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Abstract

We consider a wide class of generalized fractional functions, namely
the sum between a linear one and a ratio which has an affine function
as numerator and, as denominator, the p-th power of an affine one.
For this class of functions we aim to derive necessary and/or sufficient
conditions for pseudoconvexity on the nonnegative orthant. The ob-
tained conditions are very easy to be checked and allow us to construct
several subclasses of pseudoconvex generalized fractional functions.
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I. Introduction

Among different classes of generalized convex functions, pseu-

doconvexity plays a key role in Optimization theory and in many
applied sciences such as Economics and Management Science. Pseu-

doconvexity owes its great relevance to the fact that it maintains
some nice optimization properties of convex functions, such as crit-

ical and local minimum points are global minimum. Furthermore,
if the objective function of a bicriteria problem is component-wise
pseudoconvex, then the efficient frontier is connected.

Unlike their good properties, it is not easy to establish whether a
function is pseudoconvex or not. Besides some theoretical char-

acterizations (see for all 1 and references therein), there are only
few results related to specific classes of functions. In this direc-

tion, the first contributions deal with quadratic functions (see for
istance 2, 6, 8) and, more recently, different approaches have been
proposed for the study of pseudoconvexity of generalized fractional

functions (see for all 3, 7, 9).
In this paper, we aim to study the pseudoconvexity of the sum be-

tween a linear function and a ratio which has an affine one as numer-
ator and, as denominator, the p-th power (p > 0) of a positive affine

one. Since the case p = 1 has been recently analyzed 4, 5, we focus
our attention on p > 0, p 6= 1. Due to the fact that in Management

Sciences and in Economics we often require the variable nonnegativ-
ity, we investigate the pseudoconvexity on the nonnegative orthant.
The key tool of our analysis is a second order characterization of the

pseudoconvexity related to an open and convex set. Unfortunately
the pseudoconvexity of a function on an open and convex set does

not guarantee its pseudoconvexity on the closure of the set. There-
fore, a priori, we need to distinguish conditions which characterize

pseudoconvexity on the interior on R
n
+ and conditions related to the

behavior of f on the boundary of R
n
+. The performed analysis allows

us to give necessary and sufficient conditions which are very easy to
be checked and which can be used to construct several subclasses of
pseudoconvex generalized fractional functions.
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II. Statement of the problem and preliminaries

Consider the following class of generalized fractional functions

f(x) = aTx +
cTx + c0

(dTx + d0)
p (1)

where: dTx + d0 > 0, d ∈ intRn
+, d0 > 0, p > 0 and p 6= 1.

The gradient, the Hessian matrix H(x) of f , and the quadratic form
associated with H(x) are the following:

∇f(x) = a +
c
(

dT x + d0

)

− p
(

cT x + c0

)

d

(dT x + d0)
p+1 (2)

H(x) =
p
[(

dT x + d0

) (

−dcT − cdT
)

+ (p + 1)
(

cT x + c0

)

ddT
]

(dT x + d0)
p+2 (3)

wT H(x)w =
p
[

−2
(

dT x + d0

) (

wT d
) (

cT w
)

+ (p + 1)
(

cT x + c0

)

(dT w)2
]

(dT x + d0)
p+2 (4)

For the sake of completeness we recall the definition of a pseudocon-
vex function and the pseudoconvexity second order characterization
we are going to use in our analysis (see for istance 3).

Definition 1 Let f be a differentiable function defined on an open
set X ⊆ R

n and let S ⊆ X be a convex set.

f is said to be pseudoconvex on S if the following implication holds:

x1, x2 ∈ S, f(x1) > f(x2) ⇒ ∇f(x1)T (x2 − x1) < 0 (5)

Theorem 2 Let f be a twice continuously differentiable function
defined on an open convex set X ⊆ R

n.
Then, f is pseudoconvex on X if and only if the following conditions

hold:
i) x ∈ X, w ∈ R

n, wT∇f(x) = 0 ⇒ wTH(x)w ≥ 0;

ii) If x0 ∈ X is a critical point, then x0 is a local minimum point
for f .

With respect to the introduced class of function (1), the following
theorem gives a preliminary necessary pseudoconvexity condition
related to the linear dependence of the vectors a, c and d.
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Theorem 3 Let S ⊆ R
n be a convex set with intS 6= ∅. If f is

pseudoconvex on S, then rank[a, c, d] ≤ 2.

Proof Suppose on the contrary that rank[a, c, d] = 3; this implies
∇f(x) 6= 0 for every x ∈ S. Applying Theorem 2, let us consider
x ∈ intS and a direction w such that ∇f(x)Tw = 0.

We have aTw +

(

dTx + d0

)

cTw − p
(

cTx + c0

)

dTw

(dTx + d0)
p+1 = 0 so that

(

dTx + d0

)

cTw = p
(

cTx + c0

)

dTw −
(

dTx + d0

)p+1
aTw

Substituting the value cTw
(

dTx + d0

)

in (4), we get

wT H(x)w = p

(dT x+d0)p+2 dT w
[

(1 − p)
(

cT x + c0

)

dT w + 2
(

dT x + d0

)p+1
aT w

]

For every x ∈ intS, consider the linear map A : R
n → R

3, where

A =





∇f(x)T

aT

dT



. Since rank[a, c, d] = 3, the map A is surjective

and hence we can choose w ∈ R
n such that ∇f(x)Tw = 0, dTw < 0

and aTw >
(p − 1)

(

cTx + c0

)

2 (dTx + d0)
p+1 dTw, so that wTH(x)w < 0. Conse-

quently, f is not pseudoconvex on intS and this is a contradiction.

According to Theorem 3, we must study the pseudoconvexity of
f in the following exhaustive cases:

• rank[a, c, d] = 1; rank[a, d] = 2, c = βd; rank[c, d] = 2.

In what follows we will prove that in the first case (see Section III.),
the study of pseudoconvexity reduces to the study of pseudocon-

vexity of a suitable one variable function; in the second case (see
Section IV.), f is pseudoconvex if and only if it is convex. As regard

the third case, we must study the behavior of f on the interior of
R

n
+ and the behavior of f on the boundary of R

n
+.
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III. Case rank[a, c,d] = 1

Setting a = αd, c = γd in (1) we obtain

f(x) = αdTx +
γdTx + c0

(dTx + d0)p

Substituting a = αd and c = γd, the gradient and the Hessian
matrix of f are specified as follows

∇f(x) = d

[

α +
γ
(

dTx + d0

)

(1 − p) + p (γd0 − c0)

(dTx + d0)
p+1

]

H(x) =
pddT

(dTx + d0)
p+2

[

γ(p − 1)
(

dTx + d0

)

+ (p + 1) (c0 − γd0)
]

(6)
Setting dTx = z, function f becomes

η(z) = αz +
γz + c0

(z + d0)p
(7)

and we have

η′(z) = α +
γ(1− p)z + γd0 − pc0

(z + d0)p+1
, z ≥ 0 (8)

η′′(z) =
p

(z + d0)p+2
[γ(p − 1)z − 2γd0 + (p + 1)c0] , z ≥ 0 (9)

The following theorem proves that the pseudoconvexity of function
f on R

n
+ is equivalent to the pseudoconvexity of function η on the

closed set [0, +∞).

Theorem 4 Assume rank[a, c, d] = 1. Then f is pseudoconvex on
R

n
+ if and only if η is pseudoconvex on [0, +∞).

Proof Let x1, x2 ∈ R
n
+ and set z1 = dTx1 and z2 = dTx2.

Note that f(x1) > f(x2) if and only if η(z1) > η(z2); furthermore,

∇f(x) = η′(z)d. Consequently ∇f(x1)T (x2 − x1) < 0 if and only if
η′(z1)d

T (x2 − x1) = η′(z1)(z2 − z1) < 0 and the thesis follows.
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Remark 5 Note that if z̄ is a critical point for η, then every point

of the hyperplane dTx = z̄ is a critical point for f .

Since η is a function of one variable, it is known that η is pseudo-
convex on [0, +∞) if and only if every critical point is a minimum

point. We will use this result in proving the following theorems.

Theorem 6 Assume rank[a, c, d] = 1 and γ(p − 1) > 0.

Then f is pseudoconvex on R
n
+ if and only if one of the following

conditions holds:

i) γ ≤ p + 1

2

c0

d0
;

ii) γ >
p + 1

2

c0

d0
and either αdp+1

0 + γd0 − pc0 < 0, or

α + (c0 − γd0)

[

γ(p − 1)

(p + 1)(γd0 − c0)

]p+1

> 0 (10)

Proof According to Theorem 4 we prove that η is pseudoconvex in

[0, +∞).
From (9), we have that η(z) is convex (hence pseudoconvex) in

[0, +∞) if and only if i) holds.

If γ >
p + 1

2

c0

d0
, then η′(z) has a unique minimum point at

z̄ =
2γd0 − (p + 1)c0

γ(p − 1)
> 0.

If η′(z̄) > 0, that is (10) holds, η is increasing on [0, +∞].

If η′(z̄) = 0, necessarily we have η′(0) = αdp+1
0 + γd0 − pc0 > 0, so

that z̄ turns out to be an inflection point for η.

If η′(z̄) < 0 and η′(0) ≥ 0, then η′(z) has a zero corresponding to a
maximum point for η.

If η′(z̄) < 0 and η′(0) < 0, then either η′(z) < 0, ∀z ∈ [0, +∞) or η′

has a zero corresponding to a minimum point for η.

Consequently, η is pseudoconvex if and only if ii) holds. The proof
is complete.
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Theorem 7 Assume rank[a, c, d] = 1 and γ(p − 1) < 0.

Then f is pseudoconvex on R
n
+ if and only if one of the following

conditions holds:

i) α ≥ 0;

ii) γ ≥ p + 1

2

c0

d0
and αdp+1

0 + γd0 − pc0 < 0;

iii) γ <
p + 1

2

c0

d0
and

α + (c0 − γd0)

[

γ(p − 1)

(p + 1)(γd0 − c0)

]p+1

< 0 (11)

Proof According to Theorem 4 we prove that η is pseudoconvex on
[0, +∞).

Firstly note that, lim
z→+∞

η′(z) = α and, from (9), η′ has a maximum

point (feasible or not) at z̄ =
2γd0 − (p + 1)c0

γ(p − 1)
.

Consider the case α ≥ 0; if η′(0) ≥ 0, then η′(z) ≥ 0, ∀z ∈ [0, +∞).

Otherwise if η′(0) < 0, then η′(z) has a unique zero corresponding
to a minimum point for η.

Consequently, when α ≥ 0, η is pseudoconvex on [0, +∞).

Consider now the case α < 0. If γ ≥ p + 1

2

c0

d0
, then η′ is decreasing

towards α. If η′(0) < 0, i.e., αdp+1
0 + γd0 − pc0 < 0, then η′(z) < 0,

∀z ∈ [0, +∞), otherwise η′ has a zero corresponding to a maximum

point for η.

If γ <
p + 1

2

c0

d0
, η′ has a feasible maximum point at z̄. If η′(z̄) < 0,

i.e., (11) holds, then η does not have critical points, otherwise, once
again, η′ has a zero corresponding to a maximum point for η and

this completes the proof.

When γ = 0, the following theorem holds.

Theorem 8 Assume rank[a, c, d] = 1 and γ = 0.
Then f is pseudoconvex on R

n
+ if and only if one of the following

conditions holds:
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i) c0 ≥ 0;

ii) c0 < 0 and either α ≥ 0 or α <
pc0

dp+1
0

.

Proof It is easy to verify that η is convex when c0 ≥ 0, while it does
not have critical points when c0 < 0 and α ≥ 0. In the case c0 < 0

and α < 0, η is pseudocovex if and only if η′(0) < 0, i.e., α <
pc0

dp+1
0

.

The proof is complete.

As we will see in the following sections, the previous theorems will
be relevant even in the case rank[c, d] = 2. More precisely we will
apply them to study the pseudoconvexity of f on the boundary of

R
n
+ (see Section V.B.).

IV. Case rank[a, d] = 2, c = βd

Theorem 9 Assume rank[a, d] = 2 and c = βd.
Then f is pseudoconvex on R

n
+ if and only if the following conditions

hold:
i) β(p − 1) ≥ 0;

ii) β ≤ c0(p + 1)

2d0
.

Proof The gradient and the Hessian matrix of f become

∇f(x) = a +
d

(dTx + d0)
p+1

[

β(1 − p)
(

dTx + d0

)

+ p(βd0 − c0)
]

(12)

H(x) =
pddT

(dTx + d0)
p+2

[(

dTx + d0

)

(p − 1)β + (c0 − βd0) (p + 1)
]

(13)
Note that ∇f(x) 6= 0, ∀x; furthermore, the Hessian matrix H(x) is

positive semidefinite for every x ∈ R
n
+ if and only if β(p−1) ≥ 0 and

β ≤ c0(p + 1)

2d0
. It follows that f is convex and hence pseudoconvex

on R
n
+ if and only if i) and ii) hold. In any other case f is not

pseudoconvex.



10 L. Carosi, L. Martein

From Theorem 9 if follows that f is pseudoconvex on R
n
+ if and only

if f is convex on R
n
+.

V. Case rank[c,d] = 2

The study of the pseudoconvexity on a closed convex set S is usu-

ally performed by studying the pseudoconvexity on the interior of S
with the aim to extend the obtained results on the boundary of S.
The particular structure of the function allows us to prove that the

pseudoconvexity of f on intRn
+ is equivalent to the pseudoconvexity

of f on R
n
+.

V.A. Pseudoconvexity on intRn
+

Let us preliminary observe that, due to the linear independence
of c and d, the quadratic form (4) is indefinite for every fixed x ∈ R

n
+,

and hence any critical point of f in intRn
+, is not a minimum point.

Consequently, the following result holds.

Theorem 10 Assume rank[c, d] = 2. If f is pseudoconvex on intRn
+,

then ∇f(x) 6= 0 for every x ∈ intRn
+.

According to Theorem 2, pseudoconvexity is studied by characteriz-
ing the non-existence of critical points and by analyzing the behavior

of the Hessian matrix on the directions which are orthogonal to the
gradient.

Substituting a = α1c + α2d in (2), we get

∇f(x) =
c
(

dT x + d0

) (

α1

(

dT x + d0

)p
+ 1
)

+ d
(

α2

(

dT x + d0

)p+1 − p
(

cT x + c0

)

)

(dT x + d0)
p+1

From rank[c, d] = 2, it follows that f has critical points on R
n
+ if

and only if the following system has solutions on R
n
+:

{

α1

(

dTx + d0

)p
+ 1 = 0

α2

(

dTx + d0

)p+1 − p
(

cTx + c0

)

= 0
(14)
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Setting

h(x) =
(1 − p)

(

cT x + c0

)

(dT x + d0)p
+
[

(α1(p + 1)c + 2α2d)T x + α1(p + 1)c0 + 2α2d0

]

(15)

we have the following result.

Theorem 11 Assume rank[c, d] = 2.

i) f is pseudoconvex on D+
1 = {x ∈ intRn

+ : α1

(

dTx + d0

)p
+1 > 0}

if and only if h(x) ≥ 0, ∀x ∈ D+
1 .

ii) f is pseudoconvex on D−
1 = {x ∈ intRn

+ : α1

(

dTx + d0

)p
+1 < 0}

if and only if h(x) ≤ 0, ∀x ∈ D−
1 .

Proof Note that α1

(

dTx + d0

)p
+1 6= 0 implies the non-existence of

critical points, so that we have to apply i) of Theorem 2. Condition
wT∇f(x) = 0 holds if and only if

(

dTx + d0

)

cTw =

(

p
(

cTx + c0

)

− α2

(

dTx + d0

)p+1
)

α1 (dTx + d0)
p
+ 1

dTw (16)

Substituting (16) in (4) we get

wTH(x)w =
p(dTw)2h(x)

(dTx + d0)
2
(α1 (dTx + d0)

p
+ 1)

(17)

Therefore wTH(x)w ≥ 0 if and only if
h(x)

α1 (dTx + d0)
p
+ 1

≥ 0. The

proof is complete.

Theorem 12 Assume rank[c, d] = 2.
If both D+

1 and D−
1 are not empty, then f is not pseudoconvex on

intRn
+.

Proof Assume, by contradiction, the pseudoconvexity of f on intRn
+.

Then, we have h(x) ≥ 0, ∀x ∈ D+
1 and h(x) ≤ 0, ∀x ∈ D−

1 ,

so that, by continuity, h(x) = 0 for every x ∈ intRn
+ such that

α1

(

dTx + d0

)p
+1 = 0. Substituting α1 = − 1

(dTx + d0)
p in h(x) = 0

we get α2

(

dTx + d0

)p+1 − p
(

cTx + c0

)

= 0, so that from (14) f has
critical points and this is a contradiction.
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Remark 13 From Theorem 11 and Theorem 12, the pseudoconvex-

ity of f on intRn
+ implies α1 ≥ 0, or α1 ≤ − 1

dp
0

. Whenever α1 ≥ 0,

or α1 < − 1

dp
0

, it is ∇f(x) 6= 0 for every x ∈ R
n
+, while in the case

α1 = − 1

dp
0

, only the origin may be a critical point and this happens

if and only if α2d
p+1
0 − pc0 = 0.

Note that, by continuity, condition h(x) ≥ 0 (h(x) ≤ 0), ∀x ∈
intRn

+, implies h(x) ≥ 0 (h(x) ≤ 0), ∀x ∈ R
n
+, or, equivalently,

inf
x∈Rn

+

h(x) ≥ 0

(

sup
x∈R

n
+

h(x) ≤ 0

)

.

Regarding the infimum (supremum) of h, we have the following
result.

Theorem 14 There exists an index i ∈ I = {1, ..., n} such that

inf
x∈Rn

+

h(x) = inf
xi≥0

hi(xi) (18)

sup
x∈Rn

+

h(x) = sup
xi≥0

hi(xi) (19)

where hi(xi) denotes the restriction of function h(x) on the i-th edge
of R

n
+.

Proof Let {xn} ⊂ R
n
+ be a sequence such that

h(xn) → ℓ = inf
x∈Rn

+

h(x).

For every fixed xn, consider the linear problem

Pn : inf
x∈Sn

h(x), Sn = {x ∈ R
n
+ : dTx + d0 = dTxn + d0}

Since Sn is a compact set, the infimum is attained as a minimum
at a vertex x̂n, which belongs to an edge of R

n
+, and obviously it is

h(x̂n) ≤ h(xn), ∀n. Consequently, h(x̂n) → ℓ. The finite number of
edges implies the existence of a subsequence {yn} of {xn}, contained

in an edge, such that h(yn) → ℓ, so that (18) holds.
The proof of (19) follows in a similar way.
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Remark 15 Theorem 11 implies that the study of the pseudocon-

vexity of f on intRn
+ reduces to the study of the sign of function h

on R
n
+. When a = 0, that is α1 = α2 = 0, the study is very sim-

ple; in fact h(x) reduces to h(x) =
(1 − p)(cTx + c0)

(dTx + d0)p
, so that f is

pseudoconvex on intRn
+ if and only if 0 < p < 1, c ∈ R

n
+, c0 ≥ 0 or

p > 1, c ∈ R
n
−, c0 ≤ 0.

From now on, taking into account Remark 15, we will consider the

case a 6= 0. Furthermore, for sake of simplicity, we will assume
c ∈ intRn

+. Conditions for the case ci ≤ 0 can be obtained following

the same strategies used in the results that we are going to present.
The following theorem characterizes the pseudoconvexity of f on
intRn

+ in the case α1 ≥ 0.

Theorem 16 Assume rank[c, d] = 2, c ∈ intRn
+ and α1 ≥ 0.

Then f is pseudoconvex on intRn
+ if and only if:

i) α1(p + 1)c + 2α2d ∈ R
n
+ \ {0};

ii) (1 − p)c0 + dp
0 (α1(p + 1)c0 + 2α2d0) ≥ 0

and one of the following conditions holds:
iii) 0 < p < 1;

iv) p > 1 and, either

∇h(0) = (1 − p)
d0c − pc0d

dp+1
0

+ α1(p + 1)c + 2α2d ∈ R
n
+,

or min
i∈J

hi(x̄i) ≥ 0, where J = {i :
∂h

∂xi
(0) < 0}, and x̄i is such that

h′
i(x̄i) = 0.

Proof The assumption α1 ≥ 0 guarantees the non-existence of

critical points, so that f is pseudoconvex on intRn
+ if and only if

h(x) ≥ 0, ∀x ∈ intRn
+.

Firstly we prove that i) and ii) are necessary conditions for pseu-
doconvexity.

Note that h(x) ≥ 0, ∀x ∈ intRn
+, implies h(0) ≥ 0, i.e., ii). On

the other hand, if α1(p + 1)c + 2α2d 6∈ R
n
+ \ {0}, then there exists

a restriction of h on an edge of R
n
+ for which inf

xi≥0
hi(xi) = −∞ and
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this is a contradiction.

Let us now consider the case 0 < p < 1. Condition i) and ii) implies
hi(xi), i = 1, ..., n, is a sum of increasing functions with hi(0) ≥ 0.

From Theorem 14 we get h(x) ≥ 0, for every x ∈ intRn. We are left
to prove that condition i) ii) and iv) imply h(x) ≥ 0, ∀x ∈ intRn

+, or,
equivalently (see Theorem 14), hi(xi) ≥ 0, ∀xi ≥ 0, ∀i ∈ {1, ..., n}.
We have

h′
i(xi) = (1 − p)

(1 − p)cidixi + cid0 − pdic0

(dixi + d0)p+1
+ α1(p + 1)ci + 2α2di

and

h′′
i (xi) =

(1 − p)p

(dixi + d0)p+2
di [(p − 1)cidixi − 2cid0 + (p + 1)dic0]

Let us preliminary observe that h′
i(xi) has a unique critical point

which is a maximum point and lim
xi→+∞

h′
i(xi) = α1(p+1)ci+2α2di ≥ 0.

Therefore if ∇h(0) ∈ R
n
+, that is h′

i(0) ≥ 0 for every i, then
h′

i(xi) ≥ 0, ∀xi ≥ 0. Since hi(0) ≥ 0, it results hi(xi) ≥ 0, ∀xi ≥ 0.
On the other hand if i ∈ J , then there exists x̄i such that h′

i(x̄i) = 0

which is a minimum point for hi, with hi(x̄i) ≥ 0. Consequently
hi(xi) ≥ 0, ∀i ∈ J , and the thesis follows.

Remark 17 When 0 < p < 1, condition i) of Theorem 16 implies

ai ≥
(1 − p)ci

2
. Consequently, if there exists i such that ai < 0, then

f is not pseudoconvex.

The following example points out that in the case J 6= ∅, condition
min
i∈J

hi(x̄i) ≥ 0 can not be relaxed.

Example 18 Consider the function f(x, y) =
1

32
x+

4x + y − 1

(3x + y + 1)2
.

The restriction of on y = 1 has a critical point at x = 0, 98142397

which is a maximum point. Therefore f is not pseudoconvex.

Referring to Theorem 16 it is easy to verify that a =
1

32
c − 1

32
d
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and rank[c, d] = 2. Since α1 =
1

32
> 0, f has no critical points.

Moreover, necessary conditions i) and ii) of Theorem 16 are verified.

On the other hand, h1(x) = h(x, 0) = − (4x − 1)

(3x + 1)2
+

3

16
x − 5

32
with

h′
1(0) = −157

16
, hence J 6= ∅. Function h1(x) has a minimum point

at x̄ = 0, 546247734 with h1(x̄) = −0, 224, so that condition iv) of

Theorem 16 is not verified.

According to Remark 13, we are going to characterize the pseudo-

convexity in the case α1 ≤ − 1

dp
0

.

Theorem 19 Assume rank[c, d] = 2, c ∈ intRn
+ and α1 ≤ − 1

dp
0

.

Then f is pseudoconvex on intRn
+ if and only if:

i) α1(p + 1)c + 2α2d ∈ R
n
− \ {0};

ii) (1 − p)c0 + dp
0 (α1(p + 1)c0 + 2α2d0) ≤ 0;

and one of the following conditions holds
iii) p > 1;

iv) 0 < p < 1, and max
i/∈J1

hi(x̄i) ≤ 0, where

J1 =

{

i :
∂h

∂xi
(0) ≤ 0,

ci

di
≥ p + 1

2

c0

d0

}

and x̄i is such that h′
i(x̄i) = 0

Proof Note that the assumption α1 ≤ − 1

dp
0

guarantees the non-

existence of critical points, consequently f is pseudoconvex on intRn
+

if and only if h(x) ≤ 0, ∀x ∈ R
n
+.

Firstly we prove that i) and ii) are necessary conditions for pseu-

doconvexity.
Infact, h(x) ≤ 0, ∀x ∈ R

n
+, implies h(0) ≤ 0, i.e., condition ii).

On the other hand, if α1(p + 1)c + 2α2d 6∈ R
n
− \ {0}, there exists a

restriction on an edge of R
n
+ for which h(x) → +∞ and this is a

contradiction.
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Let us now consider the case p > 1. Condition i) and ii) implies

hi(xi), i = 1, ..., n, is a sum of decreasing functions with hi(0) ≤ 0.
From Theorem 14 we get h(x) ≤ 0, for every x ∈ intRn.

We are left to prove that when 0 < p < 1, condition i) ii) and iv)
imply h(x) ≤ 0, ∀x ∈ intRn

+, or, equivalently (see Theorem 14),
hi(xi) ≥ 0, ∀xi ≤ 0, ∀i ∈ {1, ..., n}.
Let us note that lim

xi→+∞
h′

i(xi) = α1(p + 1)ci + 2α2di ≤ 0.

If i ∈ J1, then h′
i(xi) ≤ 0, ∀xi ≥ 0; therefore, hi(xi) ≤ 0, ∀xi ≥ 0.

We consider now the case i /∈ J1.

If h′
i(0) > 0, then h has a maximum point x̄i, so that condition

max
i/∈J1

hi(x̄i) ≤ 0 implies hi(xi) ≤ 0, ∀xi ≥ 0.

If h′
i(0) < 0, and

ci

di
<

p + 1

2

c0

d0
, h′ has a maximum point at

x̃ =
2cid0 − (p + 1)dic0

cidi(p − 1)
. If h′

i(x̃) ≤ 0, then h is decreasing so

that hi(xi) ≤ 0, ∀xi ≥ 0. If h′
i(x̃) > 0, then there exists x̄i

such that h′
i(x̄i) = 0 which is a maximum point for hi. Condition

max
i/∈J1

hi(x̄i) ≤ 0 implies hi(xi) ≤ 0, ∀xi ≥ 0. The proof is complete.

Remark 20 When 0 < p < 1, condition i) of Theorem 19 implies

ai ≤
(1 − p)ci

2
. Consequently, if there exists i such that ai > 0, then

f is not pseudoconvex.

The following example points out that condition max
i/∈J1

hi(x̄i) ≤ 0, can

not be relaxed.

Example 21 Consider the function

f(x, y) = −1, 001x− 3, 001y +
2x + 3y + 8√

x + y + 1
,

the point P = (898, 1) and the direction w = (w1, w2) with w1 =

−1212, 843229 and w2 = 400; it can be verified that ∇f(P )Tw = 0,
and wTH(P )w < 0. Therefore f is not pseudoconvex.
Referring to Theorem 19 , it is easy to verify that a = −2c+2, 999d
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and rank[c, d] = 2. Since α1 = −2 < −1, f has no critical points

and, by simple computations, it follows that necessary conditions
i) and ii) of Theorem 19 are verified. Moreover h′

1(0) < 0 and
c1

d1
= 2 <

p + 1

2

c0

d0
= 6, so that 1 /∈ J1. On the other hand, the

maximum value of h1 is positive and so f is not pseudoconvex.

V.B. Pseudoconvexity on R
n
+

In this section we prove that the pseudoconvexity of f on R
n
+ is

equivalent to the pseudoconvexity on intRn
+. This result is obtained

through several steps. We first state that the pseudoconvexity on

intRn
+ and on every face of R

n
+ guarantees the pseudoconvexity of f

on the whole set R
n
+ (see Theorem 24). Then, thanks to the partic-

ular structure of the function, the characterization of the pseudo-
convexity on every face can be substituted by the characterization
of the pseudoconvexity on every edge. At last, the main result is

obtained by proving that the pseudoconvexity on intRn
+ implies the

pseudoconvexity on every edge.

In order to study the behavior of f on the faces of R
n
+, let us intro-

duce the following notations.

Set I = {1, ..., n}, and let J be a subset of I with cardinality
| J |= k, 1 ≤ k < n.

A face Fk of R
n
+ with dimension k is defined as

Fk = {x ∈ R
n
+ : xi = 0, i /∈ J}.

An edge of R
n
+ is a face of dimension 1.

Let fk be the restriction of f on the face Fk, that is

fk(x
k) = akT

xk +
ckT

xk + c0
(

dkT xk + d0

)p

where ak, ck, dk, xk are obtained from a, c, d, x respectively, by delet-

ing all the i-th components such that i /∈ J . Observe that the
quadratic form associated with the Hessian matrix of fk is of the
following form
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wT Hk(xk)w =
p
[

−2
(

dkT

xk + d0

)

(

wT dk
)

(

ckT

w
)

+ (p + 1)
(

ckT

xk + c0

)

(dkT

w)2
]

(

dkT xk + d0

)p+2
(20)

with w ∈ R
k. Moreover the critical points of fk are the solutions

of the system obtained from (14), by setting xi = 0, i /∈ J . As a
consequence, the following theorem holds.

Theorem 22 Let Fk be a face of R
n such that rank[ck, dk] = 2.

x̄k is a critical point for fk if and only if x̄ is a critical point for f ,
where x̄i = x̄k

i for every i ∈ J and x̄i = 0 for every i /∈ J .

The following theorem points out that if f has a critical point x 6= 0,

x ∈ Fk, then it is not pseudoconvex.

Theorem 23 Assume rank[c, d] = 2 and let x̄ ∈ Fk, 1 ≤ k < n,

x̄ 6= 0. If ∇f(x̄) = 0, then f is not pseudoconvex on R
n
+.

Proof Let us preliminary observe that, from Theorem 22, x̄ is a crit-

ical point for f if and only if x̄k is a critical point for the restriction
fk.

Consider the case x̄ belongs to the relative interior of a face Fk with
rank[ck, dk] = 2. The linear independence of ck, dk implies that the

quadratic form (20) is indefinite for every fixed xk ∈ Fk. Therefore
x̄k is not a minumum point for fk, so that fk and consequently f ,

are not pseudoconvex.
Whenever x̄ belongs to an edge ei, take an edge ej, such that
rank[(ci, cj), (di, dj)] = 2. The existence of such an edge follows

from the assumption rank[c, d] = 2. Let F2 be the face contain-
ing the edges ei and ej and let f2 be the restriction of f on this

face. Since the corresponding quadratic form H2 is indefinite, there
exists an eigenvector v = (vi, vj) ∈ R

2 such that vTH2(x̄2)v < 0.

Let y ∈ R
n be such that yi = ǫwi + x̄i, yj = ǫwj and ys = 0 for

s = 1, ..., n, s 6= i, j. Taking w = v or w = −v, there exists a suit-

able ǫ > 0 such that y ∈ F2, and yTH(x̄)y < 0. Consequently f is
not pseudoconvex.
It remains to consider the case x̄ belongs to the relative interior of
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any face Fk with rank[ck, dk] = 1. In this case, every point of the
hyperplane of equation dkT

xk +d0 = dkT

x̄k +d0 is a critical point for
f ; in particular, there exists a critical point x̃ belonging to an edge

of R
n and then, as in the previous case, f is not pseudoconvex.

The particular form of f allows to characterize the pseudoconvex-
ity of f on R

n
+ by means of the pseudoconvexity on intRn

+ and of

the pseudoconvexity on every face. With this regards, the following
theorem holds.

Theorem 24 Assume rank[c, d] = 2, ∇f(0) 6= 0.
Then, f is pseudoconvex on R

n
+ if and only if

i) f is pseudoconvex on intRn
+;

ii) f is pseudoconvex on every face Fk of R
n
+.

Proof If f is pseudoconvex, its restriction on a convex subset is still
pseudoconvex, so that i) and ii) hold.
Assume now i) and ii) hold; we will prove that f is pseudoconvex

on R
n
+, by applying Definition 1.

Let x1, x2 ∈ R
n
+ such that f(x1) > f(x2).

Let us consider the line segment [x1, x2]; if [x1, x2] is contained ei-
ther in intRn

+ or in a face, the result follows from i) and ii). In the

other cases, (x1, x2) ⊂ intRn
+. By continuity, there exists λ ∈ (0, 1)

such that y = x1 + λ(x2 − x1) with f(x1) > f(y). We must prove

that ∇f(x1)T (x2 − x1) < 0, or, equivalently, ∇f(x1)T (y − x1) < 0.
From Theorem 10 and Theorem 23, it follows that ∇f(x1) 6= 0. By
contradiction, assume ∇f(x1)T (y − x1) ≥ 0.

If ∇f(x1)T (y − x1) > 0, then d = y − x1 is an increasing direction,
so that the restriction f(x1 + td), t ∈ [0, 1] has a maximum point

belonging to intRn
+, and this contradicts i). If ∇f(x1)T (y−x1) = 0,

take z = y + ǫ∇f(x1). For a suitable ǫ > 0, we have z ∈ intRn
+,

f(x1) > f(z), and ∇f(x1)T (z − x1) = ǫ‖∇f(x1)‖2 > 0. Once again,
f(x1 + td1), d1 = z − x1, t ∈ [0, 1], has a maximum point which

belongs to intRn
+, and this contradicts i).

Taking into account Theorem 23, the pseudoconvexity of f on the
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relative interior of a face Fk, with rank[ck, dk] = 2, is completely
characterized by the the behavior of fk along the directions which
are orthogonal to the gradient. Going back to the Theorems about

the pseudoconvexity of f on intRn (Theorem 16 and Theorem 19),
we can easily seen that the stated conditions either involve only the

parameters α1, α2, p, c0, d0 or they are componentwise conditions.
Therefore, the pseudoconvexity of f on the relative interior of a

face Fk, with rank[ck, dk] = 2 follows directly by applying Theorem
16 or Theorem 19 and hence it remains to analyze the pseudocon-

vexity of f on the edges of R
n
+. On the other hand, the results given

in Section III. imply that the pseudoconvexity on the edges of a
face Fk with rank[ck, dk] = 1 is equivalent to the pseudoconvexity

on the whole face. Consequently, we get the following corollary

Corollary 25 Assume rank[c, d] = 2, ∇f(0) 6= 0.

Then, f is pseudoconvex on R
n
+ if and only if

i) f is pseudoconvex on intRn
+;

ii) f is pseudoconvex on every edge.

Consider the restriction fi(xi) of f on the i-th edge of R
n
+. By

setting ci = γdi and α = α1γ + α2 ,we rewrite fi and hi as follows

fi(xi) = αdixi +
γdixi + c0

(dixi + d0)
p (21)

hi(xi) =
(1 − p)γdixi + c0

(dixi + d0)p
+(α1(p + 1)γ + 2α2) dixi+α1(p+1)c0+2α2d0

(22)

The following lemma points out some relationships between fi(xi)
and hi(xi).

Lemma 26 i) h′′
i (xi) = (1 − p)f ′′

i (xi);

ii) there exists µ ∈ R such that h′
i(xi) = (1 − p)f ′

i(xi) + µ;

iii) f ′
i(x̃i) = 2 (dix̃i + d0) hi(x̃i) where x̃i =

2γd0 − (p + 1) c0

γ(p − 1)di

Proof i) and ii) are obvious.

iii) Substituting dix̃i =
2γd0 − (p + 1) c0

γ(p − 1)
in hi(x̃i) and in f ′

i(x̃i), we
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obtain

hi(x̃i) =
2 (c0 − γd0)

(dix̃i + d0)
p+2α(dix̃i+d0) = 2(dix̃i+d0)

(

α +
c0 − γd0

(dix̃i + d0)
p+1

)

;

f ′
i(x̃i) = di

(

α +
c0 − γd0

(dix̃i + d0)
p+1

)

.

The proof is complete.
Finally, we are ready to prove our main theorem.

Theorem 27 Assume rank[c, d] = 2, ∇f(0) 6= 0 and c ∈ intRn
+.

Then, f is pseudoconvex on R
n
+ if and only if f is pseudoconvex on

intRn
+.

Proof Taking into account Corollary 25, it is sufficient to prove that
the pseudoconvexity on intRn

+ implies the pseduconvexity on every

edge i. Note that
ci

di
= γ > 0.

Case α1 ≥ 0 and p > 1. We refer to Theorem 6.

If
ci

di
≤ p + 1

2

c0

d0
, then i) of Theorem 6 is verified.

If
ci

di
>

p + 1

2

c0

d0
, then h′

i(xi) has a maximum point at

x̄i =
2cid0 − (p + 1)c0di

(p − 1)cidi
.

Consequently f ′
i has a minimum point at x̄i and furthermore, from

Lemma 26, f ′
i(x̄i) > 0, so that ii) of Theorem 6 is verified.

Case α1 ≥ 0 and 0 < p < 1. We refer to Theorem 7.
The necessary condition i) of Theorem 16 can be rewritten as follows

α1ci(p − 1) + 2ai ≥ 0, ∀i; therefore ai ≥ 0, ∀i, so that, for every
one-dimensional face, we have α = α1γ +α2 ≥ 0. The thesis follows
from i) of Theorem 7.

Case α1 ≤ − 1

dp
0

and p > 1. We refer to Theorem 6.

If
ci

di
≤ p + 1

2

c0

d0
, then i) of Theorem 6 holds.
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If
ci

di
>

p + 1

2

c0

d0
, then ii) of Theorem 19 becomes

2

(

αdp+1
0 + d0

ci

di
− pc0

)

+(1+α1d
p
0)

(

(p + 1)c0 − 2
ci

di
d0

)

≤ 0 (23)

so that αdp+1
0 + d0

ci

di
− pc0 < 0 and hence ii) of Theorem 6 holds.

Case α1 ≤ − 1

dp
0

, 0 < p < 1. We refer to Theorem 7.

If
ci

di
<

p + 1

2

c0

d0
, then f ′

i has a maximum point at x̄i. From Lemma

26 it is f ′
i(x̄i) < 0, so that iii) of Theorem 7 holds.

If
ci

di
≥ p + 1

2

c0

d0
, then, from (23), we have αdp+1

0 + d0
ci

di
− pc0 < 0,

so that ii) of Theorem 7 holds. The proof is complete.

Corollary 28 Assume rank[c, d] = 2, and c ∈ intRn
+.

Then, f is pseudoconvex on R
n
+\{0} if and only if f is pseudoconvex

on intRn
+.

V.C. The particular case ∇f(0) = 0

So far, all results are obtained in the case ∇f(0) 6= 0. The
following example shows that when the origin is a critical point f
may be not pseudoconvex.

Example 29 Consider the function

f(x, y) = − 1

125
x − 9

500
y +

x + 2y + 1

(x + y + 10)2
.

It is to verify that conditions i), ii) and iii) of Theorem 19 hold

with α1 = − 1

100
and α2 =

1

500
, and hence f is pseudoconvex on

R
n
+ \ {0}. Moreover (0, 0) is a critical point and it is a maximum

for the restriction of f on the half-line y ≥ 0. Therefore f is not
pseudoconvex R

n
+ \ {0}.
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The following theorem provides necessary and sufficient conditions

for the pseudoconvexity of f when the origin is a critical point. Note

that ∇f(0) = 0 if and only if α1 = − 1

dp
0

and α2 =
pc0

dp+1
0

.

Theorem 30 Assume rank[c, d] = 2, c ∈ intRn
+, α1 = − 1

dp
0

and

α2 =
pc0

dp+1
0

.

Then, f is pseudoconvex on R
n
+ if and only if the following condi-

tions holds:
i) p > 1;

ii)
2p

p + 1

c0

d0
≤ min

i

ci

di
;

iii) max
i

ci

di
≤ p + 1

2

c0

d0
.

Proof Assume that f is pseudoconvex. Condition ii) follows imme-

diately from i) of Theorem 19
Consider now the restriction ϕu(t) of f on the half-line x = tu,

t ≥ 0, u ∈ R
n
+. We have

ϕ′
u(t) =

pc0d
Tu − d0c

Tu

dp+1
0

+
(1 − p)cTudTut + d0c

Tu − pc0d
Tu

(tdTu + d0)p+1

ϕ′′
u(t) =

pdTu

(tdTu + d0)p+2

[

(p − 1)cTudTu t − 2d0c
Tu + (p + 1)c0d

Tu
]

(24)
Since ϕ′

u(0) = 0, necessarily we must have ϕ′′
u(0) ≥ 0, i.e.

cTu

dTu
≤ p + 1

2

c0

d0
, ∀u ∈ ℜn

+

which is equivalent to iii). We are left to show that p > 1.

Suppose that 0 < p < 1; since ii) holds, there exists u ∈ R
n
+ such

that
cTu

dTu
>

pc0

d0
and hence lim

t→+∞
ϕ′

u(t) < 0. Moreover, from (24)

and from condition iii), ϕ′
u(t) has a maximum point t̃ > 0. Since

ϕ′
u(t̃) > 0, ϕ′

u has one zero corresponding to a maximum point for
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ϕu(t), contradicting the pseudoconvexity of f . Viceversa, assume

that conditions i), ii) and iii) hold.

Taking into account α1 = − 1

dp
0

and α2 =
pc0

dp+1
0

, and conditions i) and

ii), from Theorem 19, f is pseudoconvex on intRn
+. From Corollary

28, f is pseudoconvex on R
n
+ \ {0}. It remains to prove that any

restriction of f on the half-line x = tu, t ≥ 0, u ∈ R
n
+ is pseudocon-

vex; observe that conditions p > 1 and
cTu

dTu
≤ p + 1

2

c0

d0
, ∀u ∈ R

n
+,

guarantee the convexity of every restriction ϕu(t) and this completes

the proof.

VI. Conclusion

In this paper we have characterized the pseudoconvexity on R
n
+

of a wide class of generalized fractional functions. The obtained

conditions are very easy to be checked and according to them, sev-
eral classes of pseudoconvex functions can be constructed.
The nice properties of pseudoconvexity suggest further develop-

ments. With respect to scalar optimization problems we aim to
propose simplex-like sequential methods for solving problems hav-

ing this kind of functions as objective and a polyhedral set as feasible
region. Moving from the scalar to the bicriteria case, we aim also to

derive the efficient frontier when one of the two objectives is linear
and the other one belongs to the studied class.
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