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Abstract

We deal with a class of generalized fractional programming problems
having a polyhedral feasible region and as objective the ratio of an
affine function and the power p > 0 of an affine one. We aim to pro-
pose simplex-like sequential methods for finding the global maximum
points. As the objective function may have local maximum points not
global, we analyze the theoretical properties of the problem; in par-
ticular, we study the maximal domains of the pseudoconcavity of the
function. Depending on whether or not the objective is pseudoconcave
on the feasible set, we suggest different algorithms.
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I. Introduction

Fractional programming (FP) problem is a special class of nonlin-
ear programming which optimizes one or some ratio objective func-

tions over a feasible region. FP problems usually arise for modelling
real life problems such as production planning, financial, health care,

and engineering (see for instance Frenk and Schaible (2005)).
Motivated by the interest on FP in the literature (see for instance

the extensive bibliography in Stancu-Minasian (2006)), this paper
considers a class of generalized fractional programming problems

whose feasible region is a polyhedron and whose objective is the ra-
tio of an affine function and the power p of an affine one. With the
aim of solving the problem, we will give an algorithm based on the

so called optimal level solutions method. This approach has been
proposed, for the first time, for solving a linear fractional prob-

lem Cambini and Martein (1990), and then, it has been used for
generalized class of FP (see for istance Cambini (1994),Carosi and

Martein (2008),Cambini and Martein (2012),Ellero (1996)). Even if
the analyzed problem may have several local optimum points which
are not global, the theoretical results stated in the paper allow us

to solve it by means of a simplex-like algorithm.
The paper is organized as follows: in Section II. the problem is

stated, Section III. is devoted to determine the maximal domain
of pseudoconcavity of the objective function; according with the

different specification of problem parameters, different theoretical
properties and sequential methods are proposed in Section IV. and

in Section V. In order to clarify how the algorithm works, in Section
6 some easy examples are illustrated.

II. Statement of the problem

We consider the following optimization problem:

P : sup f(x) =
cTx+ c0

(dTx+ d0)p

s.t. x ∈ X = {x ∈ R
n : Ax = b, x ≥ 0} ⊂ D,

(1)
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where D = {x ∈ R
n : dTx + d0 > 0}, p > 0, A is a real m × n

matrix, with rank[A] = m < n.

We aim to establish conditions under which Problem P has optimal
solutions and to propose sequential methods for finding them. A key
tool of our analysis is the pseudoconcavity of the objective function.

It is well known that if the objective function is pseudoconcave, then
local maximum points are global ones and therefore, Problem P can

be solved more easily with respect to the general case. Since f is not
in general pseudoconcave (see Example 4), in Section III. we will

characterize the maximal domain of pseudoconcavity. The stated
conditions are related to the values of the objective function param-

eters c, d, c0, d0, and p. In particular, we are going to distinguish the
cases rank[c, d] = 2 and rank[c, d] = 1; we will derive different char-
acterizations for the pseudoconcavity. The value of rank[c, d] bears

on the theoretical properties of Problem P and consequently, we
will propose different sequential methods accordingly. Therefore,

Section IV. deals with the case rank[c, d] = 2, while Section V. is
devoted to the case rank[c, d] = 1.

Regardless the parameter specifications of function f , if an op-
timal solution exists, it belongs to a feasible edge. Furthermore, if

the supremum is not attained as a maximum, then there exists an
extreme direction along which the function converges to the supre-

mum. With this regards, the following theorem holds. We omit its
proof since it is similar to the one given for Theorem 3.1 in Carosi
and Martein (2008).

Theorem 1 Let L be the supremum of Problem P .

i) L is attained as a maximum if and only if there exists a feasible

point x0 belonging to an edge of X such that f(x0) = L;

ii) If L is not attained as a maximum, then there exists an extreme

direction u and a feasible point x0 such that L = lim
t→+∞

f(x0 + tu).
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III. On the maximal domain of pseudoconcavity

We study the pseudoconcavity of the function

f(x) =
cTx+ c0

(dTx+ d0)p
, (2)

on the domain D = {x ∈ R
n : dTx + d0 > 0}, p > 0. Throughout

the paper, we will assume p 6= 1 and c ∈ R
n \ {0} since it is well

known that, when p = 1 or c = 0, f is both pseudoconvex and
pseudoconcave on D.

In what follows ∇f(x) and H(x) will denote the gradient and the
Hessian matrix of f evaluated at x, respectively.

For the sake of completeness, we recall the definition of a pseudo-
concave function.

Definition 2 Let f be a real-valued differentiable function defined
on a convex set C ⊆ R

n. f is said to be pseudoconcave on C if and

only if

∀x1, x2 ∈ C, f(x1) < f(x2) ⇒ (x2 − x1)T∇f(x1) > 0

In order to characterize the maximal domain of pseudoconcavity of
f , we will use the following second order characterization (see for

all Cambini and Martein (2009)).

Theorem 3 Let f be a twice differentiable function defined on an

open convex set A ⊆ R
n. Then, f is pseudoconcave on A if and only

if the following two conditions hold:
i) x ∈ A, v ∈ R

n, vT∇f(x) = 0 ⇒ vTH(x)v ≤ 0;

ii) If x0 ∈ A is a critical point, then x0 is a local maximum point
for f on A.

According to Theorem 3, we have to analyze the behavior of the Hes-
sian matrix on the directions which are orthogonal to the gradient

and we have to establish whether the critical points are maximum
points. The gradient and Hessian matrix are as follows:

∇f(x) =
c(dTx+ d0) − pd(cTx+ c0)

(dTx+ d0)p+1
, (3)
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H(x) =
p[(dTx+ d0)(−cdT − dcT ) + (p+ 1)(cTx+ c0)dd

T ]

(dTx+ d0)p+2
. (4)

We will separately consider the case rank[c, d] = 2 and the case
rank[c, d] = 1.
Assume first that rank[c, d] = 2; the following example shows that

f is not in general pseudoconcave. The example takes a function
where p > 1, but similar examples can be constructed for the case

0 < p < 1.

Example 4 Consider f(x) =
−x1 + x2 − 2

(x1 + x2 + 1)p
, p > 1 and its restric-

tion ϕ on the half-line x2 = 2 and x1 > −3, i.e., ϕ(x1) =
−x1

(x1 + 3)p
.

It can be easily verified that x1 =
3

p− 1
> 0 is a minimum point for

ϕ. Hence, ϕ is not pseudoconcave on the half-line and, therefore, f
is not pseudoconcave on D, ∀p > 1.

Taking into account (3), condition rank[c, d] = 2 implies the non-

existence of critical points. Thus, f is pseudoconcave on D if and
only if condition i) in Theorem 3 holds.
By setting

D1
+ = D ∩ {x ∈ R

n : cTx+ c0 ≥ 0}
and

D1
− = D ∩ {x ∈ R

n : cTx+ c0 ≤ 0}
the following theorem characterizes the maximal domain of pseudo-

concavity of f .

Theorem 5 Assume rank[c, d] = 2.
i) If p > 1, then f is pseudoconcave on D1

+.

ii) If 0 < p < 1, then f is pseudoconcave on D1
−.

Proof Let us first observe that the linear independence of vectors c

and d implies that both D1
+ and D1

− are non-empty sets. From (3),
rank[c, d] = 2 implies ∇f(x) 6= 0, ∀x ∈ D. Let v 6= 0 be a direction

such that ∇f(x)Tv = 0. It implies that cTv =
p(cTx+ c0)

(dTx+ d0)
dTv
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and vTH(x)v =
p

(dTx+ d0)p+2
((1 − p)(cTx + c0))(d

Tv)2. Then,

vTH(x)v ≤ 0 for every x ∈ D if and only if (1 − p)(cTx + c0) ≤ 0.

Consequently, from condition i) of Theorem 3, f is pseudoconcave
on IntD1

+ if and only if p > 1 and f is pseudoconcave on IntD1
− if

and only if 0 < p < 1.
Consider now, x ∈ D1

+ ∩D1
−.

For every x2 ∈ IntD1
+, we have f(x) < f(x2), and (x2−x)T∇f(x) =

cTx2 + c0
(dTx+ d0)p

> 0. For every x2 ∈ IntD1
−, we have f(x) > f(x2) and

(x − x2)T∇f(x2) = − cTx2 + c0
(dTx+ d0)p

> 0. Consequently, taking into

account Definition 2, the proof is complete.

The particular structure of the function allows us to easily char-

acterize the maximal domain of the pseudoconvexity too.

Theorem 6 Assume rank[c, d] = 2.
i) If p > 1, then f is pseudoconvex on D1

−.

ii) If 0 < p < 1, then f is pseudoconvex on D1
+.

Proof Since f has no critical points, f is pseudconvex on an open

convex set A if and only if for every x ∈ A, v ∈ R
n, it is vT∇f(x) = 0

⇒ vTH(x)v ≥ 0.

Recalling that vTH(x)v =
p

(dTx+ d0)p+2
((1 − p)(cTx + c0))(d

Tv)2,

the proof is obtained along the lines of the previous theorem.

Consider now the case rank[c, d] = 1, i.e, c = γd, γ 6= 0. Then,
we have

f(x) =
γdTx+ c0

(dTx+ d0)p
,

and the gradient and Hessian matrix can be specified as follows:

∇f(x) =
d

(dTx+ d0)p+1
[γ(1− p)(dTx+ d0) − p(c0 − γd0)], (5)

H(x) =
ddT

(dTx+ d0)p+2
p[γ(p− 1)(dTx+d0)+ (p+1)(c0−γd0)]. (6)
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The following theorem characterizes the pseudoconcavity of f on D.

Theorem 7 Assume rank[c, d] = 1 and c = γd, γ 6= 0.
Then, f is pseudoconcave on D if and only if one of the following

conditions holds:
i) γ(1 − p) < 0;

ii) γ(1− p) > 0 and c0 − γd0 ≤ 0.

Proof Setting dTx+d0 = z, function f becomes η(z) =
γ(z − d0) + c0

zp

and we have η′(z) =
γ(1 − p)z − p(c0 − γd0)

zp+1
.

Let x1, x2 ∈ D and set z1 = dTx1 + d0 and z2 = dTx2 + d0.
Then, f(x1) < f(x2) if and only if η(z1) < η(z2). Furthermore,

∇f(x) = η′(z)d and, consequently, ∇f(x1)T (x2 − x1) > 0 if and
only if η′(z1)d

T (x2 − x1) = η′(z1)(z2 − z1) > 0. Therefore, f is pseu-

doconcave on D if and only if η is pseudoconcave on (0,+∞).
Since η is a single variable function, η is pseudoconcave if and only

if its critical points are maximum points.
If γ(1 − p) < 0, then either η is decreasing on (0,+∞) or it has

a critical point which is a maximum point. If γ(1 − p) > 0 and
c0−γd0 > 0, then η has a feasible critical point which is a minimum
point. If γ(1 − p) > 0 and c0 − γd0 ≤ 0, then η is increasing on

(0,+∞).
Consequently, η is pseudoconcave in (0,+∞) if and only if i) or ii)

holds. The proof is complete.

Remark 8 Taking into account (6), it is easy to verify that if ii)
of Theorem 7 holds, then f is concave on D.

As a direct conseguence of Theorem 7, we are able to characterize

the pseudoconvexity of the function.

Theorem 9 Assume rank[c, d] = 1 and c = γd, γ 6= 0.

Then, f is pseudoconvex on D if and only if γ(1 − p) > 0 and
c0 − γd0 > 0.
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IV. Case rank[c,d] = 2. Theoretical properties and se-

quential method

We consider the case rank[c, d] = 2. First some theoretical prop-

erties of problem P are established and, successively, a simplex-like
sequential method is suggested for solving the problem.

Theorem 10 Assume rank[c, d] = 2, p > 1.

i) If X ∩ {x ∈ R
n : cTx + c0 ≥ 0} 6= ∅, then, the supremum L

of problem P is L = +∞ if and only if there exists an extreme

direction u such that cTu > 0 and dTu = 0. In any other case, the
supremum is attained as a maximum.

ii) If X ⊂ {x ∈ R
n : cTx + c0 < 0}, then, the supremum L of

problem P is L = 0 if and only if there exists an extreme direction
u such that dTu > 0. In any other case the supremum is attained

as a maximum.

Proof From ii) of Theorem 1, we have to study the behaviour of f
along every extreme direction u of X, i.e., dTu ≥ 0.

Let ϕ be the restriction of f on the half-line x = x0 + tu, t ≥ 0,
x0 ∈ X, i.e.,

ϕ(t) =
cTx0 + tcTu+ c0

(dTx0 + tdTu+ d0)p
. (7)

We are going to prove i) and ii) separately.
i) Without loss of generality, we can assume that cTx + c0 ≥ 0,

∀x ∈ X. Hence, cTu ≥ 0 for any extreme direction u.
If dTu = 0 and cTu = 0, then ϕ(t) = f(x0), ∀t ≥ 0; if dTu > 0,

then lim
t→+∞

ϕ(t) = 0.

Consequently, L = +∞ if and only if there exists an extreme direc-
tion u such that dTu = 0 and cTu > 0.
ii) Since cTx + c0 < 0, ∀x ∈ X, it results cTu ≤ 0 for any extreme

direction u. If dTu = 0 and cTu = 0, then ϕ(t) = f(x0), ∀t ≥ 0;
if dTu = 0 and cTu < 0, then lim

t→+∞
ϕ(t) = −∞; if dTu > 0, then

lim
t→+∞

ϕ(t) = 0. Since f(x) < 0 ∀x ∈ X, L = 0 is the supremum if

and only if dTu > 0.
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Theorem 11 Assume rank[c, d] = 2, 0 < p < 1.

i) If X ⊂ {x ∈ R
n : cTx+c0 < 0}, then, the supremum L of problem

P is L = 0 if and only if there exists an extreme direction u such

that dTu > 0 and cTu = 0. In any other case the supremum is
attained as a maximum.
ii) If X ∩ {x : cTx + c0 = 0} 6= ∅, then, the supremum of problem

P is L = +∞ if and only if there exists an extreme direction u
such that cTu > 0. In any other case the supremum is attained as

a maximum.

Proof Take an extreme direction u, i.e., dTu ≥ 0 and the restriction
ϕ of f on the half-line x = x0 + tu, t ≥ 0, x0 ∈ X. We are going to

prove i) and ii) separately.
i) We have cTu ≤ 0. If cTu = 0 and dTu = 0, then ϕ(t) = f(x0),
∀t ≥ 0; if cTu < 0, then lim

t→+∞
ϕ(t) = −∞; if cTu = 0 and dTu > 0

then lim
t→+∞

ϕ(t) = 0. Consequently, L = 0 if and only if cTu = 0 and

dTu > 0.
ii) If cTu < 0, then lim

t→+∞
ϕ(t) = −∞; if cTu = 0 and dTu = 0, then

ϕ(t) = f(x0), ∀t ≥ 0; if cTu = 0 and dTu > 0, then lim
t→+∞

ϕ(t) = 0.

Consequently, L = +∞ is if and only if there exists an extreme
direction u such that cTu > 0.

When rank[c, d] = 2 and f is not pseudoconcave, the following

theorem shows that if Problem P takes the maximum, then it is
attained at a vertex.

Theorem 12 Assume rank[c, d] = 2, and one of the following con-
ditions holds:

i) p > 1 and X ⊂ {x ∈ R
n : cTx+ c0 ≤ 0}.

ii) 0 < p < 1 and X ⊂ {x ∈ R
n : cTx+ c0 ≥ 0}.

If the supremum of problem P is attained as a maximum, then there

exists a vertex of X which is a maximum point.

Proof From Theorem 6, f is pseudoconvex. The result follows from
the properties of pseudoconvex functions (see for all Cambini and
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Martein (2009)). Nevertheless, for sake of completeness we provide

an independent proof for the case i).
Let x0 be an optimal solution. Since ∇f(x) 6= 0, ∀x ∈ X, x0 be-

longs to the boundary of X. If x0 is a vertex, then there is nothing
to prove. Otherwise consider the restriction ϕ(t) of f on an edge
containing x0, i.e., x = x0 + tu, t ∈ (−ǫ, ǫ). We have

ϕ′(t) =
t(1 − p)cTudTu + cTu(dTx0 + d0) − pdTu(cTx0 + c0)

(dTx0 + tdTu + d0)p+1
.

Since x0 is an optimal solution, then t = 0 is a local maximum

point for ϕ so that ϕ′(0) = 0. If dTu = 0, then, necessarily, we have

cTu = 0, otherwise
cTu

dTu
= p

cTx0 + c0
dTx0 + d0

≤ 0 and (1 − p)cTudTu ≤ 0.

Since p > 1, necessarily we have (1 − p)cTudTu = 0. Consequently,
f is constant on the edge so that there exists a vertex which is op-

timal.

• Sequential method

We are going to propose a sequential method which allows to solve
the problem either the objective function is pseudoconcave on the

feasible set X or not. Referring to Theorems 5 and 6, we have to
analyze four different cases.
Note that, when function f is not pseudoconcave on X, solving

problem P on X means to look for a maximum of a pseudoconvex
function or, eqivalently, to look for a minimum of a pseudoconcave

function. This last problem, like finding a minimum for a concave
function, is a hard problem. Nevertheless, taking into account the

particular structure of f , we can suggest a simple sequential method
for solving P also in this case.

The proposed solution method extends the so called “optimal level
solutions” approach (see Cambini and Martein (1990)).
First observe that the denominator function dTx+d0 is lower bounded
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on X. Thus, the linear problem

Pd : min
x∈X

(dTx+ d0),

has optimal solutions. Let θmin be the minimum value of Pd. Con-
sider the linear program

Pc : max (cTx+ c0), x ∈ X ∩ {x : dTx+ d0 = θmin}.

Assume that the supremum of Pc is finite and let x0 be a vertex of
X which is an optimal solution of Pc (note that if Pc does not have

solutions, then the supremum of problem P is +∞). Starting from
x0, we suggest an algorithm for determining a local maximum point
(if one exists) of problem P .

Consider the linear parametric problem

P (θ) : ψ(θ) = max (cTx+c0), x ∈ X(θ) = X∩{x : dTx = dTx0+θ}

and set Θ = {θ : X(θ) 6= ∅} = [0, θmax], where θmax may be +∞.
We have

max
x∈X

f(x) = max
θ∈Θ

max
x∈X(θ)

f(x).

Setting h(θ) = max
x∈X(θ)

f(x), it results

max
x∈X

f(x) = max
θ∈Θ

h(θ), h(θ) =
ψ(θ)

(θmin + θ)p
.

If h(θ) increases (decreases), then the function f(x) increases (de-
creases) so that a local maximum of h(θ) corresponds to a local

maximum of f(x).
The following sequential method determines (if one exists) a local

maximum point for h(θ).
The idea is the following: corresponding to the vertex x0, which is an

optimal solution of P (θ0), θ0 = 0, denote by B0 the set of indices
associated with the basic variables and set x0 = (xB0

, 0). Apply-

ing sensitivity analysis, we find (xB0
(θ), 0) = (xB0

+ θuB0
, 0) which

is optimal for P (θ) for every θ belonging to the stability interval
[θ0, θ1] = {θ : xB0

(θ) ≥ 0}. If h′(θ0) ≤ 0, then (xB0
, 0) corresponds
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to a local maximum point of P . If there exists θ̃ ∈ [θ0, θ1] such that

h′(θ̃) = 0, then (xB0
(θ̃), 0) corresponds to a local maximum point

of P which belongs to an edge of X. In any other case, for θ > θ1

the feasibility is lost and it is restored by applying an iteration of
the dual simplex algorithm. We find a new stability interval and

we repeat the analysis. Proceeding in this way, we develop a finite
sequence of basis Bk, k = 0, 1, ... and a finite number of stability

intervals [θk, θk+1], k = 0, 1, ....
With the usual notations, corresponding to the basis Bk, we have:
x(θ) = (xBk

(θ), 0) = (xBk
+ θuBk

, 0),

ψ(θ) = cTBk
xBk

+ θcTBk
uBk

+ c0, θ ∈ [θk, θk+1] so that

h(θ) =
cTBk

xBk
+ θcTBk

uBk
+ c0

(θmin + θ)p
, θ ∈ [θk, θk+1], (8)

h′(θ) =
(1 − p)cTBk

uBk
θ + ξBk

(θmin + θ)p+1
, θ ∈ [θk, θk+1]. (9)

where ξBk
= θminc

T
Bk
uBk

− p(cTBk
xBk

+ c0).
A local maximum point θk of h(θ) corresponds to a global maxi-

mum for P if f is pseudoconcave, or when f is pseudoconvex and
h′(θ) < 0 for every θ ≥ θk. In the other cases, we have to look for

another value θ̃k of θ such that h(θ̃k) = h(θk). The uniqueness of
θ̃k > 0 is guaranteed by the pseudoconvexity of h(θ), together with

lim
θ→+∞

h(θ) = 0 (if p > 1) or lim
θ→+∞

h(θ) = +∞ (if 0 < p < 1).

We make a jump setting dTx+ d0 = θmin + θ̃k + θ and we find a new

optimal level solution by solving the problem

P̃ (θ) : ψ(θ) = max
x∈X(θ)

(cTx+ c0)

where X(θ) = X ∩ {x : dTx+ d0 = θmin + θ̃k + θ}.
Observe that if P̃ (θ) does not have solutions, then x(θk) is a global
maximum point for P .

As a final remark, let us observe that, with respect to the orig-
inal problem P , the parametric problem P (θ) has the additional
constraint dTx = dTx0 + θ. This leads to the introduction of an
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additional slack variable xn+1. According to the idea of the optimal

level solution method, for any value of θ, every optimal solution of
P (θ) is binding to the parametric constraint, so that there exists a

basic optimal solution (xB0
, 0) such that xn+1 is a non-basic variable.

Therefore, with a little abuse of notation, we will refer to (xB0
, 0)

as a basic solution of the original Problem P.

As it has been outlined before, we have to deal with four differ-
ent cases, i.e., we have four different procedures inside the main

algorithm. With respect to the case p > 1, Procedure A is related
to the pseudoconcave case, while Procedure B to the pseudocovex

case; with respect to the case 0 < p < 1, Procedure C is related to
the pseudoconcave case, while ProcedureD to the pseudocovex case.

The main algorithm

Step 0. Compute Cmax = sup
x∈X

(cTx + c0). If p > 1, then go to Step

1, else go to Step 2.

Step 1. If Cmax ≥ 0, then Procedure A, else Procedure B.

Step 2. If Cmax = +∞, then STOP: the supremum of Problem P
is +∞ too, otherwise go to Step 3.

Step 3. If Cmax ≤ 0, then Procedure C, else Procedure D.

Procedure A: pseudoconcave case, p > 1

Step 0. Solve problem Pd and let θmin be its optimal value. Solve

Problem Pc; if Pc does not have solutions, STOP: the supre-
mum of P is +∞. Otherwise let x0 be an optimal solution

of Pc which is also an optimal solution of Problem P (θ0) with
θ0 = 0. Set k = 0 and go to Step 1.

Step 1. Determine the stability interval [θk, θk+1] associated with

the optimal solution x(θk) = (xBk
+ θkuBk

, 0) of P (θk).
Compute h′(θk). If h′(θk) ≤ 0, STOP: x(θk) is the optimal
solution of P otherwise go to Step 2.
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Step 2. Compute θ̃ = − ξBk

(1 − p)cTBk
uBk

. If θ̃ ∈ (θk, θk+1], STOP:

x(θ̃) is the optimal solution of P ; otherwise let i be such that
xBki

+θk+1uBki
= 0. Perform a pivot operation by means of the

dual simplex algorithm, set k = k + 1 and go to Step 1.

Procedure B: pseudoconvex case, p > 1

Step 0. Determine θmax = sup
x∈X

dTx. If θmax = +∞, then STOP:

the supremum of Problem P is 0. Otherwise go to Step 1

Step 1. Solve problem Pd and let θmin be its optimal value. If
θmin−d0 > 0, then set θmax = θmax−(θmin − d0). Solve problem

Pc and let x0 be an optimal solution of Problem Pc which is
also an optimal solution of Problem P (θ0) with θ0 = 0. Set

k = 0, XM = ∅, and Valf = −∞. Go to Step 2.

Step 2. Determine the stability interval [θk, θk+1] associated with

the optimal solution x(θk) = (xBk
(θk), 0) = (xBk

+ θkuBk
, 0) of

P (θk). Compute h′(θk). If h′(θk) ≥ 0, go to Step 4. Otherwise

x(θk) is a local maximum point for f . If f(x(θk)) > Valf then
XM = {x(θk)}; if f(x(θk)) = Valf , then XM = XM ∪ {x(θk)}.
Go Step 3.

Step 3. Solve h(θ) = h(θk), and let θ̃k > θk be the solution.
If θ̃k > θmax, then STOP: XM is the set of optimal solutions.

Otherwise if θ̃k ≤ θk+1, go to Step 4, else if θk+1 < θ̃k ≤ θmax,
set θ = θ+ θ̃k, θmax = θmax− θ̃k; by means of an iteration of the

dual simplex algorithm find a new feasible solution for Problem
P (θ), compute the associated stability interval [θk, θk+1] and go

to Step 4.

Step 4. If θk+1 = θmax then k = k+1 and go to Step 5. Otherwise,

let i be such that xBi
+θk+1uBki

= 0. Perform a pivot operation
by means of dual simplex algorithm. Set k = k + 1 and go to
Step 2.
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Step 5. If f(x(θk)) > Valf then XM = {x(θk)}; if f(x(θk)) = Valf ,
then XM = XM ∪ {x(θk)}. STOP: XM is the set of optimal

solutions

Procedure C, pseudoconcave case, 0 < p < 1

Step 0. Solve problem Pd and let θmin be its optimal value. Solve
problem Pc and let x0 be an optimal solution of Problem Pc

which is also an optimal solution of Problem P (θ0) with θ0 = 0.
Set k = 0 and go to Step 1.

Step 1. Determine the stability interval [θk, θk+1] associated with
the optimal solution x(θk) = (xBk

+ θkuBk
, 0) of P (θk).

Compute h′(θk). If h′(θk) ≤ 0, STOP: x(θk) is the optimal
solution of P , otherwise go to Step 2.

Step 2. If h′(θ) > 0, ∀θ ∈ [θk, θk+1] and θk+1 = +∞, then STOP:

the supremum of problem P is 0.
If h′(θ) > 0, ∀θ ∈ [θk, θk+1] and θk+1 < +∞, then let i be such

that xBki
+ θk+1uBki

= 0. Perform a pivot operation by means
of the dual simplex algorithm, set k = k + 1 and go to Step 1.

If there exists θ̃ ∈ (θk, θk+1] such that h′(θ̃) = 0, then STOP:
x(θ̃) is an optimal solution of P .

Procedure D: pseudoconvex case, 0 < p < 1

Step 0. Determine optimal value θmax of problem max
x∈X

dTx. Solve

problem Pd and let θmin be its optimal value. If θmin − d0 > 0,
then set θmax = θmax − (θmin − d0). Suppose x0 be an optimal
solution of Problem Pc which is also an optimal solution of

Problem P (θ0) with θ0 = 0.
Set k = 0 and XM = ∅, Valf = −∞ and go to Step 1.

Step 1. Determine the stability interval [θk, θk+1] associated with
the optimal solution x(θk) = (xBk

(θk), 0) = (xBk
+ θkuBk

, 0) of

P (θk). Compute h′(θk). If h′(θk) ≥ 0, go to Step 3. Otherwise
x(θk) is a local maximum point for f . If f(x(θk)) > Valf then
XM = {x(θk)}; if f(x(θk)) = Valf , then XM = XM ∪ {x(θk)}.
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If h′(θ) < 0 for θ > θk, then STOP: XM is the set of optimal
solutions, otherwise go Step 2.

Step 2. Solve h(θ) = h(θk), and let θ̃k > θk be the solution.

If θ̃k > θmax, then STOP: XM is the set of optimal solutions.
Otherwise if θ̃k ≤ θk+1, go to Step 3, else if θk+1 < θ̃k ≤ θmax,

set θ = θ + θ̃k and θmax = θmax − θ̃k; by means of dual simplex
algorithm find a new feasible solution for Problem P (θ). De-
termine the new stability interval [θk, θk+1] associated with the

feasible solution and go to Step 3.

Step 3. If θk+1 = θmax then k = k+1 and go to Step 4. Otherwise,

set i be such that xBi
+θk+1uBki

= 0. Perform a pivot operation
by means of dual simplex algorithm. Set k = k + 1 and go to
Step 1.

Step 4. If f(x(θk)) > Valf , then XM = {x(θk)}; otherwise if
f(x(θk)) = Valf , then XM = XM∪{x(θk)} is the set of optimal
solutions. STOP: XM is the set of optimal solutions.

Remark 13 When p > 1, X∩{x ∈ R
n : cTx+c0 ≥ 0} 6= ∅ and there

exists x ∈ X such that cTx+c0 < 0, then f is not pseudoconcave on

X (see Theorem 5). Nevertheless, Problem P is equivalent to the
following one:

sup f(x) =
cTx+ c0

(dTx+ d0)p

s.t. x ∈ X1 = {x ∈ X : cTx+ c0 ≥ 0}
(10)

Since f is pseudoconcave on X1, we can apply, also in this case,
Procedure A for solving the original problem. Similarly, for the case

0 < p < 1, X ∩ {x ∈ R
n : cTx + c0 ≤ 0} 6= ∅, and there exists

x ∈ X such that f(x) > 0, Problem P is equivalent to Problem 10.
In this case f is pseudoconvex on X1, so that it is possible to apply

Procedure B for solving the problem.

Remark 14 We would like to point out that in Cambini (1994)
it is considered a more general formulation of Problem P, namely
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p ∈ R. Nevertheless the theoretical properties stated before allow

us to obtain a sequential method easier to be handled. The main
differences are related to Procedures B and D when a jump is needed.

Furthermore our algorithm proposes faster stop criteria when the
Problem may have no solutions.

V. Case rank[c,d] = 1. Theoretical properties and se-

quential method

We consider function f when the vectors c and d are linearly

dependent, i.e., c = γd. Setting z = dTx + d0, the behavior of
function f on the domainD can be studied by means of the behavior

of the one variable function η(z) on (0,+∞):

η(z) =
γ(z − d0) + c0

zp
, (11)

whose derivative is

η′(z) =
γ(1− p)z − p(c0 − γd0)

zp+1
. (12)

The particular structure of the function allows us to establish when
the supremum of problem P is not attained as a maximum and,

when this is not the case, it allows us to completely characterize the
set of the optimal solutions. The results are provided regardless the
objective function is pseudoconcave or not.

Set z∗ =
p(c0 − γd0)

γ(1 − p)
, zmin = min

x∈X
(dTx+d0), zmax = max

x∈X
(dTx+d0),

where zmax may be also equal to +∞.
The following theorems hold.

Theorem 15 Assume rank[c, d] = 1 and f is pseudoconcave on D.

i) If zmax = +∞, p > 1, then the supremum of problem P is L = 0
and it is not attained as a maximum.

ii) If zmax = +∞, 0 < p < 1, γ > 0 then, the supremum of Problem
P is L = +∞.
In any other case, the supremum is attained as a maximum.
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Proof Consider first the case γ(1− p) > 0 and c0 − γd0 < 0.

From (12), the pseudoconcavity of f implies that η(z) is increasing
in (0,+∞).

If zmax = +∞, then lim
z→+∞

η(z) is equal to +∞ when 0 < p < 1 or it

is equal to zero when p > 1, consequently i) and ii) hold.

If zmax < +∞, then the optimal solutions of P correspond to the
optimal solutions of the problem max

x∈X
(dTx+ d0).

In the case γ(1 − p) < 0, function η(z) has a maximum point at z∗

and the supremum of problem P is attained as a maximum.

The proof of Theorem 15 allows us to specify the set of optimal

solutions when the supremum of Problem P is attained as a maxi-
mum.

Theorem 16 Assume rank[c, d] = 1, f is pseudoconcave on D.
i) If γ(1 − p) > 0 and zmax < +∞, then the optimal solutions of P

correspond to the optimal solutions of the problem max
x∈X

(dTx+ d0).

ii) If γ(1 − p) < 0 and z∗ ∈ [zmin, zmax] then optimal solutions of P
are the intersection between X and the set {x ∈ R

n : dTx+d0 = z∗}.
iii) If γ(1 − p) < 0 and z∗ < zmin, then the optimal solutions of P

correspond to the optimal solutions of the problem min
x∈X

(dTx + d0).

iv) If γ(1 − p) < 0 and z∗ > zmax, then the optimal solutions of P
correspond to the optimal solutions of the problem max

x∈X
(dTx+ d0).

Theorem 17 Assume rank[c, d] = 1 and f is not pseudoconcave on
D.

i) If zmax = +∞, p > 1, and zmin > −c0
γ

+ d0, then the supremum

of problem P is L = 0 and it is not attained as a maximum.

ii) If zmax = +∞, 0 < p < 1, then, the supremum of Problem P is
L = +∞.
In any other case, the maximum value of f is

max

{
γzmin − γd0 + c0

zp
min

,
γzmax − γd0 + c0

zp
max

}
.
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Proof Taking into account Theorem 7, f is not pseudoconcave if

and only if γ(1 − p) > 0 and c0 − γd0 > 0.
If zmax = +∞ and 0 < p < 1, then lim

z→+∞
η(z) = +∞ and ii) holds.

If zmax = +∞ and p > 1, then lim
z→+∞

η(z) = 0 and the supremum of

P is zero if and only if η(z) < 0, ∀z ∈ (0,+∞), i.e., if and only if

zmin > −c0
γ

+d0, thus i) holds. Otherwise the optimal solutions of P

correspond to the optimal solutions of the problem min
x∈X

(dTx+ d0).

If zmax < +∞, then the optimal solutions of the two problems:
min
x∈X

(dTx+ d0), max
x∈X

(dTx+ d0) are local maximum for problem P.

Therefore, the maximum value of f is

max

{
γzmin − γd0 + c0

zp
min

,
γzmax − γd0 + c0

zp
max

}
.

The proof is complete.

Theorems 15, 16 and 17 allow us to suggest the following sequential

method to solve Problem P .

Main Algorithm

Step 0. Compute the optimal values zmin and zmax. If 0 < p < 1,
then go to Step 1 else go to Step 3.

Step 1. If γ < 0, then go to Step 7, else go to Step 2.

Step 2. If zmax = +∞, then STOP: the supremum of the problem
is +∞, else go to Step 8.

Step 3. If zmax < +∞ go Step 4, else go to Step 5.

Step 4. If γ > 0, then go to Step 7, else go to Step 8.

Step 5. If γ > 0, then STOP: the supremum is 0, otherwise go to
Step 6.
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Step 6. If zmin > −c0
γ

+ d0, then, STOP: the supremum of P is

0, else STOP: the optimal solutions of P correspond to the

optimal solutions of the problem min
x∈X

(dTx+ d0).

Step 7. Compute z∗ =
p(c0 − γd0)

γ(1− p)
.

If z∗ ∈ [zmin, zmax], then STOP: X ∩ {x ∈ R
n : dTx + d0 = z∗}

is the set of all optimal solutions of Problem P, otherwise go to

Step 8.

Step 8. If
γzmin − γd0 + c0

zp
min

>
γzmax − γd0 + c0

zp
max

, then STOP: the

optimal solutions of P correspond to the optimal solutions
of the problem min

x∈X
(dTx + d0), else STOP: the optimal solu-

tions of P correspond to the optimal solutions of the problem

max
x∈X

(dTx + d0).

VI. Examples

In order to clarify how the proposed procedures work, we present

some easy examples concerning the most representative case, that
is rank[c, d] = 2. Example 18 considers pseudoconcave objective

functions, while the pseudoconvex case is handled in Examples 19
and 20.

Example 18 Consider the following problem P

sup f(x) =
3x1 + 4x2 + 1

(x1 + x2 + 4)3

s.t. −x1 + x2 + x3 = 1/2
x1 + x2 + x4 = 7

x1 − x2 + x5 = 3
x = (x1, ..., x5) : xi ≥ 0, i = 1, ..., 5

(13)

Note that Cmax > 0 and p > 1, then f is pseudoconcave on the feasi-
ble set. According to the algorithm we apply Procedure A. We have
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θmin = 4; starting from x0 =
(
0, 0, 1

2 , 7, 3, 0
)

which is the optimal

solution of problem Pc, we consider the parametric problem P (θ).
The simplex table associated with the feasible basic solution x0 is
the following:

−1 − 4 θ −1 0 0 0 0 −4

1/2 − θ −2 0 1 0 0 −1
7 − θ 0 0 0 1 0 −1

3 + θ 2 0 0 0 1 1
θ 1 1 0 0 0 1

Remember that we force the slack variable associated with the para-

metric constraint to be a non-basic variable. The stability interval is
[
0, 1

2

]
, h(θ) =

1 + 4 θ

(θ + 4)3 and h′(θ) =
13 − 8 θ

(θ + 4)4 . Since h′(0) > 0, and

θ̃ =
13

8
>

1

2
, we perform an iteration of the dual simplex algorithm;

we get the following simplex table:

−5/4 − 7/2 θ 0 0 −1/2 0 0 −7/2

−1/4 + 1/2 θ 1 0 −1/2 0 0 1/2
7 − θ 0 0 0 1 0 −1

7/2 0 0 1 0 1 0
1/4 + 1/2 θ 0 1 1/2 0 0 1/2

The new stability interval is
[

1
2 , 7

]
and we have h(θ) =

5
4 + 7

2 θ

(θ + 4)3 ,

h′(θ) =
41 − 28θ

(θ + 4)4
. Since h′

(
1
2

)
> 0 and θ̃ = 41

28 ∈
(

1
2 , 7

)
, we get

x
(

41
28

)
=

(
27
56,

55
56, 0,

155
28 ,

7
2 , 0

)
which corresponds to the global optimal

solution of problem P, that is x1 =
(

27
56,

55
56, 0,

155
28 ,

7
2

)
. Observe that

x1 belongs to an edge of the feasible region.
Consider now function f on the following feasible region S2:

2x1 + x2 − x3 = 2

x1 − x2 + x4 = 3

−x1 + x2 + x5 = 2

xi ≥ 0 i = 1, ..., 5
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In this case Cmax = θmax = +∞. By applying Procedure A, we

obtain that the optimal value is attained at the vertex (0, 2, 0, 0, 5).

Example 19 Consider the following problem P

sup f(x) =
−18x1 − 3x2 − 1

2

(x1 + x2 + 1)4

s.t. −x1 + x2 + x3 = 3
1
2
x1 + x2 + x4 = 6

2x1 − x2 + x5 = 3
x = (x1, ..., x5) : xi ≥ 0, i = 1, ..., 5

(14)

Since Cmax = −1

2
< 0 and p > 1, function f is pseudoconvex on the

feasible set and, according to the algorithm, we apply procedure B.

We get θmax =
39

5
and θmin = 1. Starting from x0 = (0, 0, 3, 6, 3, 0)

which is the optimal solution of problem Pc, we consider the para-

metric problem P (θ). The simplex table associated with the feasible
basic solution x0 is the following:

1/2 + 3 θ −15 0 0 0 0 3

3 − θ −2 0 1 0 0 −1

6 − θ −1/2 0 0 1 0 −1
3 + θ 3 0 0 0 1 1

θ 1 1 0 0 0 1

Remember that we force the slack variable associated with the para-
metric constraint to be a non-basic variable. The stability interval

is [0, 3], h(θ) = −
1
2 + 3θ

(θ + 1)4
and h′(θ) = − 9θ − 1

(θ + 1)5
. Since h′(0) < 0,

x0 corresponds to the local maximum point x̂0 = (0, 0, 3, 6, 3) with
f(x̂0) = −1

2. We get XM = {x̂0}.We find θ̃ = 0, 278 ∈ [0, 3] such

that h(θ̃) = h(0); by means of an iteration of the dual simplex algo-
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rithm we get the following simplex table:

−22 + 21/2 θ 0 0 −15/2 0 0 21/2

−3/2 + 1/2 θ 1 0 −1/2 0 0 1/2
21/4 − 3/4 θ 0 0 −1/4 1 0 −3/4

15/2 − 1/2 θ 0 0 3/2 0 1 −1/2
3/2 + 1/2 θ 0 1 1/2 0 0 1/2

The new stability interval is [3, 7] and we have h(θ) =
22 − 21

2 θ

(θ + 1)4
,

h′(θ) =
1

2

63θ − 197

(θ + 1)5
. Since h′(3) < 0, x1 = (0, 3, 0, 3, 6, 0) corre-

sponds to x̂1 = (0, 3, 0, 3, 6) which is a local maximum point for f
with f(x̂1) > f(x̂0). Therefore XM = {x̂1}. We find θ̃ = 3, 268 ∈
[3, 7] such that h(θ̃) = h(3); by means of an iteration of the dual

simplex algorithm we get the following simplex table:

−359/2 + 33 θ 0 0 0 −30 0 33

−12 + 2θ 1 0 0 −2 0 2
−21 + 3θ 0 0 1 −4 0 3
39 − 5θ 0 0 0 6 1 −5

12 − θ 0 1 0 2 0 −1

The new stability interval is [7, 39
5 ] and we have h(θ) =

359
2 − 33θ

(θ + 1)4
,

h′(θ) =
99θ − 751

(θ + 1)5
. Since h′(7) < 0, x2 = (2, 5, 0, 0, 4, 0) corresponds

to the local maximum point x̂2 = (2, 5, 0, 0, 4) with f(x̂2) > f(x̂1),

then XM = {x̂2}. We find θ̃ = 8.344 such that h(θ̃) = h(7). Since
θ̃ = 8.344 /∈ [7, 39

5 ], then STOP, x̂2 is the global maximum point.

Example 20 Consider the following problem P:

sup f(x) =
2x1 + 3x2 + 8√

3
2
x1 + 3

2
x2 + 1

s.t. x1 + 6x2 + x3 = 30
3x1 + 4x2 + x4 = 48
x = (x1, ..., x4) : xi ≥ 0, i = 1, ..., 4

(15)
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Since Cmax ≥ 0 and 0 < p < 1, function f is pseudoconvex on the

feasible set and, according to the algorithm, we apply procedure D.
We get θmax = 24 and θmin = 1. Starting from x0 = (0, 0, 30, 48, 0)

which is the optimal solution of problem Pc, we consider the para-
metric problem P (θ). The simplex table associated with the feasible
basic solution x0 is the following:

−8 − 2θ −1 0 0 0 −2

30 − 4θ −5 0 1 0 −4

48 − 8/3 θ −1 0 0 1 −8/3
2/3 θ 1 1 0 0 2/3

The stability interval is [0, 15
2
], h(θ) =

8 + 2θ√
θ + 1

and h′(θ) =
θ − 2

(θ + 1)
3

2

.

Since h′(0) < 0, x0 corresponds to x̂0 = (0, 0, 30, 48) which is a local
maximum point for f with f(x̂0) = 8. XM = {x̂0} We find θ̃ = 8

such that h(θ̃) = h(0). Since 15
2 < θ̃ < θmax = 24, we update the

previous simplex table by setting θ = θ + θ̃, and we determine the

new value θmax = θmax − θ̃ = 16. We perform an iteration of the
dual simplex algorithm for finding a new feasible solution, getting

−118/5− 6/5 θ 0 0 −1/5 0 −6/5

2/5 + 4/5 θ 1 0 −1/5 0 4/5

406/15− 28/15θ 0 0 −1/5 1 −28/15
74/15− 2/15 θ 0 1 1/5 0 −2/15

The new stability interval is [0, 29
2 ] and we go to the adjacent vertex,

by performing an iteration of the dual simplex algorithm.

−152/3 + 2/3θ 0 0 0 −1 2/3

−80/3 + 8/3θ 1 0 0 −1 8/3

−406/3 + 28/3θ 0 0 1 −5 28/3
32 − 2θ 0 1 0 1 −2

The stability interval is [29
2 , 16], h(θ) =

152
3 + 2

3θ√
θ + 9

, h′(θ) = −1

3

θ + 94

(θ + 9)
3

2

.

Since h′
(

29
2

)
< 0, x1 = (12, 3, 0, 0, 0) corresponds to the local maxi-

mum point x̂1 = (12, 3, 0, 0) with f(x̂1) = 8, 458 > f(x̂0).
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XM = {x̂1}. Furthermore, since h′(θ) < 0 for every θ > 29
2 , then x̂1

is the global maximum point of the problem.
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Schaible Eds., Generalized Convexity, Lecture Notes in Economics
and Mathematical Systems, vol.405, Springer-Verlag, Berlin Hei-

delberg, 294-310, ISBN: 3-540-57624-X.

L. Carosi, L. Martein, (2008), “A sequential method for a class of
pseudoconcave fractional problems”, Central European Journal of

Operations Research, 16, 2, 153-164.

L. Carosi, L. Martein, (2012), “The Sum of a Linear and a Linear

Fractional Function: Pseudoconvexity on the Nonnegative Orthant
and Solution Methods”, Bulletin of the Malaysian Mathematical
Sciences Society, 35, 2A, 591-599.



28 L. Carosi, L. Martein, E. Valipour

A. Ellero, (1996), “The optimal level solutions method ”, Journal

of Information and Optimization Sciences, 17, 2, 1-18.

J.B.G. Frenk, S. Schaible, (2005), “Fractional programming”, in N.
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