

and (54)

α = 1 + 2

[

1 − (1 − τk) ε (as/v)γ

∆(1 − τk)2ε2 (as)2γ v1−2γΘ̄

]

. (55)

The Pareto exponent α is negatively related to ε, which measures
the elasticity of production to capital, via an increase of ρ∗; Remarks

6, 7 and 8 show that the relationships between α and s, ν and γ
are, however, more complex.

Remark 6 The Pareto exponent α with CES technology increases
(decreases) with s if γ < 0 (γ > 0).

Proof. The proof directly follows from the derivative of α expressed
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in Eq. (55) with respect to s, from which ∂α/∂s > 0 ⇔ γ < 0, given

that 1 − (1 − τk) ε (as/v)γ > 0 (see Condition (41)).
When γ < 0 the elasticity of substitution in production is lower

than 1: the indirect effect of s on ρ∗ dominates the direct effect of
s on α. If technology is Cobb-Douglas, i.e. γ = 0, then ∂α/∂s = 0:
the direct and the induced effects exactly balance. We stress that in

models where factors prices are fixed α decreases with s since only
the direct effect is present (see Atkinson and Harrison (1978)).

Remark 7 The Pareto exponent α with CES technology decreases

(increases) with ν if γ ≤ 0 (γ ∈ [1/2, 1]), while if γ ∈ (0, 1/2) α in-

creases (decreases) with ν for ν < ṽ (ν > ν̃), where ν̃ = as [(1 − τk)(1 − γ)ǫ/(1− 2γ)]1/γ

Proof. The proof directly follows from the derivative of α expressed
in Eq. (55) with respect to ν. The sign of derivative is given by the
sign of (1 − γ)(1 − τk)(as)

γǫν−γ − 1 + 2γ, which is always negative

when γ ≤ 0 (to respect Condition (41)) and always positive when
γ ∈ [1/2, 1]. When γ ∈ (0, 1/2) the derivative changes its sign in

ν̃ = as [(1 − τk)(1 − γ)ǫ/(1− 2γ)]1/γ.

Countries with a low and declining growth rate of population
could show a decline in α as well as countries with high and increas-

ing growth rate of population. The latter result could explain the
empirical evidence in Laitner (2001).

Remark 8 The Pareto exponent α with CES technology increases

(decreases) with γ if ν > as (ν < as).

Proof. Since ∂α/∂γ = (∂α/∂ρ∗)(∂ρ∗/∂γ) and ∂α/∂ρ∗ < 0, it is

sufficient to know the sign of ∂ρ∗/∂γ in order to know the sign of
∂α/∂γ. From Eq. (53) we have that ∂ρ∗/∂γ < 0 ⇔ ν > sa.

Parameter γ is directly related to the the elasticity of substitution
in production; an increases in γ leads to a decrease in the Pareto

exponent α if the growth rate of the population ν is sufficiently high
with respect to the saving rate s. A technological change which

increases the substitution between factors by increasing the return
on capital can therefore have a relevant impact on the distribution
of wealth.
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III.B.iii. Staggered Wages

We have just shown that the labour market (and taxation of

labour income) does not affect the top tail of the distribution of
wealth; however the working of labour market crucially affects the

shape of the bottom tail of the distribution of wealth. So far we
have assumed that wages perfectly respond to firms’ productivity
shocks, but in the real labour markets wages are generally fixed in

the short run and productivity shocks are absorbed by the returns
on capital (see Garcia-Peñalosa and Turnovsky (2005) for a similar

point). In order to investigate the implications on the distribution
of wealth of this issue we assume that all wages in the economy are

set to the expected level of productivity, that is Eq. (8) is replaced
by:

dwj =
∂q

∂lj
E [dAj] = dw ∀j. (56)

The cross-section variance of labour incomes is therefore zero: this
limiting case could happen in an economy in which Trade Unions

have a very strong market power, such that the bargaining on
labour market is completely centralized. Wages, however, follow

the marginal productivity of labour and therefore there is no unem-
ployment. Firm j’s profits are given by:

dπj = q[kj, lj]dAj − drjkj − dwlj

and, since in equilibrium dπj = 0,17 we have that:

drj = q[kj, lj]dAj/kj − dwlj/kj. (57)

All the results in Proposition 1 are unchanged and therefore pi
follows again Eq. (29), with the noise term ηi which satisfies E [ηi] =
0 and Eq. (30), but

lim
N→∞

Hi,i′[~p] =
[

∆s2(1 − τk)
2ρ2Θi,i′

]

pipi′. (58)

17In the model realized profits are zero because the returns on capital are residual with
respect to the wages, therefore the owners of capital takes all net product not distributed to
the workers.
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Eq. (58) reflects the fact that now labour market is not a source

of shocks for the dynamics of dynasty i’s wealth. Formally, Eq.
(58) obtains in the (implausible) case φi,j = 1/F , where dynasties

fully diversify their labour allocation across firms in the limit of an
infinite economy.

Under Assumption (38) p̄ has a deterministic dynamics given

by Eq. (39); therefore also in the economy with staggered wages
the results in Proposition 3 hold. In equilibrium the per capita

wealth, wages and interest rate are not consequently affected by the
assumption of staggered wages; however the equilibrium distribution

of wealth changes. We restrict attention to the non-trivial case of
incomplete markets Θ̄ > 0.

Proposition 9 Assume that the economy converges towards a pos-

itive and constant per capita wealth p̄∗ and that s [ω∗ + τkρ
∗p̄] >

χ. Let fSW (pi) be the equilibrium distribution of pi with staggered

wages when N,F → ∞. Then:

fSW (pi) =
N SW

a2p
2(1+z1/a2)
i

e
−
(

2z0
a2pi

)

, (59)

where N SW is a constant defined by the condition
∫∞
−∞ fSW (pi) dpi =

1 and z0, z1 and a2 are the same as in Proposition 4.

Proof. See Appendix E.
At variance with the economy with perfectly flexible wages, where

the distribution of wealth has support on the whole real axis, with
staggered wages the distribution fSW (pi) is defined only for positive

wealth (i.e. pi > 0). The reason is that stochastic shocks affects
only returns on capital and they vanish when pi → 0 (see Eq. (58)).

For large pi the equilibrium distribution fSW (pi) follows a Pareto
distribution whose exponent is equal to αSW = 1 + 2z1/a2, which
is the same of the economy with perfectly flexible wages (see Eq.

(51)). The distribution of wealth is instead markedly different for
small values of pi.

18 The intuition is that cross-section distribution
18More precisely, fSW (p) significantly deviates from the Pareto behaviour for p ∼ a2/ (2a0),

i.e. when the exponential factor in Eq. (59) becomes sizeable.



28 D. Fiaschi - M. Marsili

of wages is crucial for the poorest dynasties: in particular, a lower

volatility of wages decreases the size of the bottom tail of the dis-
tribution of wealth because the poorest dynasties have an income

largely dependent on wages (in the limit the cross-section volatility
of wages is zero when wages are staggered). Figure 3 shows a nu-
merical example of two distributions of wealth with CES technology.

.1.1e-1
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0.8

Log of p

1.2

0.4
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Figure 3: comparison between the distributions of wealth with perfectly flexible
(thin line) and staggered (thick line) wages. The parameters assume the following
values: ν = 0.01,s = 0.20, χ = 0, ε = 0.35, a = 0.05, γ = −0.55, τk = 0.20,
τl = 0.3, ∆ = 300, Θ = 0.9, Φ = 1, Ω = 0.

In Figure 3 the thin line represents the density of the distribu-
tion of wealth f (pi) with perfectly flexible wages, while the thick

line represents the density fSW (pi) with staggered wages. Figure
3 confirms that, when wages are staggered, the bottom tail of the

distribution of wealth has a lower size and there are no dynasties
with negative wealth.

III.C. Endogenous Growth Economy

Figures 4 and 5 show two economies where in equilibrium the
growth of per capita wealth is caused by the ongoing accumulation

of wealth (and not by an exogenous technological progress).
The worth of the analysis of the endogenous growth economy

derives from the major focus on the return on capital, which de-
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Figure 4: growing economy.
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p̄∗

Figure 5: growing economy with a un-
stable equilibrium.

termines the shape also of the bottom tail of the distribution of

wealth; the analysis shows that the determinants of Pareto expo-
nent are substantially the same of the exogenous growth economy,

but highlights a possible relationship between the wealth inequality
and the endogenous growth rate of economy.

Proposition 10 states the necessary and sufficient conditions un-
der which in equilibrium per capita wealth grows at a positive
growth rate, i.e. there is endogenous growth.

Proposition 10 Assume g(·) satisfies Assumption (45), the dy-

namics of per capita wealth obeys Eq. (40) and:

lim
p̄→∞

g′ (p̄) >
v

sa
. (60)

Then if:

g (0) >
χ

sa
(61)

in equilibrium per capita wealth will be growing at the following rate:

ψEG = lim
p̄→∞

sag′ (p̄) − ν, (62)

indipendent of initial per capita wealth. Differently, if:

g (0) <
χ

sa
, (63)

then in equilibrium per capita wealth will be growing at constant rate
ψEG if and only if the initial per capita wealth is sufficient high.
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When per capita wealth grows at rate ψEG the returns on factors
are given by:

ρ∗ = lim
p̄→∞

ag′ (p̄) and (64)

ω∗ = 0. (65)

Proof. See Appendix F.

In equilibrium the economy shows a behaviour similar to an AK
growth model (see Barro and Sala-i-Martin (1999)), i.e. a model

where marginal and average product of capital are equal and con-
stant (or, more precisely, are bounded below). Moreover, the equi-
librium interest rate ρ∗ is determined only by technology and the

equilibrium wage rate ω∗ is zero. In equilibrium the growth rate
ψEG can be written as a function of the equilibrium interest rate,

i.e.:
ψEG = sρ∗ − ν; (66)

Eq. (66) shows that ψEG is independent of the flat tax rate on
capital τk and of the diversification of dynasty i’s portfolio Θ̄;19

however, ψEG increases with saving rate s and with return on capital
ρ∗ and decreases with ν; changes in technology which increase the

return on capital, therefore, cause also an increase in ψEG.
With CES technology, when γ ∈ (0, 1) Condition (60) is satisfied

for ε1/γ > v/(sa), while when γ ≤ 0 Condition (60) is never satisfied.

When γ ∈ (0, 1) Condition (61) is satisfied for (1 − ε)1/γ > χ/(sa).
With Cobb-Douglas technology endogenous growth is not possible

because Condition (60) is never satisfied. Therefore, assuming γ ∈
(0, 1) and ε1/γ > v/(sa), we have that:

ψEG = saε1/γ − ν, (67)

from which it follows that ψEG increases with ε and γ.

Proposition 11 discusses the dynamics of the dynasty i’s wealth
with respect to the average wealth of economy in an endogenous

growth economy.
19The assumption of constant saving rate s makes ψEG independent of τk. On the contrary,

when saving rate is optimally chosen, s generally increases with the net return on capital
(1 − τk) ρ∗; hence s decreases with τk.
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Proposition 11 Assume p̄ is growing at the positive rate given by

Eq. (66). Let ui be the relative per capita wealth of dynasty i, i.e.
ui = pi/p̄. In the long run dynasty i’s relative wealth obeys the

following stochastic differential equation:

lim
t→∞

dui
dt

= sρ∗τk(1 − ui) + η̃i, (68)

where η̃i = ηi/p̄ is a white noise term with E [η̃i (t)] = 0 and covari-

ance:

E [η̃i (t) η̃i′ (t
′)] = δ (t− t′)Hi,i′ [~u] , (69)

where:

lim
t→∞

lim
N→∞

Hi,i′[~u] =
[

∆s2(1 − τk)
2ρ∗2Θi,i′

]

uiui′.

Proof. See Appendix G.

In the limit p̄→ ∞ the equilibrium wage rate converges to 0 and
therefore wages do not play any role in the dynamics of relative per
capita wealth of dynasty i (see Eq. (68) in Proposition 11).

Proposition 12 shows the equilibrium distribution of the relative
per capita wealth ui. Again we only focus on the non-trivial case of

incomplete markets Θ̄ > 0.

Proposition 12 Assume that per capita wealth is growing at the

rate ψEG > 0 and τk > 0. Let fEG (ui) be the equilibrium distribu-
tion of ui = pi/p̄ when N,F → ∞. Then:

fEG(ui) =
NEG

uα
EG+1
i

e−(αEG−1)/ui, (70)

where NEG is a constant defined by the condition
∫∞
−∞ fEG (ui) dui =

1 and

αEG = 1 + 2
τk

∆s(1 − τk)2ρ∗Θ̄
(71)

is the Pareto exponent.
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Proof. The proof follows the same steps reported in Appendix E

taking µ (ui) = sρ∗τk(1 − ui) and σ2 (ui) = ∆s2(1 − τk)
2ρ∗2Θ̄u2

i .
Assumption (38) is again satisfied in equilibrium since the Pareto

exponent αEG is always greater than 1 for τk, s > 0; otherwise if
τk = 0 then αEG = 1 and Assumption (38) is violated. Taking the
limit τk → 0 we do not get the same behaviour of the economy

where τk = 0: it can be shown that in the latter case ui has a
non stationary lognormal distribution.20 Hence capital taxes do not

affect growth, but have a crucial redistributive function: wealth is
redistributed away from wealthy to poor dynasties by an amount

proportional to aggregate wealth, so preventing the possible ever-
spreading wealth levels, and stabilizing the equilibrium distribution
of relative wealth.

Finally, the Pareto exponent is continuous across the transition
from a stationary to an endogenously growing economy, i.e.

lim
sρ∗−ν→0−

α = lim
sρ∗−ν→0+

αEG,

though it has a singular behaviour in the first derivative (with re-
spect to ν or s).

Remark 13 reports the relationships between αEG and the model’s
parameters.

Remark 13 The Pareto exponent αEG decreases with saving rate
s, return on capital ρ∗, the diversification of portfolio Θ̄ and it in-
creases with τk; α

EG is, on the contrary, independent of ν.

Proof. The proof directly follows from the derivative of αEG with
respect to s, ρ∗, Θ̄, τk and ν.

Differently from α, αEG decreases with saving rate s because of
the independence of ρ∗ from s. The Pareto exponent αEG is inde-

pendent of ν because, in an economy where wealth accumulation is
the source of the long-run growth, the demographic factor does not
affect the return on capital (which is determined only by technology)

and the level of per capita wealth.
20Indeed, Eq. (68), with τk = 0 and Hi,i′ = 0 for i 6= i′, describes independent log-normal

processes ui (t).
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Finally, since ψEG increases with s and ρ∗, we find an inverse
relationship between growth and wealth inequality.

Remark 14 The Pareto exponent αEG and the growth rate ψEG

show an inverse relationship under changes in saving rate s and/or
return on capital ρ∗.

Proof. The proof is straightforward from Eq. (66) and Remark 13.

For example, an economy increasing its saving rate s (or its return
on capital ρ∗) should move to an equilibrium where both its growth

rate and its wealth inequality (in the top tail of the distribution of
wealth) are larger than before.

IV. Empirical Evidence

In this section we compare the theoretical findings of the previous

section with empirical evidence. Households appears the best unit
of observation to test our model. We consider two datasets: the

Survey of Household Income and Wealth (SHIW), which provides
information on saving, income and wealth for a large sample of Ital-
ian households and the Survey of Consumer Finances (SCF), which

provides, among many other variables, the net wealth of a large
sample of U.S. households.21 The comparison of these two datasets

is very complex; therefore we will consider them separately.22

The analysis aims to test if our model is able to reproduce the

qualitative changes in the distribution of wealth. Many reasons sug-
gest to keep our analysis at a qualitative level: i) our datasets span
at most 17 years, which may be a too short period for a full conver-

gence to equilibrium of the distribution of wealth;23 ii) our model
21In general net wealth includes all marketable assets of households. SHIW and

SCF are respectively available on the following websites: http://www.bancaditalia.it/ and
http://www.federalreserve.gov/pubs/oss/oss2/scfindex.html. We refer to these websites for
more details on the two datasets.

22A first attempt to provide comparable data on these two datasets is LWS project, see
www.lisproject.org/lws.htm.

23 Shorrocks (1975), moreover, shows that, given the type of stochastic process which de-
scribes the wealth accumulation of dynasties, the estimate of the Pareto exponent can have a
non monotonous behaviour as the actual distribution converges to the equilibrium.
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does not take into account many social/cultural factors affecting

the distribution of wealth of a country;24 and iii) many factors can
simultaneously push in the same directions (e.g. a contemporane-

ous decrease in capital income taxation and increase in saving rate)
and their effects are strongly nonlinear, so that disentangling the
single effect of each variable on the distribution of wealth may not

be feasible given the small number of waves available (9 for SHIW
and 6 for SCF).

IV.A. Italy

The SHIW includes data on many economic variables, among
which net wealth, savings and disposable income for about 8000

Italian families for the years 1987, 1989, 1991, 1993, 1995, 1998,
2000, 2002 and 2004.25 Brandolini et al. (2004) and Jappelli and

Pistaferri (2000) present a detailed analysis of the SHIW and we
refer to them for more details. By the estimate of transition matrix
between the different waves of the net wealth, where states are de-

fined by the quintiles of distribution, we calculated the asymptotic
half life, i.e. the speed of convergence of actual distribution to the

equilibrium distribution.26 It ranges from 2.04 in 1991-1993 to 3.66
in 1993-1995, and, on average, is equal to 2.55; this means that on

average 10.2 (i.e. 2.55 × 2×number of lags) years are necessary to
have the complete effect on the distribution of wealth of an exoge-

nous shock (e.g. a change in the fiscal policy). Therefore the period
of observation appears to be sufficiently wide.27

24Moreover, it is not an easy task to have a plausible estimate of the variance of the random
component ∆ and of the diversification of dynasties’portfolios Θ̄.

25In the SHIW the codes of the net wealth, the disposable income, the labour income, the
entrepreneurial income, savings and the households’ weights are respectively W, Y2, YL, YM,
S2 and PESOFIT.

26All the statistical analysis is performed by R and all codes and datasets are available on
Davide Fiaschi’s website (http://www.dse.ec.unipi.it/persone/docenti/fiaschi/).

27 Jappelli and Pistaferri (2000) estimate the asymptotic half life between 1993 and 1995
equal to 3.62, but they defined the states by the quartiles of the distribution of wealth.
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IV.A.i. The Estimate of Saving Function

In order to test if Eq. (11) can represent the effective consump-

tion function of Italian households we estimate the following saving
function:28

Si = −χ+ syDi − cppi, (72)

where Si is the saving, yDi is the disposable income and pi is the net

wealth of dynasty i in a given year. Table 1 reports the result of
the estimate of Eq. (72).

Table 1: estimate of Eq. (72) (χ̂ is expressed in current million liras). Source:
our calculations on SHIW data
Est.\Year 1987 1989 1991 1993 1995 1998 2000 2002 2004

χ̂ 6.62e+3 7.24e+3 9.00e+3 1.22e+4 1.46e+4 1.50e+4 1.74e+4 1.50e+4 2.47e+4

ŝ 0.48 0.51 0.55 0.58 0.61 0.60 0.64 0.58 0.74

ĉp 0.0080 0.0047 0.0036 0.0003 0.0067 0.0034 0.0042 0.0042 0.0084

All the estimated parameters turn out to be highly significant (we

do not report t-statistics for simplicity of exposition). The estimate
of χ̂ is increasing over time; this is likely the effect of inflation and
of the increase in per capita wealth in the period.29 The estimate of

marginal saving ŝ varies from 0.48 to 0.74, but overall ŝ is increasing
in the period 1987-2004. The estimates of marginal propensity to

consume with respect to wealth ĉp is more volatile, but the impact
of net wealth on saving appears to be negligible (see Paiella (2004)

for a similar result). The increase in ŝ recorded after 1993 was
likely caused by the severe crisis of Italian economy in 1992-1993,
followed to the devaluation of lira and to the tight fiscal policy. The

increase in the economic uncertainty pushed households to increase
their savings (in particular their precautionary savings). In 2004

28We tested the possibility of a nonlinear relation between saving, disposable income and net
wealth by nonparametric methods (see Bowman and Azzalini (1997), Cap. 8). While we can
reject this hypothesis for disposable income, net wealth appears to have a significant nonlinear
relationship with saving (changing over time). We will ignore the latter fact because, as it is
clear from the estimates reported in Table 1, the effect of net wealth on saving is negligible.

29The minimum consumption is likely related to a minimum standard of living, i.e. an increase
in the per capita wealth should increase also χ. This intuition is confirmed by the fact that the
ratio χ̂/p̄ is nearly constant in the period 1987-2004.
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there was another large increase in the marginal saving rate, but we

cannot know if such increase will be permanent or temporary.

Summing up Eq. (11) appears to be adequate to represents the

consumption function of Italian households and overall the marginal
saving rate appears to be increasing in the period 1987-2004.

IV.A.ii. Changes in the Top Tail of the Distribution of Wealth

Between 1987 and 2004 there was a remarkable decrease in the
taxation of capital income in Italy. In particular, in recent years

all capital gains are subject to a flat tax rate equal to 12.5% (the
latter would correspond to τk of the theoretical model). Taxation on
personal income was strongly progressive until the mid of 1990s, but

it has been declining since 1995, with the highest marginal tax rate
on income decreased from 51% to 45.5%. In Italy personal income

includes both labour incomes and profits. In the second part of
1990s a credit tax, called DIT (dual income tax), was introduced

for the firms reinvesting their profits, further decreasing the taxation
on profits.

Another relevant phenomenon in the period was the decrease in
the share of labour income on the aggregate product from 0.46 in

1990 to 0.42 in 2004 (see Ministero dell’Economia e delle Finanze
(2005)); the possible correction for the self-employed workers does

not change the scenario but only the magnitude of the decrease
(from 0.67 in 1990 to 0.59 in 2004, see Jones (2003)). In the ex-

ogenous growth model with Cobb-Douglas technology the share of
labour income on the aggregate product is equal to 1−ε (from Eqq.
(52)-(52) setting γ = 0),30 which could suggest that ε increased in

the period; as a consequence, the gross return on capital ρ∗ increased
too.

The change in the annual growth rate of population is negligible:
it slightly increases from 0.05% in the period 1981-1990 to 0.17%

in the period 1991-2000, but its absolute magnitude is very low.31

30In general the share of labour income on the aggregate output is equal to 1 − ε/ (v/sa)
γ
.

31Source: Penn World Table 6.1 (http://pwt.econ.upenn.edu/).
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Finally, the average growth rate of per capita GDP in 1991-2000 was

the half of the one in 1981-1990 (i.e. 1.2% vs 2.4%).32 The model of
endogenous growth in Section III.C., however, cannot explain such

decline because in the period both s and ρ∗ increased and ν was
stable, suggesting that to our purposes exogenous growth model
is more appropriate to represent the dynamics of Italian economy

between 1987 and 2004.

The exogenous growth model predicts that an increase in saving

rate s has an ambiguous effect on the Pareto exponent α; in par-
ticular, Remark 6 states that with CES technology such effect is
positive (negative) if γ < 0 (γ > 0), i.e. the elasticity of substitu-

tion in production is less (higher) than one. The lack of a reliable
estimate of γ for Italian economy, however, does not allow to for-

mulate a prediction on the effect on α of a change of s. A change
in the fiscal policy in favour of capital income, on the contrary,

should unambiguously decrease the Pareto exponent α. The same
effect obtains under a change in technology in favour of the return

on capital ρ. Overall we therefore expect a decrease in the Pareto
exponent α of the distribution of net wealth of Italian households.

Figures 6 reports in the y-axis the log of cumulative density of

about top 400 Italian households (5% of sample), and in the x-axis
the log of normalized net wealth, i.e. the net wealth of households

normalized with respect to the average net wealth (this is to control
for the growth of the average net wealth).

Figure 6 highlights how the relationship between the log of cu-

mulative density and the log of normalized net wealth is approx-
imatively linear in the top tail, which agrees with the theoretical

distributions reported in Propositions 4, 9 and 10.33 The estimate
of α, α̂, corresponds to the slope of the lines reported in Figure

6. Figure 7 reports the estimates of Pareto exponent α̂ of the top
5% of Italian households for all the eight years by using the Hill’s

Estimator.34

32Source: Penn World Table 6.1.
33Adjusted R2 is equal to 0.99 for both years.
34See Embrechts et al. (1997) for more details. We use a more general formula of the estimator

than the one reported in Embrechts et al. (1997), which allows for weighted observations. In
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Figure 6: estimate of the
distribution of net wealth
of the top 5% of Italian
households in 1987 and
2004. Source: our calcu-
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Figure 8: share of the
net wealth of the top
5% of Italian households.
Source: our calculations
on SHIW data.

Figure 7 supports the predictions of the theoretical model of a

negative trend of α in the period 1987-2004; the latter is highlighted
by the negative slope of the linear regression reported in Figure 7.35

In order to highlight the consequence of this decline in the Pareto
exponent in terms of wealth inequality Figure 8 reports the share of
the net wealth of top 5% on the total net wealth. The comparison

of Figures 7 and 8 shows the strong correlation between α̂ and the

particular, given the ranked vector of households’ wealth (p1, p2, ..., pN ), where p1 ≥ p2 ≥ ... ≥
pN , and the vector of households’ weights (λ1, λ2, ..., λN ), where ΣN

j=1λj = N , we have that:

α̂z =
Σz

j=1λj (log pj − log pz)

Σz
j=1λj

represents the Hill’s Estimator of Pareto exponent α of the distribution of the z wealthiest
households (in our case z is about 400 in every year). Embrechts et al. (1997), p. 336, show
that the estimate is consistent and

√

Σz
j=1λj (α̂z − α) −→ N

(

0, α2
)

.
35The estimated linear time-trend model is: α̂ (t) = 51.81 − 0.0249t (both coefficients are

statistically significant at 10% level). The small size of the sample makes the estimate of α
highly volatile from one year to the other and with high standard errors: a direct comparison
between single estimates of α is therefore not very meaningful. For example, tests of equality
of α̂ in 1987 and α̂ in 1998, 2000 and 2002 are respectively rejected at 10%, 1% and 10%
significance level, while test of equality of α̂ in 1987 and α̂ in 2004 cannot be rejected at 20%
significance level. On the contrary tests of equality of α̂ in 1989 and α̂ in 1998, 2000, 2002 and
2004 are respectively rejected at 1%, 1%, 1% and 10% significance level. Hypothesis testing
follows the bootstrap procedure described in Efrom and Tibshirani (1993), p. 224 with 1000
bootstraps. Hill’s plots show that the estimate of α is convergent for almost all years.
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share of the net wealth of top 5%: the linear regressions show that

a decrease in α from 2.33 in 1987 to 1.90 in 2004 (the fitted values
of regression) implies an increase in the share of top 5% from 0.29

in 1987 to 0.32 in 2004.

IV.A.iii. Change in the Bottom Tail of the Distribution of Wealth

The comparison between Propositions 4 and 9 suggests that labour

market should crucially affect the bottom tail of the distribution of
wealth, where workers should be the majority. Observations con-

firm the latter intuition: Italian households with a positive labour
income have an average net wealth slightly below the average wealth

p̄ (0.96p̄ in 1987 and 0.92p̄ in 2004), while Italian households with
positive entrepreneurial income have an average net wealth slightly
below 2p̄ (1.98p̄ in 1987 and 1.94p̄ in 2004).

The Italian labour market appears to be progressively increasing

its flexibility: the share of permanent jobs has decreased in favour
of the share of non-permanent jobs and the market power of Trade
Unions is steadily declining. The share of non-permanent jobs on

the total employees, excluding the self-employed (the share of the
latter on the total employees is stable around 0.27-0.28 over the

period 1993-2003) increased from 6.2% in 1993 to 9.7% in 2003.36

In the same period the net union membership strongly decreased:
the share of memberships, excluding self employed and retired, on
the total labour force declined from 36.5% in 1985 to 30.9% in 1997

(see Golden et al. (2004)). Both phenomena should lead to an
increase in the cross-section variance of labour incomes. Figure 9

corroborates this intuition.

Figure 9 reports the estimated distribution of the log of normal-

ized (gross) labour incomes of Italian households in 1987 and 2004
(in both periods observations are normalized to the average).37 We

observe an increase in the size of the bottom tail and, in general, an

36Source: Ministero dell’Economia e delle Finanze (2005).
37For all the kernel density estimations we used the package ”sm” with the standard setting,

i.e. Gaussian kernel and the normal optimal smoothing bandwidth; see Bowman and Azzalini
(1997) for more details.
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Figure 9: estimate of the distribution of
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2004 (thin line) in Italy. Source: our
calculation on SHIW data.
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Figure 10: Gini index of the distribution
of labour income in Italy. Source: our
calculations on SHIW data.

increase in the variance of distribution. The latter is confirmed by
the increase in the Gini index of the distribution of labour incomes

from 0.58 in 1987 to 0.62 in 2004 (see Figure 10).38

The comparison between Propositions 4 and 9 suggests that an
increase in the cross-section variance of the distribution of labour

incomes should imply an increase in the size of the bottom tail of
the wealth distribution (see Figure 3). Figures 11 and 12 respec-
tively report the kernel density estimations of the distribution of net

wealth in 1987 and 2004 (only for Italian households with positive
net wealth) and the share of Italian households with negative net

wealth for all available years.

Figure 11 shows that the estimates of the densities in 1987 and
2004 are statistically different in the low tail.39 Figure 12 shows

38The estimated linear time-trend model is: Gini Index (t) = −5.23+0.003t (both coefficients
are statistically significant at 5% level). Test of equality of the estimated Gini indeces in 1987
and in 2004 is rejected at 5% significance level (hypothesis testing follows again the bootstrap
procedure described in Efrom and Tibshirani (1993) with 1000 bootstraps). Finally, Brandolini
et. al. (2001) find a large increase in the earnings dispersion of the Italian households in the
early 1990s.

39The 95% confidence intervals reported in Figure 11 are calculated by a bootstrap procedure
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that the share of Italian households with negative net wealth is

slightly increasing in the period.40 Overall the evidence support
the prediction that the size of the bottom tail of the distribution

of wealth increased in the period 1987-2004 as a consequence of the
increase in the flexibility of Italian labour market.

To conclude, we observe that the changes in the top and bottom
tails of the distribution of wealth could suggest an increase in the
overall inequality of the distribution of wealth; however, inspection

of Figure 11 shows a strong increase in the density around the mean
(i.e. 1 in Figure 11), which means less inequality in the middle

of the distribution. In a synthetic index of inequality the latter
effect may outweigh the increase in the inequality on the two tails

of distribution. Indeed the Gini index of the distribution of wealth
decreased from 0.62 in 1987 to 0.60 in 2004.41

IV.B. U.S.

We take the observations on the net wealth of U.S. households

from the Survey of Consumer Finances (SCF); the following years
are available: 1989, 1992, 1995, 1998, 2001 and 2004. The number
of U.S. households included in the SCF has increased from 3143 in

1989 to 4442 in 2004. Observations on the net wealth and income
are easily available on the SCF’s website, but unfortunately neither

savings nor earnings are available.42 Also panel information on the
households in the sample are not included. We refer to Wolff (2004)

for more details on the SCF.43

suggested in Bowman and Azzalini (1997), p. 44, with 500 bootstraps.
40The estimated linear time-trend model is: Share of households with negative net wealth (t) =

−0.44 + 0.0002t (both coefficients are, however, not statistically significant at 10% level).
41In particular, Gini index of the distribution of wealth is equal to 0.62 in 1987, 0.59 in 1989,

0.59 in 1991, 0.63 in 1993, 0.61 in 1995, 0.63 in 1998, 0.63 in 2000, 0.62 in 2002 and 0.60 in 2004.
Test of equality of the estimated Gini indeces in 1987 and in 2004 is rejected at 1% significance
level.

42The variable ”SAVING” in the SCF cannot be used in the estimate of the saving function
because its definition does not match the standard definition of saving, it is not calculated as
disposable income minus consumption expenditure.

43In our calculations we use the sample weights reported in SCF’s website and this determines
the differences with Wolff (2004)’s results; the main difference is for the weights of low-wealth
households, which he says to be underrepresented in the sample SCF. These differences are
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We partially try to fill this gap by using data on labour incomes

reported in PSID.44 PSID also reports data on net wealth. However,
the wealthy households are strongly underrepresented, so that we

prefer the SCF for studying the distribution of wealth. The panel
framework of PSID, however, allows to estimate the speed of con-
vergence of the actual distribution of wealth to the equilibrium.45

The estimated asymptotic half life is equal to 3.46 in 1999-2001 and
3.81 in 2001-2003, i.e. on average it needs 14.5 years to have the

complete impact on the distribution of wealth of a exogenous shock.
The period for which observations are available, therefore, appears

to be sufficiently wide.

IV.B.i. Change in the Top Tail of the Distribution of Wealth

Table 2 highlights that the average tax rate on income in U.S. has

slightly decreased over the period 1985-2003, but the main benefits
are for the top 1% income people (about −6.5%), while top 25%

and the decrease for the top 50% income people has been milder
(about −2.5%); morevoer, the major changes happened at the end

of 1980s.

Table 2: average tax rates on income in 1985 and in 2003 in U.S.. Source: IRS
(http://www.irs.gov/taxstats/)

Year Total Top 1% Top 5% Top 10% Top 25% Top 50%

1985 13.89 30.87 24.07 21.34 17.80 15.59

2003 11.90 24.31 20.74 18.49 15.38 13.35

Also the tax on capital income decreased in the period. The
average and the marginal federal tax rates on the corporate profits

relevant both in magnitude, e.g. Gini index of the distribution of wealth is equal to 0.81 in
2001 in our calculations while it is equal to 0.83 in Wolff (2004) and over time, e.g. Gini index
is constant between 1989 and 2001 in Wolff (2004) (0.83 in 1989 vs 0.83 in 2001) but increasing
in our calculations (respectively 0.79 vs 0.81). In this regard Davies and Shorrocks (1999), in
suggesting to use SCF for the analysis of U.S. distribution of wealth, warn about the controversy
on which weights must be used in the estimate.

44We take data directly from website http://psidonline.isr.umich.edu/.
45In the estimate we use the following variables (we report the PSID code): ER417, S517 and

S617 (U.S. households’ net wealth in 1999, 2001 and 2003 respectively) and FCWT99, ER20394
and ER24179 (sample weights for 1999, 2001 and 2003 respectively)
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respectively decreased from 27.43% in 1994 to 25.58% and from

26.82% in 1994 to 23.63 in 2002.46 The decline in the taxation
of corporate profits is particularly strong for the marginal tax rate.

The marginal tax rate is, moreover, lower than the average tax rate;
this is the effect of higher tax credits to the biggest corporations.
Finally, the Jobs and Growth Tax Relief Reconciliation Act of 2003

provides further concessions for U.S. households and a major cut in
the tax rates on capital gains and dividends.

The average saving rates of U.S. households has fallen in the

period 1985-2003, starting from an already low initial level, from
9.0% in 1985 to 1.8% in 2004.47

The share of labour income on the aggregate product did not

change appreciably in the period 1985-2004, being stable around
0.67 (see Jones (2003)). There is virtually no change in the annual
growth rate of population: 0.93% in the period 1981-1990 and 0.97%

in the period 1991-2000.48 Finally, the average growth rate of per
capita GDP in 1991-2000 is about the same as the one in 1981-1990

(i.e. 2.2% vs 2.3%).49

Our theoretical model suggests that the decrease in the tax rate
on capital income should lead to a decrease in the Pareto exponent

α. We have no data on the marginal saving rate s of U.S. households,
but we conjecture that the latter is decreasing in the period on the

basis of the dynamics of the average saving rate. This decline in
s should induce a further decrease in α, since empirical analysis
usually found an elasticity of substitution in production lower than

1 for U.S. (see, e.g. Chirinko (1993)). Overall, the model therefore
predicts a decrease in α.

In the estimate of α we consider top 5% of U.S. households, ex-

cluding top 0.5%. The extreme top tail, indeed, appears to be un-

46Source: our calculations on IRS data. Average tax rate is the ratio between the total
income after tax credit and income subject to tax, while the marginal tax rate is the same ratio
calculated for the corporations in the highest class in terms of assets (over 2.500 millions of
dollars).

47Source: BEA (http://www.bea.gov/).
48Source: Penn World Table 6.1.
49Source: Penn World Table 6.1.



Distribution of Wealth and Incomplete Markets 45

derrepresented and this could bias upward the estimate of α.50 For

example, in order to respect the privacy of the richest U.S. house-
holds, SCF does not explicitly consider the 400 wealthiest people

included in the Forbes list; the total wealth of the latter account
for 1.5% in 1989 and 2.2% in 2001 of total U.S. wealth (see Ken-
nickell (2003), p. 3). For the wealthiest people we refer to Klass et

al. (2006), who show how the distribution of wealth for the people
in the Forbes list follows a Pareto distribution, whose Pareto expo-

nent decreased from 1.6 in 1988 to 1.2 in 2003 (see also Castaldi
and Milakovic (2006)).
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Figure 13: estimate of the
distribution of net wealth
of the top 5% of U.S.
households in 1989 and in
2004. Source: our calcula-
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Figure 15: share of the net
wealth of the top 5% of
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our calculations on SCF
data.

Figure 13 shows that the top tail of the distribution of net wealth

follows a Pareto law in 1989 and in 2004. Figure 14 highlights that
the decrease in the estimate of Pareto exponent α̂, which decreases
from 1.38 in 1989 to 1.13 in 2004; this agrees with Klass et al.

(2006)’s results.51 Figure 15 confirms the inverse relationship be-
tween α̂ and the size of top tail of the distribution: a decline in α̂

50Comparable results are obtained by excluding 0.1% of top tail. We choose to exclude 0.5%
of top tail because regressions presents an higher adjusted R2.

51The estimated linear time-trend model is: α̂ (t) = 35.87 − 0.017t (both coefficients are
statistically significant at 1% level). Tests of equality of α̂ in 1987 and in 2001 and 2004 are
respectively rejected at 10% and 15% significance level, while tests of equality of α̂ in 1987 and
in 1992, 1995 and 1998 cannot be rejected at 20% significance level. Hill’s plots show that the
estimate of α is convergent for almost all years.
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from 1.38 in 1989 to 1.13 in 2004 corresponds an increase in the

share of top 5% from 0.54 to 0.57.

IV.B.ii. Change in the Bottom Tail of the Distribution of Wealth

As we discussed above, according to our model the working of
labour market crucially affects the shape of the bottom tail of the

distribution of wealth. In the U.S. labour market the share of non-
permanent jobs has not changed significantly in the last 15 years,
but the net union density sharply declined from 17.2 in 1985 to 13.5

in 2000 (see Golden et al. (2004)). Figure 9 reports the estimate of
distribution of the log of normalized (gross) labour incomes in 1989

and 2002 and Figure 17 the Gini index of the distribution of labour
incomes in 1981, 1989, 1996 and 2002.52
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Figure 16: estimate of the distribution
of labour incomes in U.S. in 1989 and in
2002. Source: our calculations on PSID
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Figure 17: Gini index of the distribution
of labour incomes in U.S. in 1981-2002.
Source: our calculations on PSID data.

The peak of the estimated density shows a clear shift below 1

52In the estimate we consider the labour incomes of the head of household (in PSID database
ER24116, ER12080, V18878, V17534 and V8690 are respectively the codes for labour incomes
in 2002, 1996, 1989, 1988 and 1981 and ER24179, ER12084, V18945, V17612 and V8727 for
sample weights in 2002, 1996, 1989, 1988 and 1981).
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and a consequent increase in the size of the bottom tail of distribu-

tion. The increase in the cross-section variance of the distribution
is confirmed by Figure 17; the latter shows the increase from 0.43 in

1989 to 0.46 in 2002 of the Gini index of the distribution of labour
incomes.53 Therefore the model predicts an increase in the size of
the bottom tail of the distribution of wealth.

Figure 18 reports the estimated distribution of net wealth in 1989
and 2001 (we include only U.S. households with positive net wealth),

while Figure and 19 the share of U.S. households with negative net
wealth.
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Figure 19: share of U.S. households
with negative net wealth. Source: our
calculations on SCF data

Figure 18 shows that the estimates of the densities in 1989 and

2004 are statistically different in the lower tail;54 in particular, the
53The estimated linear time-trend model is: Gini Index (t) = −4.34 + 0.0024t (both coeffi-

cients are statistically significant at 5% level). Test of equality of the estimated Gini indeces in
1989 and in 2002 is rejected at 5% significance level.

54The 95% confidence intervals reported in Figure 11 are again calculated by the bootstrap
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share of U.S. households with a positive net wealth below the av-

erage appears to be increased (the two distributions cross in corre-
spondence of about 0.38 in Figure 19). Figure 19 shows that the

share of U.S. households with negative net wealth, on the contrary,
is almost constant between 1989 and 2004.55

Overall, the changes in the top and bottom tails of the distri-

bution of net wealth in U.S. suggest that the wealth inequality has
increased. The downward shift in the peak of the distribution of net

wealth also contributes to the increase in wealth inequality. Gini in-
dex of the distribution of net wealth confirms such intuition: it is

increases from 0.79 in 1989 to 0.81 in 2004.56

V. Conclusions and future research

This paper is a first step toward a theory of the distribution of
wealth. We characterize the equilibrium distribution of wealth in

an economy with a large number of firms and dynasties, who inter-
act through the capital and the labour markets. Under incomplete
markets, the top tail of the equilibrium distribution of wealth is

well-represented by a Pareto distribution, whose exponent depends
on the saving rate, on the net return on capital, on the growth rate

of the population, on the tax on capital income and on the degree
of diversification of portfolios. The latter is meant to reflect fric-

tions and transaction costs in the capital market (with risk-adverse
dynasties). On the other hand, the bottom tail of the distribution
mostly depends on the working of the labour market: a labour mar-

ket with a centralized bargaining where workers do not bear any
risk determines a lower wealth inequality.

Our framework neglects important factors which have been shown
to have a relevant impact on the distribution of wealth, such as,

procedure suggested by Bowman and Azzalini (1997) with 500 bootstraps.
55This is confirmed by the estimated linear time-trend model:

Share of households with negative net wealth (t) = −0.1091 + 0.000091t (both coefficients
are not statistically significant at 10%).

56In particular, Gini index of the distribution of wealth is equal to 0.79 in 1989, 0.79 in 1992,
0.79 in 1995, 0.80 in 1998, 0.81 in 2001 and 0.81 in 2004. Test of equality of the estimated Gini
indeces in 2004 and in 1989 is rejected at 15% significance level.
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for example, the possible optimizing behaviour of dynasties with re-

spect to choice on consumption/saving, the age structure of the pop-
ulation, inheritance patterns and marriage (see Davies and Shorrocks

(1999)). Moreover, our results are relative to the equilibrium dis-
tribution of wealth: the analysis of out-of-equilibrium behaviour
seems a necessary extension, also to take into account the speed of

convergence of the actual distribution to its equilibrium and its pos-
sible nonmonotonic behaviour (see Atkinson and Harrison (1978), p.

227). Benhabib and Bisin (2007)’s model is a step in this direction.
In this respect the Italian observations show deviations from equilib-

rium over time scale of few years. We conjecture that the latter are
related to the possible soaring in the real estate prices, yet another
effect not considered in our model.

The lack of space has limited our analysis in many stimulating
directions. We do not deepen the relationship between the distri-

bution of wealth and the distribution of income. Heuristically we
can argue that in our model the wealth inequality is always higher

than the income inequality because generally only a small share of
current income derives from wealth (empirically plausible returns

on wealth are well below 10%); the other part of income derives
from wages and from government transfers, which are more equally

distributed across dynasties. Moreover, in contrast with the empir-
ical evidence, we assume that diversification of portfolios, as well
as the return on investments of a dynasty are independent of its

level of wealth. A dependence of the portfolios diversification and
the return on investment on the level of wealth has been argued

by Shorrock (1988) to have potential consequences on the top tail
of distribution (see also Arrow (1996)).

Two further extensions look promising. The first is related to
an economy where labour market and capital market have different

speeds of adjustment to equilibrium. It seems realistic to assume
that labour market adjusts at a slower pace than the capital mar-

ket. In such a situation, productivity shocks would impact mostly
the capital market. In this sense, the case of staggered wages con-
sidered here might be thought of as the extreme case where wages
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evolve over infinitely slower time scales. Naively speaking, we ex-

pect that a slow speed of adjustment in labour market decreases the
cross-section variance of wages and hence reduces inequalities in the

bottom tail of the distribution of wealth. However, full account of
these issues would entail dealing with situations where firms are con-
strained in the choice of the factors of production, with consequent

underutilization of factors (i.e. unemployment).
The second interesting extension is an economy in which aggre-

gate wealth exhibits a stochastic behaviour. In the light of our
findings, the latter behaviour can arises because of correlations in

productivity shocks, which were neglected here, because dynasties
concentrate their investments in few firms/assets (due to, e.g., mar-
ket incompleteness) or because the number of firms/assets is much

smaller than the number of dynasties. This extension would draw a
theoretical link between the dynamics of the distribution of wealth,

the distribution of firm size and business cycle (see Gabaix (2008)).
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A Proof of Proposition 1

Given Eqq. (12), (18) and (19) we have

dpi = s

{[

F
∑

j=1

(1 − τk) drjθi,jpi (t) + (1 − τl) dwjφi,jli

]

+

+
1

N

N
∑

i′=1

[

F
∑

j=1

τkdrjθi′,jpi′ (t) + τldwjφi′,jli′

]}

− dc̄− dnipi.

(73)

Taking a continuum time limit the dynamics of pi is described
by the Langevin equation (see Gardiner (1997)):

dpi
dt

= Fi [~p] + ηi, (74)

where E [ηi (t)] = 0 and the covariance of ηi is given by:

E [ηi (t) ηi′ (t
′)] = Hi,i′ [~p] δ (t− t′) .

In Eq. (74)

Fi [~p] = lim
dt→0

E [dpi]

dt
and (75)

Hi,i′ [~p] = lim
dt→0

1

dt
E [(dpi − E [dpi]) (dpi′ − E [dpi′])] . (76)

From Eq. (73) we have that:

E [dpi] = s
[

(1 − τk) drpi + (1 − τl) dwli + τkdrp̄+ τldwl̄
]

−dc̄−npi,
(77)

which together with Eq. (75) and Eqq. (21)-(24) leads to:

Fi [~p] = s
[

(1 − τk) ρpi + (1 − τl)ωli + τkρp̄+ τlωl̄
]

− χ− νpi.

In order to compute Hi,i′ [~p] note that from Eqq. (73) and (77):

dpi − E[dpi] = s

F
∑

j=1

{(1 − τk) ρpiθi,j + (1 − τl)ωliφi,j+ (78)

+
1

N
[τkρ+ τlw/λ] kj

}

dζj
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from which:

Hi,i′ [~p] = ∆s2
{

(1 − τk)
2ρ2pipi′Θi,i′ + (1 − τl)

2 ω2lili′Φi,i′ +

+ (1 − τk)(1 − τl)ρω [pili′Ωi,i′ + lipi′Ωi′,i] +

+
τkρ+ τlω/λ

N
[(1 − τk)ρ(piϑi + pi′ϑi′) + (1 − τl)ω(liϕi + li′ϕi′)]+

+
[τkρ+ τlω/λ]2

N2

F
∑

j=1

k2
j

}

,

where we used Definition (27) and the parameters Θi,i′, Ωi,i′ and
Φi,i′ are defined in Eq. (20) and ϑi, ϕi in Eq. (31).

QED

B Proof of Proposition 2

From Eq. (78) we have that:

η̄dt =
1

N

N
∑

i=1

[dpi − E (dpi)] =

= s

F
∑

j=1

{

(1 − τk) ρ

∑N
i=1 piθi,j
N

+ (1 − τl)ω

∑N
i=1 liφi,j
N

+
1

N
[τkρ+ τlω/λ] kj

}

dζj =

=
1

N

{

s (ρ+ ω/λ)

F
∑

j=1

kjdζj

}

,

since kj =
∑N

i=1 piθi,j, lj =
∑N

i=1 liφi,j and kj = λlj ∀j. In order

to have no stochastic fluctuation in p̄ we need E [η̄dt] = 0 and

E
[

(η̄dt)2
]

= 0 since ∀ǫ > 0

P (|η̄dt| > ǫ) ≤
E
[

(η̄dt)2
]

ǫ2
(79)

for the Chebyshev’s inequality. It is straightforward to see that:

lim
N→∞

E [η̄dt] = 0
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and that:

lim
N→∞

E
[

(η̄dt)2
]

=

= lim
N→∞

1

N2

{

s2 (ρ+ ω/λ)2 ∆
F
∑

j=1

k2
j

}

dt = 0 ⇔ lim
N→∞

1

N2

F
∑

j=1

k2
j = 0.

Moreover,

∑F
j=1 k

2
j

N2
=

∑N
i=1 pipi′Θi,i′

N2
≤
∑N

i=1 p
2
iΘi,i′

N2
=

∑N
i=1 p

2
i

∑F
j=1 θi,j

∑N
i′=1 θi′,j

N2
≤ θ̄p̄2

N
∑

i=1

(80)
where in the first inequality of Eq. (80) we used the Cauchy’s in-
equality (see Hardy et al. (1954)):

∑

k

akbk ≤
√

∑

k

a2
k

∑

k

b2k

setting k = i, i′ and ak = pi
√

Θi,i′ and bk = pi′
√

Θi,i′, while in the

last passage of Eq. (80) we use
∑F

j=1 θi,j = 1. Assumption (37)

therefore ensures that limN→∞E
[

(η̄dt)2
]

= 0.

QED

C Proof of Proposition 3

From Eq. (40) for large value of p̄ we have that Condition (41)

ensures that dp̄/dt < 0; in fact:

lim
p̄→∞

dp̄

dt
< 0 ⇔ lim

p̄→∞
g (p̄)

p̄
= lim

p̄→∞
g′ (p̄) <

ν

sa
.

Condition (42) states that in p̄ = 0 dp̄/dt > 0. Since g (·) is con-
tinuous, always increasing and concave, then there exists only one
value of p̄, p̄∗, such that dp̄/dt = 0, i.e.:

sag (p̄∗) = χ+ vp̄∗.
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On the contrary Condition (43) states that in p̄ = 0 dp̄/dt < 0.

This means that p̄ = 0 is an equilibrium. Condition (44) states that
two other equilibria exist (see Figure 2). It is straightforward to

shows that the low equilibrium is unstable, while the high equilib-
rium is locally stable. Eqq. (46) and (47) are directly derived by
Eqq. (15) and (16), taking into account Eqq. (18) and (19).

QED

D Proof of Proposition 4

In the infinite economy, when per capita wealth converges to its
equilibrium level, dpi/dt depends on the wealth of all the other dy-
nasties only through the equilibrium per capita wealth p̄∗. Hence

the determination of the marginal distribution of pi reduces to a sin-
gle dynasty problem which, under Assumptions (32)-(35), is given

by:

dpi
dt

= µ (pi) + ηi; (81)

E [ηi (t) ηi (t
′)] = σ2 (pi) δ (t− t′)

where, from Proposition 1, we have:

µ (pi) = z0 − z1pi; (82)

σ2 (pi) = lim
N→∞

Hi,i [~p] = a0 + a1pi + a2p
2
i , (83)

with:

z0 = s (ω∗ + τkρ
∗p̄) − χ;

z1 = ν − s (1 − τk) ρ
∗;

a0 = ∆s2 (1 − τl)
2 ω∗2Φ̄;

a1 = 2∆s2(1 − τk)(1 − τl)ρ
∗ω∗Ω̄ and

a2 = ∆s2 (1 − τk)
2 ρ∗2Θ̄.

The last two terms in braces in the expression of Hi,i [~p] in Propo-
sition 1 vanish in the limit N → ∞.
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The Fokker-Planck equation corresponding to Eq. (81) is given

by (see Gardiner (1997), p. 118):

∂f̃ (pi, t)

∂t
= − ∂

∂pi

[

µ (pi) −
1

2

∂σ2 (pi)

∂pi

]

f̃ (pi, t) .

Since z0 > 0, in equilibrium ∂f̃ (pi, t) /∂t = 0, that is the equilibrium
distribution of wealth f (pi) must satisfy:

µ (pi) f (pi) =
1

2

∂

∂pi

[

σ2 (pi) f (pi)
]

.

Take ϕ (pi) = σ2 (pi) f (pi), then:

∂ϕ (pi)

∂pi
=

2µ (pi)ϕ (pi)

σ2 (pi)
,

that is:

ϕ (pi) = Be2
∫ pi
−∞

dxiµ(xi)/σ
2(xi),

where B is a constant; finally (see Gardiner (1997), p. 124):

f (pi) =

[

B

σ2 (pi)

]

e2
∫ pi
−∞

dxiµ(xi)/σ
2(xi). (84)

With complete markets, i.e. Θ̄, Ω̄ = Φ̄ = 0, the variance of pi
is zero, i.e. σ2 (pi) = 0 (see Eq. (83)), and therefore the equilib-
rium distribution collapses towards the mean, i.e. pi = p̄ ∀i in the
equilibrium.

With complete financial markets, i.e. Θ̄, Ω̄ = 0 and Φ̄ > 0, the
integral in Eq. (84) is given by:

∫

dxi
µ (xi)

σ2 (xi)
=
z0

a0
pi −

z1

a0
p2
i ,

from which:

f (pi) = N e−
(z0−z1pi)

2

z1a0 ,

where N is such that
∫∞
−∞ f (pi) dpi = 1.
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With incomplete markets, i.e. Θ̄, Ω̄, Φ̄ > 0, the integral in Eq.

(84) is given by:

∫

dxi
µ (xi)

σ2 (xi)
= −

(

z1

2a2

)

lnσ2 (xi)+2

(

z0 + z1a1

2a2
√

4a0a2 − a2
1

)

arctan

(

a1 + 2a2pi
√

4a0a2 − a2
1

)

,

from which:

f (pi) =

[

N
(a0 + a1pi + a2p

2
i )

1+z1/a2

]

e
4

(

z0+z1a1/(2a2)√
4a0a2−a2

1

)

arctan

(

a1+2a2pi√
4a0a2−a2

1

)

,

where N is such that
∫∞
−∞ f (pi) dpi = 1. Finally we notice that the

distribution f (pi) is well-defined if
√

4a0a2 − a2
1 has real roots, that

is 4a0a2 − a2
1 > 0. Since:

4a0a2 − a2
1 = 4

[

∆s2 (1 − τl) (1 − τk) ρ
∗ωl̄
]2 (

Φ̄Θ̄ − Ω̄2
)

and therefore:

4a0a2 − a2
1 > 0 ⇔ Φ̄Θ̄ − Ω̄2 > 0;

taken dynasty i, from Eq. (20) we have

F
∑

j=1

φ2
i,j

(

F
∑

j=1

θ2
i,j

)

>

(

F
∑

j=1

θi,jφi,j

)2

,

which holds true, by the Cauchy inequality (see Hardy et al. (1954)).

QED

E Proof of Proposition 9

The proof follows the same steps of proof of Proposition 2 in

Appendix D. When N → ∞ from Eqq. (29) and (58) we have:

µ (pi) = z0 − z1pi and (85)

σ2 (pi) = a2p
2
i , (86)
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where:

z0 = s [ω∗ + τkρ
∗p̄] − χ;

z1 = ν − s (1 − τk) ρ
∗ and

a2 = ∆s2 (1 − τk)
2 ρ∗2Θ̄.

The marginal distribution satisfies:

fSW (pi) =

[

B

σ2 (pi)

]

e2
∫ pi
−∞

dxiµ(xi)/σ
2(xi), (87)

where B is a constant. Therefore:

fSW (pi) =
N SW

a2p
2(1+z1/a2)
i

e
−
(

z0
a2pi

)

,

where N SW is such that
∫∞
−∞ fSW (pi) dpi = 1.

QED

F Proof of Proposition 10

Condition (60) ensures that p̄ can grow forever, in fact from Eq.
(39) we have that for large value of p̄ dp̄/dt > 0 ∀p̄ > 0. If also

Condition (61) holds then dp̄/dt > 0 for p̄ = 0. Therefore for the
concavity of g (·) dp̄/dt > 0 for all p̄ ≥ 0. This case is reported

in Figure 4. Otherwise if Condition (63) holds, then dp̄/dt < 0
for p̄ = 0. Since limp̄→∞ dp̄/dt > 0 and g(·) is concave, then there

exists one value of p̄, p̄∗, such that dp̄/dt = 0 and dp̄/dt > 0 for all
p̄ > p̄∗ (see Figure 5). The economy will be therefore growing in the

long run if the initial value of per capita wealth is higher than p̄∗,
otherwise p̄ converges towards zero. Finally, Eqq. (64) and (65) are
directly derived by Eqq. (15) and (16), taking into account Eqq.

(18) and (19), given that limp̄→∞ g (p̄) /p̄ = limp̄→∞ g′ (p̄).

QED
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G Proof of Proposition 11

Given the definition of ui we have that:

dui
dt

=
dpi
dt
/p̄− ui

dp̄

dt
/p̄.

From Eqq. (40) and (64) we have that:

lim
t→∞

dp̄

dt
/p̄ = sρ∗ − v,

given that limp̄→∞ g (p̄) /p̄ = limp̄→∞ g′ (p̄). Moreover, from Eq. (29)

we have that:

lim
t→∞

dpi
dt
/p̄ = s [(1 − τk) ρ

∗ui + τkρ
∗] − νui + ηi/p̄,

given that limp̄→∞ ω∗ = 0 (see Eq. (65), taking into account that
limp̄→∞ g (p̄) /p̄ = limp̄→∞ g′ (p̄)). Therefore:

lim
t→∞

dui
dt

= s (1 − τk) ρ
∗ + η̃i,

where η̃i = ηi/p̄. The derivation of limt→∞ limN→∞Hi,i′ [~u] follows
the same steps reported in Proposition 1. In fact:

E [η̃i (t) η̃i′ (t
′)] =

1

p̄ (t) p̄ (t′)
E [ηi (t) ηi′ (t

′)] =
Hi,i′ [~p]

p̄ (t) p̄ (t′)
δ (t− t′) ,

where Hi,i′ [~p] is the same as in Proposition 1, taken into account

that in the limit p̄ → ∞ only the quadratic terms in pi = p̄ui
survives.

QED


