Discussion Papers

Collana di
E-papers del Dipartimento di Economia e Management - Università di Pisa

Laura Carosi, Laura Martein
Characterizing the pseudoconvexity of a wide class of generalized fractional functions

Discussion Paper n. 172
2013

Corresponding Author:

Laura Carosi

Department of Economics \& Management
University of Pisa
Via Ridolfi 10-56124
Pisa, Italy
Tel. 050-2216256
Fax. 0502210603
Email: lcarosi@ec.unipi.it

Laura Martein: Department of Economics and Management, University of Pisa, Italy
(C) Laura Carosi and Laura Martein

La presente pubblicazione ottempera agli obblighi previsti dall'art. 1 del decreto legislativo luogotenenziale 31 agosto 1945, n. 660.

Acknowledgements

The authors are grateful to Prof. Alberto Cambini for providing helpful comments and suggestions.

Laura Carosi, Laura Martein, (2013), "Characterizing the pseudoconvexity of a wide class of generalized fractional functions", Discussion Papers del Dipartimento di Economia e Management - Università di Pisa, n. 172 (http:// http://www.dse.ec.unipi.it/index.php?id=52).

Discussion Paper

n.

Laura Carosi, Laura Martein

Characterizing the pseudoconvexity of a wide class of generalized fractional functions

Abstract

We consider a wide class of generalized fractional functions, namely the sum between a linear one and a ratio which has an affine function as numerator and, as denominator, the p-th power of an affine one. For this class of functions we aim to derive necessary and/or sufficient conditions for pseudoconvexity on the nonnegative orthant. The obtained conditions are very easy to be checked and allow us to construct several subclasses of pseudoconvex generalized fractional functions.

Classificazione JEL: C61
Classificazione AMS: 90C32, 26B25
Keywords: Pseudoconvexity, Generalized fractional programming

Contents

I. Introduction 3
II. Statement of the problem and preliminaries 4
III. Case $\operatorname{rank}[\mathbf{a}, \mathbf{c}, \mathrm{d}]=1$ 6
IV. Case $\operatorname{rank}[a, d]=2, c=\beta d$ 9
V. Case $\operatorname{rank}[\mathbf{c}, \mathrm{d}]=\mathbf{2}$ 10
V.A. Pseudoconvexity on int \mathbb{R}_{+}^{n} 10
V.B. Pseudoconvexity on \mathbb{R}_{+}^{n} 17
V.C. The particular case $\nabla f(0)=0$ 22
VI. Conclusion 24

I. Introduction

Among different classes of generalized convex functions, pseudoconvexity plays a key role in Optimization theory and in many applied sciences such as Economics and Management Science. Pseudoconvexity owes its great relevance to the fact that it maintains some nice optimization properties of convex functions, such as critical and local minimum points are global minimum. Furthermore, if the objective function of a bicriteria problem is component-wise pseudoconvex, then the efficient frontier is connected.
Unlike their good properties, it is not easy to establish whether a function is pseudoconvex or not. Besides some theoretical characterizations (see for all 1 and references therein), there are only few results related to specific classes of functions. In this direction, the first contributions deal with quadratic functions (see for istance $2,6,8$) and, more recently, different approaches have been proposed for the study of pseudoconvexity of generalized fractional functions (see for all $3,7,9$).
In this paper, we aim to study the pseudoconvexity of the sum between a linear function and a ratio which has an affine one as numerator and, as denominator, the p-th power $(p>0)$ of a positive affine one. Since the case $p=1$ has been recently analyzed 4,5 , we focus our attention on $p>0, p \neq 1$. Due to the fact that in Management Sciences and in Economics we often require the variable nonnegativity, we investigate the pseudoconvexity on the nonnegative orthant. The key tool of our analysis is a second order characterization of the pseudoconvexity related to an open and convex set. Unfortunately the pseudoconvexity of a function on an open and convex set does not guarantee its pseudoconvexity on the closure of the set. Therefore, a priori, we need to distinguish conditions which characterize pseudoconvexity on the interior on \mathbb{R}_{+}^{n} and conditions related to the behavior of f on the boundary of \mathbb{R}_{+}^{n}. The performed analysis allows us to give necessary and sufficient conditions which are very easy to be checked and which can be used to construct several subclasses of pseudoconvex generalized fractional functions.

II. Statement of the problem and preliminaries

Consider the following class of generalized fractional functions

$$
\begin{equation*}
f(x)=a^{T} x+\frac{c^{T} x+c_{0}}{\left(d^{T} x+d_{0}\right)^{p}} \tag{1}
\end{equation*}
$$

where: $d^{T} x+d_{0}>0, d \in \operatorname{int} \mathbb{R}_{+}^{n}, d_{0}>0, p>0$ and $p \neq 1$.
The gradient, the Hessian matrix $H(x)$ of f, and the quadratic form associated with $H(x)$ are the following:

$$
\begin{gather*}
\nabla f(x)=a+\frac{c\left(d^{T} x+d_{0}\right)-p\left(c^{T} x+c_{0}\right) d}{\left(d^{T} x+d_{0}\right)^{p+1}} \tag{2}\\
H(x)=\frac{p\left[\left(d^{T} x+d_{0}\right)\left(-d c^{T}-c d^{T}\right)+(p+1)\left(c^{T} x+c_{0}\right) d d^{T}\right]}{\left(d^{T} x+d_{0}\right)^{p+2}} \tag{3}\\
w^{T} H(x) w=\frac{p\left[-2\left(d^{T} x+d_{0}\right)\left(w^{T} d\right)\left(c^{T} w\right)+(p+1)\left(c^{T} x+c_{0}\right)\left(d^{T} w\right)^{2}\right]}{\left(d^{T} x+d_{0}\right)^{p+2}} \tag{4}
\end{gather*}
$$

For the sake of completeness we recall the definition of a pseudoconvex function and the pseudoconvexity second order characterization we are going to use in our analysis (see for istance 3).

Definition 1 Let f be a differentiable function defined on an open set $X \subseteq \mathbb{R}^{n}$ and let $S \subseteq X$ be a convex set.
f is said to be pseudoconvex on S if the following implication holds:

$$
\begin{equation*}
x^{1}, x^{2} \in S, \quad f\left(x^{1}\right)>f\left(x^{2}\right) \quad \Rightarrow \quad \nabla f\left(x^{1}\right)^{T}\left(x^{2}-x^{1}\right)<0 \tag{5}
\end{equation*}
$$

Theorem 2 Let f be a twice continuously differentiable function defined on an open convex set $X \subseteq \mathbb{R}^{n}$.
Then, f is pseudoconvex on X if and only if the following conditions hold:
i) $x \in X, w \in \mathbb{R}^{n}, w^{T} \nabla f(x)=0 \Rightarrow w^{T} H(x) w \geq 0$;
ii) If $x_{0} \in X$ is a critical point, then x_{0} is a local minimum point for f.

With respect to the introduced class of function (1), the following theorem gives a preliminary necessary pseudoconvexity condition related to the linear dependence of the vectors a, c and d.

Theorem 3 Let $S \subseteq \mathbb{R}^{n}$ be a convex set with int $S \neq \emptyset$. If f is pseudoconvex on S, then $\operatorname{rank}[a, c, d] \leq 2$.

Proof Suppose on the contrary that $\operatorname{rank}[a, c, d]=3$; this implies $\nabla f(x) \neq 0$ for every $x \in S$. Applying Theorem 2 , let us consider $x \in \operatorname{int} S$ and a direction w such that $\nabla f(x)^{T} w=0$.
We have $a^{T} w+\frac{\left(d^{T} x+d_{0}\right) c^{T} w-p\left(c^{T} x+c_{0}\right) d^{T} w}{\left(d^{T} x+d_{0}\right)^{p+1}}=0$ so that

$$
\left(d^{T} x+d_{0}\right) c^{T} w=p\left(c^{T} x+c_{0}\right) d^{T} w-\left(d^{T} x+d_{0}\right)^{p+1} a^{T} w
$$

Substituting the value $c^{T} w\left(d^{T} x+d_{0}\right)$ in (4), we get

$$
w^{T} H(x) w=\frac{p}{\left(d^{T} x+d_{0}\right)^{p+2}} d^{T} w\left[(1-p)\left(c^{T} x+c_{0}\right) d^{T} w+2\left(d^{T} x+d_{0}\right)^{p+1} a^{T} w\right]
$$

For every $x \in \operatorname{int} S$, consider the linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{3}$, where $A=\left[\begin{array}{c}\nabla f(x)^{T} \\ a^{T} \\ d^{T}\end{array}\right]$. Since $\operatorname{rank}[a, c, d]=3$, the map A is surjective and hence we can choose $w \in \mathbb{R}^{n}$ such that $\nabla f(x)^{T} w=0, d^{T} w<0$ and $a^{T} w>\frac{(p-1)\left(c^{T} x+c_{0}\right)}{2\left(d^{T} x+d_{0}\right)^{p+1}} d^{T} w$, so that $w^{T} H(x) w<0$. Consequently, f is not pseudoconvex on int S and this is a contradiction.

According to Theorem 3, we must study the pseudoconvexity of f in the following exhaustive cases:
$\bullet \operatorname{rank}[a, c, d]=1 ; \operatorname{rank}[a, d]=2, c=\beta d ; \operatorname{rank}[c, d]=2$.
In what follows we will prove that in the first case (see Section III.), the study of pseudoconvexity reduces to the study of pseudoconvexity of a suitable one variable function; in the second case (see Section IV.), f is pseudoconvex if and only if it is convex. As regard the third case, we must study the behavior of f on the interior of \mathbb{R}_{+}^{n} and the behavior of f on the boundary of \mathbb{R}_{+}^{n}.

III. Case $\operatorname{rank}[\mathrm{a}, \mathrm{c}, \mathrm{d}]=1$

Setting $a=\alpha d, c=\gamma d$ in (1) we obtain

$$
f(x)=\alpha d^{T} x+\frac{\gamma d^{T} x+c_{0}}{\left(d^{T} x+d_{0}\right)^{p}}
$$

Substituting $a=\alpha d$ and $c=\gamma d$, the gradient and the Hessian matrix of f are specified as follows

$$
\begin{gather*}
\nabla f(x)=d\left[\alpha+\frac{\gamma\left(d^{T} x+d_{0}\right)(1-p)+p\left(\gamma d_{0}-c_{0}\right)}{\left(d^{T} x+d_{0}\right)^{p+1}}\right] \\
H(x)=\frac{p d d^{T}}{\left(d^{T} x+d_{0}\right)^{p+2}}\left[\gamma(p-1)\left(d^{T} x+d_{0}\right)+(p+1)\left(c_{0}-\gamma d_{0}\right)\right] \tag{6}
\end{gather*}
$$

Setting $d^{T} x=z$, function f becomes

$$
\begin{equation*}
\eta(z)=\alpha z+\frac{\gamma z+c_{0}}{\left(z+d_{0}\right)^{p}} \tag{7}
\end{equation*}
$$

and we have

$$
\begin{gather*}
\eta^{\prime}(z)=\alpha+\frac{\gamma(1-p) z+\gamma d_{0}-p c_{0}}{\left(z+d_{0}\right)^{p+1}}, z \geq 0 \tag{8}\\
\eta^{\prime \prime}(z)=\frac{p}{\left(z+d_{0}\right)^{p+2}}\left[\gamma(p-1) z-2 \gamma d_{0}+(p+1) c_{0}\right], \quad z \geq 0 \tag{9}
\end{gather*}
$$

The following theorem proves that the pseudoconvexity of function f on \mathbb{R}_{+}^{n} is equivalent to the pseudoconvexity of function η on the closed set $[0,+\infty)$.

Theorem 4 Assume $\operatorname{rank}[a, c, d]=1$. Then f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if η is pseudoconvex on $[0,+\infty)$.
Proof Let $x^{1}, x^{2} \in \mathbb{R}_{+}^{n}$ and set $z_{1}=d^{T} x^{1}$ and $z_{2}=d^{T} x^{2}$.
Note that $f\left(x^{1}\right)>f\left(x^{2}\right)$ if and only if $\eta\left(z_{1}\right)>\eta\left(z_{2}\right)$; furthermore, $\nabla f(x)=\eta^{\prime}(z) d$. Consequently $\nabla f\left(x^{1}\right)^{T}\left(x^{2}-x^{1}\right)<0$ if and only if $\eta^{\prime}\left(z_{1}\right) d^{T}\left(x^{2}-x^{1}\right)=\eta^{\prime}\left(z_{1}\right)\left(z_{2}-z_{1}\right)<0$ and the thesis follows.

Remark 5 Note that if \bar{z} is a critical point for η, then every point of the hyperplane $d^{T} x=\bar{z}$ is a critical point for f.

Since η is a function of one variable, it is known that η is pseudoconvex on $[0,+\infty)$ if and only if every critical point is a minimum point. We will use this result in proving the following theorems.

Theorem 6 Assume $\operatorname{rank}[a, c, d]=1$ and $\gamma(p-1)>0$.
Then f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if one of the following conditions holds:
i) $\gamma \leq \frac{p+1}{2} \frac{c_{0}}{d_{0}}$;
ii) $\gamma>\frac{p+1}{2} \frac{c_{0}}{d_{0}}$ and either $\alpha d_{0}^{p+1}+\gamma d_{0}-p c_{0}<0$, or

$$
\begin{equation*}
\alpha+\left(c_{0}-\gamma d_{0}\right)\left[\frac{\gamma(p-1)}{(p+1)\left(\gamma d_{0}-c_{0}\right)}\right]^{p+1}>0 \tag{10}
\end{equation*}
$$

Proof According to Theorem 4 we prove that η is pseudoconvex in $[0,+\infty)$.
From (9), we have that $\eta(z)$ is convex (hence pseudoconvex) in $[0,+\infty)$ if and only if i) holds.
If $\gamma>\frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then $\eta^{\prime}(z)$ has a unique minimum point at

$$
\bar{z}=\frac{2 \gamma d_{0}-(p+1) c_{0}}{\gamma(p-1)}>0
$$

If $\eta^{\prime}(\bar{z})>0$, that is (10) holds, η is increasing on $[0,+\infty]$.
If $\eta^{\prime}(\bar{z})=0$, necessarily we have $\eta^{\prime}(0)=\alpha d_{0}^{p+1}+\gamma d_{0}-p c_{0}>0$, so that \bar{z} turns out to be an inflection point for η.
If $\eta^{\prime}(\bar{z})<0$ and $\eta^{\prime}(0) \geq 0$, then $\eta^{\prime}(z)$ has a zero corresponding to a maximum point for η.
If $\eta^{\prime}(\bar{z})<0$ and $\eta^{\prime}(0)<0$, then either $\eta^{\prime}(z)<0, \forall z \in[0,+\infty)$ or η^{\prime} has a zero corresponding to a minimum point for η.
Consequently, η is pseudoconvex if and only if ii) holds. The proof is complete.

Theorem 7 Assume $\operatorname{rank}[a, c, d]=1$ and $\gamma(p-1)<0$.
Then f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if one of the following conditions holds:
i) $\alpha \geq 0$;
ii) $\gamma \geq \frac{p+1}{2} \frac{c_{0}}{d_{0}}$ and $\alpha d_{0}^{p+1}+\gamma d_{0}-p c_{0}<0$;
iii) $\gamma<\frac{p+1}{2} \frac{c_{0}}{d_{0}}$ and

$$
\begin{equation*}
\alpha+\left(c_{0}-\gamma d_{0}\right)\left[\frac{\gamma(p-1)}{(p+1)\left(\gamma d_{0}-c_{0}\right)}\right]^{p+1}<0 \tag{11}
\end{equation*}
$$

Proof According to Theorem 4 we prove that η is pseudoconvex on $[0,+\infty)$.
Firstly note that, $\lim _{z \rightarrow+\infty} \eta^{\prime}(z)=\alpha$ and, from (9), η^{\prime} has a maximum point (feasible or not) at $\bar{z}=\frac{2 \gamma d_{0}-(p+1) c_{0}}{\gamma(p-1)}$.
Consider the case $\alpha \geq 0$; if $\eta^{\prime}(0) \geq 0$, then $\eta^{\prime}(z) \geq 0, \forall z \in[0,+\infty)$. Otherwise if $\eta^{\prime}(0)<0$, then $\eta^{\prime}(z)$ has a unique zero corresponding to a minimum point for η.
Consequently, when $\alpha \geq 0, \eta$ is pseudoconvex on $[0,+\infty)$.
Consider now the case $\alpha<0$. If $\gamma \geq \frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then η^{\prime} is decreasing towards α. If $\eta^{\prime}(0)<0$, i.e., $\alpha d_{0}^{p+1}+\gamma d_{0}-p c_{0}<0$, then $\eta^{\prime}(z)<0$, $\forall z \in[0,+\infty)$, otherwise η^{\prime} has a zero corresponding to a maximum point for η.
If $\gamma<\frac{p+1}{2} \frac{c_{0}}{d_{0}}, \eta^{\prime}$ has a feasible maximum point at \bar{z}. If $\eta^{\prime}(\bar{z})<0$, i.e., (11) holds, then η does not have critical points, otherwise, once again, η^{\prime} has a zero corresponding to a maximum point for η and this completes the proof.

When $\gamma=0$, the following theorem holds.
Theorem 8 Assume $\operatorname{rank}[a, c, d]=1$ and $\gamma=0$.
Then f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if one of the following conditions holds:
i) $c_{0} \geq 0$;
ii) $c_{0}<0$ and either $\alpha \geq 0$ or $\alpha<\frac{p c_{0}}{d_{0}^{p+1}}$.

Proof It is easy to verify that η is convex when $c_{0} \geq 0$, while it does not have critical points when $c_{0}<0$ and $\alpha \geq 0$. In the case $c_{0}<0$ and $\alpha<0, \eta$ is pseudocovex if and only if $\eta^{\prime}(0)<0$, i.e., $\alpha<\frac{p c_{0}}{d_{0}^{p+1}}$. The proof is complete.

As we will see in the following sections, the previous theorems will be relevant even in the case $\operatorname{rank}[c, d]=2$. More precisely we will apply them to study the pseudoconvexity of f on the boundary of \mathbb{R}_{+}^{n} (see Section V.B.).
IV. Case $\operatorname{rank}[a, d]=2, c=\beta d$

Theorem 9 Assume $\operatorname{rank}[a, d]=2$ and $c=\beta d$.
Then f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if the following conditions hold:
i) $\beta(p-1) \geq 0$;
ii) $\beta \leq \frac{c_{0}(p+1)}{2 d_{0}}$.

Proof The gradient and the Hessian matrix of f become

$$
\begin{align*}
& \nabla f(x)=a+\frac{d}{\left(d^{T} x+d_{0}\right)^{p+1}}\left[\beta(1-p)\left(d^{T} x+d_{0}\right)+p\left(\beta d_{0}-c_{0}\right)\right] \\
& H(x)=\frac{p d d^{T}}{\left(d^{T} x+d_{0}\right)^{p+2}}\left[\left(d^{T} x+d_{0}\right)(p-1) \beta+\left(c_{0}-\beta d_{0}\right)(p+1)\right] \tag{12}
\end{align*}
$$

Note that $\nabla f(x) \neq 0, \forall x$; furthermore, the Hessian matrix $H(x)$ is positive semidefinite for every $x \in \mathbb{R}_{+}^{n}$ if and only if $\beta(p-1) \geq 0$ and $\beta \leq \frac{c_{0}(p+1)}{2 d_{0}}$. It follows that f is convex and hence pseudoconvex on \mathbb{R}_{+}^{n} if and only if i) and $i i$) hold. In any other case f is not pseudoconvex.

From Theorem 9 if follows that f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if f is convex on \mathbb{R}_{+}^{n}.

V. Case $\operatorname{rank}[\mathbf{c}, \mathrm{d}]=2$

The study of the pseudoconvexity on a closed convex set S is usually performed by studying the pseudoconvexity on the interior of S with the aim to extend the obtained results on the boundary of S. The particular structure of the function allows us to prove that the pseudoconvexity of f on int \mathbb{R}_{+}^{n} is equivalent to the pseudoconvexity of f on \mathbb{R}_{+}^{n}.

V.A. Pseudoconvexity on int \mathbb{R}_{+}^{n}

Let us preliminary observe that, due to the linear independence of c and d, the quadratic form (4) is indefinite for every fixed $x \in \mathbb{R}_{+}^{n}$, and hence any critical point of f in $\operatorname{int} \mathbb{R}_{+}^{n}$, is not a minimum point. Consequently, the following result holds.

Theorem 10 Assume $\operatorname{rank}[c, d]=2$. If f is pseudoconvex on $\operatorname{int} \mathbb{R}_{+}^{n}$, then $\nabla f(x) \neq 0$ for every $x \in \operatorname{int} \mathbb{R}_{+}^{n}$.

According to Theorem 2, pseudoconvexity is studied by characterizing the non-existence of critical points and by analyzing the behavior of the Hessian matrix on the directions which are orthogonal to the gradient.
Substituting $a=\alpha_{1} c+\alpha_{2} d$ in (2), we get

$$
\nabla f(x)=\frac{c\left(d^{T} x+d_{0}\right)\left(\alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1\right)+d\left(\alpha_{2}\left(d^{T} x+d_{0}\right)^{p+1}-p\left(c^{T} x+c_{0}\right)\right)}{\left(d^{T} x+d_{0}\right)^{p+1}}
$$

From rank $[c, d]=2$, it follows that f has critical points on \mathbb{R}_{+}^{n} if and only if the following system has solutions on \mathbb{R}_{+}^{n} :

$$
\begin{cases}\alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1 & =0 \tag{14}\\ \alpha_{2}\left(d^{T} x+d_{0}\right)^{p+1}-p\left(c^{T} x+c_{0}\right) & =0\end{cases}
$$

Setting

$$
\begin{equation*}
h(x)=\frac{(1-p)\left(c^{T} x+c_{0}\right)}{\left(d^{T} x+d_{0}\right)^{p}}+\left[\left(\alpha_{1}(p+1) c+2 \alpha_{2} d\right)^{T} x+\alpha_{1}(p+1) c_{0}+2 \alpha_{2} d_{0}\right] \tag{15}
\end{equation*}
$$

we have the following result.
Theorem 11 Assume $\operatorname{rank}[c, d]=2$.
i) f is pseudoconvex on $D_{1}^{+}=\left\{x \in \operatorname{int} \mathbb{R}_{+}^{n}: \alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1>0\right\}$ if and only if $h(x) \geq 0, \forall x \in D_{1}^{+}$.
ii) f is pseudoconvex on $D_{1}^{-}=\left\{x \in \operatorname{int} \mathbb{R}_{+}^{n}: \alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1<0\right\}$ if and only if $h(x) \leq 0, \forall x \in D_{1}^{-}$.
Proof Note that $\alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1 \neq 0$ implies the non-existence of critical points, so that we have to apply i) of Theorem 2. Condition $w^{T} \nabla f(x)=0$ holds if and only if

$$
\begin{equation*}
\left(d^{T} x+d_{0}\right) c^{T} w=\frac{\left(p\left(c^{T} x+c_{0}\right)-\alpha_{2}\left(d^{T} x+d_{0}\right)^{p+1}\right)}{\alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1} d^{T} w \tag{16}
\end{equation*}
$$

Substituting (16) in (4) we get

$$
\begin{equation*}
w^{T} H(x) w=\frac{p\left(d^{T} w\right)^{2} h(x)}{\left(d^{T} x+d_{0}\right)^{2}\left(\alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1\right)} \tag{17}
\end{equation*}
$$

Therefore $w^{T} H(x) w \geq 0$ if and only if $\frac{h(x)}{\alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1} \geq 0$. The proof is complete.

Theorem 12 Assume $\operatorname{rank}[c, d]=2$.
If both D_{1}^{+}and D_{1}^{-}are not empty, then f is not pseudoconvex on $\operatorname{int} \mathbb{R}_{+}^{n}$.
Proof Assume, by contradiction, the pseudoconvexity of f on int \mathbb{R}_{+}^{n}. Then, we have $h(x) \geq 0, \forall x \in D_{1}^{+}$and $h(x) \leq 0, \forall x \in D_{1}^{-}$, so that, by continuity, $h(x)=0$ for every $x \in \operatorname{int} \mathbb{R}_{+}^{n}$ such that $\alpha_{1}\left(d^{T} x+d_{0}\right)^{p}+1=0$. Substituting $\alpha_{1}=-\frac{1}{\left(d^{T} x+d_{0}\right)^{p}}$ in $h(x)=0$ we get $\alpha_{2}\left(d^{T} x+d_{0}\right)^{p+1}-p\left(c^{T} x+c_{0}\right)=0$, so that from (14) f has critical points and this is a contradiction.

Remark 13 From Theorem 11 and Theorem 12, the pseudoconvexity of f on $\operatorname{int} \mathbb{R}_{+}^{n}$ implies $\alpha_{1} \geq 0$, or $\alpha_{1} \leq-\frac{1}{d_{0}^{p}}$. Whenever $\alpha_{1} \geq 0$, or $\alpha_{1}<-\frac{1}{d_{0}^{p}}$, it is $\nabla f(x) \neq 0$ for every $x \in \mathbb{R}_{+}^{n}$, while in the case $\alpha_{1}=-\frac{1}{d_{0}^{p}}$, only the origin may be a critical point and this happens if and only if $\alpha_{2} d_{0}^{p+1}-p c_{0}=0$.
Note that, by continuity, condition $h(x) \geq 0(h(x) \leq 0), \forall x \in$ $\operatorname{int} \mathbb{R}_{+}^{n}$, implies $h(x) \geq 0(h(x) \leq 0), \forall x \in \mathbb{R}_{+}^{n}$, or, equivalently, $\inf _{x \in \mathbb{R}_{+}^{n}} h(x) \geq 0\left(\sup _{x \in \mathbb{R}_{+}^{n}} h(x) \leq 0\right)$.
Regarding the infimum (supremum) of h, we have the following result.

Theorem 14 There exists an index $i \in I=\{1, \ldots, n\}$ such that

$$
\begin{align*}
\inf _{x \in \mathbb{R}_{+}^{n}} h(x) & =\inf _{x_{i} \geq 0} h_{i}\left(x_{i}\right) \tag{18}\\
\sup _{x \in \mathbb{R}_{+}^{n}} h(x) & =\sup _{x_{i} \geq 0} h_{i}\left(x_{i}\right) \tag{19}
\end{align*}
$$

where $h_{i}\left(x_{i}\right)$ denotes the restriction of function $h(x)$ on the i-th edge of \mathbb{R}_{+}^{n}.
Proof Let $\left\{x_{n}\right\} \subset \mathbb{R}_{+}^{n}$ be a sequence such that

$$
h\left(x_{n}\right) \rightarrow \ell=\inf _{x \in \mathbb{R}_{+}^{n}} h(x) .
$$

For every fixed x_{n}, consider the linear problem

$$
P_{n}: \inf _{x \in S_{n}} h(x), \quad S_{n}=\left\{x \in \mathbb{R}_{+}^{n}: d^{T} x+d_{0}=d^{T} x_{n}+d_{0}\right\}
$$

Since S_{n} is a compact set, the infimum is attained as a minimum at a vertex \hat{x}_{n}, which belongs to an edge of \mathbb{R}_{+}^{n}, and obviously it is $h\left(\hat{x}_{n}\right) \leq h\left(x_{n}\right), \forall n$. Consequently, $h\left(\hat{x}_{n}\right) \rightarrow \ell$. The finite number of edges implies the existence of a subsequence $\left\{y_{n}\right\}$ of $\left\{x_{n}\right\}$, contained in an edge, such that $h\left(y_{n}\right) \rightarrow \ell$, so that (18) holds.
The proof of (19) follows in a similar way.

Remark 15 Theorem 11 implies that the study of the pseudoconvexity of f on $\operatorname{int} \mathbb{R}_{+}^{n}$ reduces to the study of the sign of function h on \mathbb{R}_{+}^{n}. When $a=0$, that is $\alpha_{1}=\alpha_{2}=0$, the study is very simple; in fact $h(x)$ reduces to $h(x)=\frac{(1-p)\left(c^{T} x+c_{0}\right)}{\left(d^{T} x+d_{0}\right)^{p}}$, so that f is pseudoconvex on int \mathbb{R}_{+}^{n} if and only if $0<p<1, c \in \mathbb{R}_{+}^{n}, c_{0} \geq 0$ or $p>1, c \in \mathbb{R}_{-}^{n}, c_{0} \leq 0$.

From now on, taking into account Remark 15, we will consider the case $a \neq 0$. Furthermore, for sake of simplicity, we will assume $c \in \operatorname{int} \mathbb{R}_{+}^{n}$. Conditions for the case $c_{i} \leq 0$ can be obtained following the same strategies used in the results that we are going to present. The following theorem characterizes the pseudoconvexity of f on $\operatorname{int} \mathbb{R}_{+}^{n}$ in the case $\alpha_{1} \geq 0$.

Theorem 16 Assume $\operatorname{rank}[c, d]=2, c \in \operatorname{int} \mathbb{R}_{+}^{n}$ and $\alpha_{1} \geq 0$.
Then f is pseudoconvex on $\operatorname{int}_{\mathbb{R}_{+}^{n}}$ if and only if:
i) $\alpha_{1}(p+1) c+2 \alpha_{2} d \in \mathbb{R}_{+}^{n} \backslash\{0\}$;
ii) $(1-p) c_{0}+d_{0}^{p}\left(\alpha_{1}(p+1) c_{0}+2 \alpha_{2} d_{0}\right) \geq 0$
and one of the following conditions holds:
iii) $0<p<1$;
iv) $p>1$ and, either

$$
\nabla h(0)=(1-p) \frac{d_{0} c-p c_{0} d}{d_{0}^{p+1}}+\alpha_{1}(p+1) c+2 \alpha_{2} d \in \mathbb{R}_{+}^{n}
$$

or $\min _{i \in J} h_{i}\left(\bar{x}_{i}\right) \geq 0$, where $J=\left\{i: \frac{\partial h}{\partial x_{i}}(0)<0\right\}$, and \bar{x}_{i} is such that $h_{i}^{\prime}\left(\bar{x}_{i}\right)=0$.

Proof The assumption $\alpha_{1} \geq 0$ guarantees the non-existence of critical points, so that f is pseudoconvex on $\operatorname{int} \mathbb{R}_{+}^{n}$ if and only if $h(x) \geq 0, \forall x \in \operatorname{int} \mathbb{R}_{+}^{n}$.
Firstly we prove that i) and $i i$) are necessary conditions for pseudoconvexity.
Note that $h(x) \geq 0, \forall x \in \operatorname{int} \mathbb{R}_{+}^{n}$, implies $h(0) \geq 0$, i.e., $\left.i i\right)$. On the other hand, if $\alpha_{1}(p+1) c+2 \alpha_{2} d \notin \mathbb{R}_{+}^{n} \backslash\{0\}$, then there exists a restriction of h on an edge of \mathbb{R}_{+}^{n} for which $\inf _{x_{i} \geq 0} h_{i}\left(x_{i}\right)=-\infty$ and
this is a contradiction.
Let us now consider the case $0<p<1$. Condition i) and ii) implies $h_{i}\left(x_{i}\right), i=1, \ldots, n$, is a sum of increasing functions with $h_{i}(0) \geq 0$. From Theorem 14 we get $h(x) \geq 0$, for every $x \in \operatorname{int} \mathbb{R}^{n}$. We are left to prove that condition i) ii) and iv) imply $h(x) \geq 0, \forall x \in \operatorname{int} \mathbb{R}_{+}^{n}$, or, equivalently (see Theorem 14), $h_{i}\left(x_{i}\right) \geq 0, \forall x_{i} \geq 0, \forall i \in\{1, \ldots, n\}$. We have

$$
h_{i}^{\prime}\left(x_{i}\right)=(1-p) \frac{(1-p) c_{i} d_{i} x_{i}+c_{i} d_{0}-p d_{i} c_{0}}{\left(d_{i} x_{i}+d_{0}\right)^{p+1}}+\alpha_{1}(p+1) c_{i}+2 \alpha_{2} d_{i}
$$

and

$$
h_{i}^{\prime \prime}\left(x_{i}\right)=\frac{(1-p) p}{\left(d_{i} x_{i}+d_{0}\right)^{p+2}} d_{i}\left[(p-1) c_{i} d_{i} x_{i}-2 c_{i} d_{0}+(p+1) d_{i} c_{0}\right]
$$

Let us preliminary observe that $h_{i}^{\prime}\left(x_{i}\right)$ has a unique critical point which is a maximum point and $\lim _{x_{i} \rightarrow+\infty} h_{i}^{\prime}\left(x_{i}\right)=\alpha_{1}(p+1) c_{i}+2 \alpha_{2} d_{i} \geq 0$. Therefore if $\nabla h(0) \in \mathbb{R}_{+}^{n}$, that is $h_{i}^{\prime}(0) \geq 0$ for every i, then $h_{i}^{\prime}\left(x_{i}\right) \geq 0, \forall x_{i} \geq 0$. Since $h_{i}(0) \geq 0$, it results $h_{i}\left(x_{i}\right) \geq 0, \forall x_{i} \geq 0$. On the other hand if $i \in J$, then there exists \bar{x}_{i} such that $h_{i}^{\prime}\left(\bar{x}_{i}\right)=0$ which is a minimum point for h_{i}, with $h_{i}\left(\bar{x}_{i}\right) \geq 0$. Consequently $h_{i}\left(x_{i}\right) \geq 0, \forall i \in J$, and the thesis follows.

Remark 17 When $0<p<1$, condition i) of Theorem 16 implies $a_{i} \geq \frac{(1-p) c_{i}}{2}$. Consequently, if there exists i such that $a_{i}<0$, then f is not pseudoconvex.

The following example points out that in the case $J \neq \emptyset$, condition $\min _{i \in J} h_{i}\left(\bar{x}_{i}\right) \geq 0$ can not be relaxed.

Example 18 Consider the function $f(x, y)=\frac{1}{32} x+\frac{4 x+y-1}{(3 x+y+1)^{2}}$.
The restriction of on $y=1$ has a critical point at $x=0,98142397$ which is a maximum point. Therefore f is not pseudoconvex.
Referring to Theorem 16 it is easy to verify that $a=\frac{1}{32} c-\frac{1}{32} d$
and $\operatorname{rank}[c, d]=2$. Since $\alpha_{1}=\frac{1}{32}>0$, f has no critical points. Moreover, necessary conditions i) and ii) of Theorem 16 are verified. On the other hand, $h_{1}(x)=h(x, 0)=-\frac{(4 x-1)}{(3 x+1)^{2}}+\frac{3}{16} x-\frac{5}{32}$ with $h_{1}^{\prime}(0)=-\frac{157}{16}$, hence $J \neq \emptyset$. Function $h_{1}(x)$ has a minimum point at $\bar{x}=0,546247734$ with $h_{1}(\bar{x})=-0,224$, so that condition iv) of Theorem 16 is not verified.

According to Remark 13, we are going to characterize the pseudoconvexity in the case $\alpha_{1} \leq-\frac{1}{d_{0}^{p}}$.

Theorem 19 Assume $\operatorname{rank}[c, d]=2, c \in \operatorname{int} \mathbb{R}_{+}^{n}$ and $\alpha_{1} \leq-\frac{1}{d_{0}^{p}}$.
Then f is pseudoconvex on $\operatorname{int} \mathbb{R}_{+}^{n}$ if and only if:
i) $\alpha_{1}(p+1) c+2 \alpha_{2} d \in \mathbb{R}_{-}^{n} \backslash\{0\}$;
ii) $(1-p) c_{0}+d_{0}^{p}\left(\alpha_{1}(p+1) c_{0}+2 \alpha_{2} d_{0}\right) \leq 0$;
and one of the following conditions holds
iii) $p>1$;
iv) $0<p<1$, and $\max _{i \notin J_{1}} h_{i}\left(\bar{x}_{i}\right) \leq 0$, where

$$
J_{1}=\left\{i: \frac{\partial h}{\partial x_{i}}(0) \leq 0, \frac{c_{i}}{d_{i}} \geq \frac{p+1}{2} \frac{c_{0}}{d_{0}}\right\}
$$

and \bar{x}_{i} is such that $h_{i}^{\prime}\left(\bar{x}_{i}\right)=0$
Proof Note that the assumption $\alpha_{1} \leq-\frac{1}{d_{0}^{p}}$ guarantees the nonexistence of critical points, consequently f is pseudoconvex on int \mathbb{R}_{+}^{n} if and only if $h(x) \leq 0, \forall x \in \mathbb{R}_{+}^{n}$.
Firstly we prove that i) and $i i$) are necessary conditions for pseudoconvexity.
Infact, $h(x) \leq 0, \forall x \in \mathbb{R}_{+}^{n}$, implies $h(0) \leq 0$, i.e., condition $\left.i i\right)$. On the other hand, if $\alpha_{1}(p+1) c+2 \alpha_{2} d \notin \mathbb{R}_{-}^{n} \backslash\{0\}$, there exists a restriction on an edge of \mathbb{R}_{+}^{n} for which $h(x) \rightarrow+\infty$ and this is a contradiction.

Let us now consider the case $p>1$. Condition i) and ii) implies $h_{i}\left(x_{i}\right), i=1, \ldots, n$, is a sum of decreasing functions with $h_{i}(0) \leq 0$. From Theorem 14 we get $h(x) \leq 0$, for every $x \in \operatorname{int} \mathbb{R}^{n}$.
We are left to prove that when $0<p<1$, condition i) ii) and iv) imply $h(x) \leq 0, \forall x \in \operatorname{int} \mathbb{R}_{+}^{n}$, or, equivalently (see Theorem 14), $h_{i}\left(x_{i}\right) \geq 0, \forall x_{i} \leq 0, \forall i \in\{1, \ldots, n\}$.
Let us note that $\lim _{x_{i} \rightarrow+\infty} h_{i}^{\prime}\left(x_{i}\right)=\alpha_{1}(p+1) c_{i}+2 \alpha_{2} d_{i} \leq 0$.
If $i \in J_{1}$, then $h_{i}^{\prime}\left(x_{i}\right) \leq 0, \forall x_{i} \geq 0$; therefore, $h_{i}\left(x_{i}\right) \leq 0, \forall x_{i} \geq 0$.
We consider now the case $i \notin J_{1}$.
If $h_{i}^{\prime}(0)>0$, then h has a maximum point \bar{x}_{i}, so that condition $\max _{i \notin J_{1}} h_{i}\left(\bar{x}_{i}\right) \leq 0$ implies $h_{i}\left(x_{i}\right) \leq 0, \forall x_{i} \geq 0$.
If $h_{i}^{\prime}(0)<0$, and $\frac{c_{i}}{d_{i}}<\frac{p+1}{2} \frac{c_{0}}{d_{0}}$, h^{\prime} has a maximum point at $\tilde{x}=\frac{2 c_{i} d_{0}-(p+1) d_{i} c_{0}}{c_{i} d_{i}(p-1)}$. If $h_{i}^{\prime}(\tilde{x}) \leq 0$, then h is decreasing so that $h_{i}\left(x_{i}\right) \leq 0, \forall x_{i} \geq 0$. If $h_{i}^{\prime}(\tilde{x})>0$, then there exists \bar{x}_{i} such that $h_{i}^{\prime}\left(\bar{x}_{i}\right)=0$ which is a maximum point for h_{i}. Condition $\max _{i \notin J_{1}} h_{i}\left(\bar{x}_{i}\right) \leq 0$ implies $h_{i}\left(x_{i}\right) \leq 0, \forall x_{i} \geq 0$. The proof is complete.

Remark 20 When $0<p<1$, condition i) of Theorem 19 implies $a_{i} \leq \frac{(1-p) c_{i}}{2}$. Consequently, if there exists i such that $a_{i}>0$, then f is not pseudoconvex.

The following example points out that condition $\max _{i \notin J_{1}} h_{i}\left(\bar{x}_{i}\right) \leq 0$, can not be relaxed.

Example 21 Consider the function

$$
f(x, y)=-1,001 x-3,001 y+\frac{2 x+3 y+8}{\sqrt{x+y+1}}
$$

the point $P=(898,1)$ and the direction $w=\left(w_{1}, w_{2}\right)$ with $w_{1}=$ $-1212,843229$ and $w_{2}=400$; it can be verified that $\nabla f(P)^{T} w=0$, and $w^{T} H(P) w<0$. Therefore f is not pseudoconvex.
Referring to Theorem 19, it is easy to verify that $a=-2 c+2,999 d$
and $\operatorname{rank}[c, d]=2$. Since $\alpha_{1}=-2<-1, f$ has no critical points and, by simple computations, it follows that necessary conditions i) and ii) of Theorem 19 are verified. Moreover $h_{1}^{\prime}(0)<0$ and $\frac{c_{1}}{d_{1}}=2<\frac{p+1}{2} \frac{c_{0}}{d_{0}}=6$, so that $1 \notin J_{1}$. On the other hand, the maximum value of h_{1} is positive and so f is not pseudoconvex.

V.B. Pseudoconvexity on \mathbb{R}_{+}^{n}

In this section we prove that the pseudoconvexity of f on \mathbb{R}_{+}^{n} is equivalent to the pseudoconvexity on int \mathbb{R}_{+}^{n}. This result is obtained through several steps. We first state that the pseudoconvexity on int \mathbb{R}_{+}^{n} and on every face of \mathbb{R}_{+}^{n} guarantees the pseudoconvexity of f on the whole set \mathbb{R}_{+}^{n} (see Theorem 24). Then, thanks to the particular structure of the function, the characterization of the pseudoconvexity on every face can be substituted by the characterization of the pseudoconvexity on every edge. At last, the main result is obtained by proving that the pseudoconvexity on int \mathbb{R}_{+}^{n} implies the pseudoconvexity on every edge.
In order to study the behavior of f on the faces of \mathbb{R}_{+}^{n}, let us introduce the following notations.
Set $I=\{1, \ldots, n\}$, and let J be a subset of I with cardinality $|J|=k, 1 \leq k<n$.
A face \mathcal{F}_{k} of \mathbb{R}_{+}^{n} with dimension k is defined as

$$
\mathcal{F}_{k}=\left\{x \in \mathbb{R}_{+}^{n}: x_{i}=0, i \notin J\right\}
$$

An edge of \mathbb{R}_{+}^{n} is a face of dimension 1 .
Let f_{k} be the restriction of f on the face \mathcal{F}_{k}, that is

$$
f_{k}\left(x^{k}\right)=a^{k^{T}} x^{k}+\frac{c^{k^{T}} x^{k}+c_{0}}{\left(d^{k^{T}} x^{k}+d_{0}\right)^{p}}
$$

where $a^{k}, c^{k}, d^{k}, x^{k}$ are obtained from a, c, d, x respectively, by deleting all the i-th components such that $i \notin J$. Observe that the quadratic form associated with the Hessian matrix of f_{k} is of the following form

$$
\begin{equation*}
w^{T} H_{k}\left(x^{k}\right) w=\frac{p\left[-2\left(d^{k^{T}} x^{k}+d_{0}\right)\left(w^{T} d^{k}\right)\left(c^{k^{T}} w\right)+(p+1)\left(c^{k^{T}} x^{k}+c_{0}\right)\left(d^{k^{T}} w\right)^{2}\right]}{\left(d^{k^{T}} x^{k}+d_{0}\right)^{p+2}} \tag{20}
\end{equation*}
$$

with $w \in \mathbb{R}^{k}$. Moreover the critical points of f_{k} are the solutions of the system obtained from (14), by setting $x_{i}=0, i \notin J$. As a consequence, the following theorem holds.

Theorem 22 Let \mathcal{F}_{k} be a face of \mathbb{R}^{n} such that $\operatorname{rank}\left[c^{k}, d^{k}\right]=2$. \bar{x}^{k} is a critical point for f_{k} if and only if \bar{x} is a critical point for f, where $\bar{x}_{i}=\bar{x}_{i}^{k}$ for every $i \in J$ and $\bar{x}_{i}=0$ for every $i \notin J$.

The following theorem points out that if f has a critical point $x \neq 0$, $x \in \mathcal{F}_{k}$, then it is not pseudoconvex.

Theorem 23 Assume $\operatorname{rank}[c, d]=2$ and let $\bar{x} \in \mathcal{F}_{k}, 1 \leq k<n$, $\bar{x} \neq 0$. If $\nabla f(\bar{x})=0$, then f is not pseudoconvex on \mathbb{R}_{+}^{n}.

Proof Let us preliminary observe that, from Theorem $22, \bar{x}$ is a critical point for f if and only if \bar{x}^{k} is a critical point for the restriction f_{k}.
Consider the case \bar{x} belongs to the relative interior of a face \mathcal{F}_{k} with $\operatorname{rank}\left[c^{k}, d^{k}\right]=2$. The linear independence of c^{k}, d^{k} implies that the quadratic form (20) is indefinite for every fixed $x^{k} \in \mathcal{F}_{k}$. Therefore \bar{x}^{k} is not a minumum point for f_{k}, so that f_{k} and consequently f, are not pseudoconvex.
Whenever \bar{x} belongs to an edge e^{i}, take an edge e^{j}, such that $\operatorname{rank}\left[\left(c_{i}, c_{j}\right),\left(d_{i}, d_{j}\right)\right]=2$. The existence of such an edge follows from the assumption $\operatorname{rank}[c, d]=2$. Let \mathcal{F}_{2} be the face containing the edges e^{i} and e^{j} and let f_{2} be the restriction of f on this face. Since the corresponding quadratic form H_{2} is indefinite, there exists an eigenvector $v=\left(v_{i}, v_{j}\right) \in \mathbb{R}^{2}$ such that $v^{T} H^{2}\left(\bar{x}^{2}\right) v<0$. Let $y \in \mathbb{R}^{n}$ be such that $y_{i}=\epsilon w_{i}+\bar{x}_{i}, y_{j}=\epsilon w_{j}$ and $y_{s}=0$ for $s=1, \ldots, n, s \neq i, j$. Taking $w=v$ or $w=-v$, there exists a suitable $\epsilon>0$ such that $y \in \mathcal{F}_{2}$, and $y^{T} H(\bar{x}) y<0$. Consequently f is not pseudoconvex.
It remains to consider the case \bar{x} belongs to the relative interior of
any face \mathcal{F}_{k} with $\operatorname{rank}\left[c^{k}, d^{k}\right]=1$. In this case, every point of the hyperplane of equation $d^{k^{T}} x^{k}+d_{0}=d^{k^{T}} \bar{x}^{k}+d_{0}$ is a critical point for f; in particular, there exists a critical point \tilde{x} belonging to an edge of \mathbb{R}^{n} and then, as in the previous case, f is not pseudoconvex.

The particular form of f allows to characterize the pseudoconvexity of f on \mathbb{R}_{+}^{n} by means of the pseudoconvexity on int \mathbb{R}_{+}^{n} and of the pseudoconvexity on every face. With this regards, the following theorem holds.

Theorem 24 Assume $\operatorname{rank}[c, d]=2, \nabla f(0) \neq 0$.
Then, f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if
i) f is pseudoconvex on $\operatorname{int} \mathbb{R}_{+}^{n}$;
ii) f is pseudoconvex on every face \mathcal{F}_{k} of \mathbb{R}_{+}^{n}.

Proof If f is pseudoconvex, its restriction on a convex subset is still pseudoconvex, so that i) and $i i$) hold.
Assume now i) and $i i$) hold; we will prove that f is pseudoconvex on \mathbb{R}_{+}^{n}, by applying Definition 1 .
Let $x^{1}, x^{2} \in \mathbb{R}_{+}^{n}$ such that $f\left(x^{1}\right)>f\left(x^{2}\right)$.
Let us consider the line segment $\left[x^{1}, x^{2}\right]$; if $\left[x^{1}, x^{2}\right]$ is contained either in int \mathbb{R}_{+}^{n} or in a face, the result follows from i) and ii). In the other cases, $\left(x^{1}, x^{2}\right) \subset \operatorname{int} \mathbb{R}_{+}^{n}$. By continuity, there exists $\lambda \in(0,1)$ such that $y=x^{1}+\lambda\left(x^{2}-x^{1}\right)$ with $f\left(x^{1}\right)>f(y)$. We must prove that $\nabla f\left(x^{1}\right)^{T}\left(x^{2}-x^{1}\right)<0$, or, equivalently, $\nabla f\left(x^{1}\right)^{T}\left(y-x^{1}\right)<0$. From Theorem 10 and Theorem 23, it follows that $\nabla f\left(x^{1}\right) \neq 0$. By contradiction, assume $\nabla f\left(x^{1}\right)^{T}\left(y-x^{1}\right) \geq 0$.
If $\nabla f\left(x^{1}\right)^{T}\left(y-x^{1}\right)>0$, then $d=y-x^{1}$ is an increasing direction, so that the restriction $f\left(x^{1}+t d\right), t \in[0,1]$ has a maximum point belonging to int \mathbb{R}_{+}^{n}, and this contradicts i). If $\nabla f\left(x^{1}\right)^{T}\left(y-x^{1}\right)=0$, take $z=y+\epsilon \nabla f\left(x^{1}\right)$. For a suitable $\epsilon>0$, we have $z \in \operatorname{int} \mathbb{R}_{+}^{n}$, $f\left(x^{1}\right)>f(z)$, and $\nabla f\left(x^{1}\right)^{T}\left(z-x^{1}\right)=\epsilon\left\|\nabla f\left(x^{1}\right)\right\|^{2}>0$. Once again, $f\left(x^{1}+t d^{1}\right), d^{1}=z-x^{1}, t \in[0,1]$, has a maximum point which belongs to int \mathbb{R}_{+}^{n}, and this contradicts i).

Taking into account Theorem 23, the pseudoconvexity of f on the
relative interior of a face \mathcal{F}_{k}, with $\operatorname{rank}\left[c^{k}, d^{k}\right]=2$, is completely characterized by the the behavior of f_{k} along the directions which are orthogonal to the gradient. Going back to the Theorems about the pseudoconvexity of f on $\operatorname{int} \mathbb{R}^{n}$ (Theorem 16 and Theorem 19), we can easily seen that the stated conditions either involve only the parameters $\alpha_{1}, \alpha_{2}, p, c_{0}, d_{0}$ or they are componentwise conditions. Therefore, the pseudoconvexity of f on the relative interior of a face \mathcal{F}_{k}, with $\operatorname{rank}\left[c^{k}, d^{k}\right]=2$ follows directly by applying Theorem 16 or Theorem 19 and hence it remains to analyze the pseudoconvexity of f on the edges of \mathbb{R}_{+}^{n}. On the other hand, the results given in Section $I I I$. imply that the pseudoconvexity on the edges of a face \mathcal{F}_{k} with $\operatorname{rank}\left[c^{k}, d^{k}\right]=1$ is equivalent to the pseudoconvexity on the whole face. Consequently, we get the following corollary

Corollary 25 Assume $\operatorname{rank}[c, d]=2, \nabla f(0) \neq 0$.
Then, f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if
i) f is pseudoconvex on $\operatorname{int} \mathbb{R}_{+}^{n}$;
ii) f is pseudoconvex on every edge.

Consider the restriction $f_{i}\left(x_{i}\right)$ of f on the i-th edge of \mathbb{R}_{+}^{n}. By setting $c_{i}=\gamma d_{i}$ and $\alpha=\alpha_{1} \gamma+\alpha_{2}$, we rewrite f_{i} and h_{i} as follows

$$
\begin{gather*}
f_{i}\left(x_{i}\right)=\alpha d_{i} x_{i}+\frac{\gamma d_{i} x_{i}+c_{0}}{\left(d_{i} x_{i}+d_{0}\right)^{p}} \tag{21}\\
h_{i}\left(x_{i}\right)=\frac{(1-p) \gamma d_{i} x_{i}+c_{0}}{\left(d_{i} x_{i}+d_{0}\right)^{p}}+\left(\alpha_{1}(p+1) \gamma+2 \alpha_{2}\right) d_{i} x_{i}+\alpha_{1}(p+1) c_{0}+2 \alpha_{2} d_{0} \tag{22}
\end{gather*}
$$

The following lemma points out some relationships between $f_{i}\left(x_{i}\right)$ and $h_{i}\left(x_{i}\right)$.
Lemma 26 i) $h_{i}^{\prime \prime}\left(x_{i}\right)=(1-p) f_{i}^{\prime \prime}\left(x_{i}\right)$;
ii) there exists $\mu \in \mathbb{R}$ such that $h_{i}^{\prime}\left(x_{i}\right)=(1-p) f_{i}^{\prime}\left(x_{i}\right)+\mu$;
iii) $f_{i}^{\prime}\left(\tilde{x}_{i}\right)=2\left(d_{i} \tilde{x}_{i}+d_{0}\right) h_{i}\left(\tilde{x}_{i}\right)$ where $\tilde{x}_{i}=\frac{2 \gamma d_{0}-(p+1) c_{0}}{\gamma(p-1) d_{i}}$

Proof i) and ii) are obvious.
iii) Substituting $d_{i} \tilde{x}_{i}=\frac{2 \gamma d_{0}-(p+1) c_{0}}{\gamma(p-1)}$ in $h_{i}\left(\tilde{x}_{i}\right)$ and in $f_{i}^{\prime}\left(\tilde{x}_{i}\right)$, we
obtain

$$
\begin{gathered}
h_{i}\left(\tilde{x}_{i}\right)=\frac{2\left(c_{0}-\gamma d_{0}\right)}{\left(d_{i} \tilde{x}_{i}+d_{0}\right)^{p}}+2 \alpha\left(d_{i} \tilde{x}_{i}+d_{0}\right)=2\left(d_{i} \tilde{x}_{i}+d_{0}\right)\left(\alpha+\frac{c_{0}-\gamma d_{0}}{\left(d_{i} \tilde{x}_{i}+d_{0}\right)^{p+1}}\right) ; \\
f_{i}^{\prime}\left(\tilde{x}_{i}\right)=d_{i}\left(\alpha+\frac{c_{0}-\gamma d_{0}}{\left(d_{i} \tilde{x}_{i}+d_{0}\right)^{p+1}}\right) .
\end{gathered}
$$

The proof is complete.
Finally, we are ready to prove our main theorem.
Theorem 27 Assume $\operatorname{rank}[c, d]=2, \nabla f(0) \neq 0$ and $c \in \operatorname{int} \mathbb{R}_{+}^{n}$.
Then, f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if f is pseudoconvex on $\operatorname{int} \mathbb{R}_{+}^{n}$.

Proof Taking into account Corollary 25, it is sufficient to prove that the pseudoconvexity on int \mathbb{R}_{+}^{n} implies the pseduconvexity on every edge i. Note that $\frac{c_{i}}{d_{i}}=\gamma>0$.
Case $\alpha_{1} \geq 0$ and $p>1$. We refer to Theorem 6 .
If $\frac{c_{i}}{d_{i}} \leq \frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then i) of Theorem 6 is verified.
If $\frac{c_{i}}{d_{i}}>\frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then $h_{i}^{\prime}\left(x_{i}\right)$ has a maximum point at

$$
\bar{x}_{i}=\frac{2 c_{i} d_{0}-(p+1) c_{0} d_{i}}{(p-1) c_{i} d_{i}}
$$

Consequently f_{i}^{\prime} has a minimum point at \bar{x}_{i} and furthermore, from Lemma $26, f_{i}^{\prime}\left(\bar{x}_{i}\right)>0$, so that ii) of Theorem 6 is verified. Case $\alpha_{1} \geq 0$ and $0<p<1$. We refer to Theorem 7 .
The necessary condition i) of Theorem 16 can be rewritten as follows $\alpha_{1} c_{i}(p-1)+2 a_{i} \geq 0, \forall i$; therefore $a_{i} \geq 0, \forall i$, so that, for every one-dimensional face, we have $\alpha=\alpha_{1} \gamma+\alpha_{2} \geq 0$. The thesis follows from i) of Theorem 7.
Case $\alpha_{1} \leq-\frac{1}{d_{0}^{p}}$ and $p>1$. We refer to Theorem 6 .
If $\frac{c_{i}}{d_{i}} \leq \frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then i) of Theorem 6 holds.

If $\frac{c_{i}}{d_{i}}>\frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then ii) of Theorem 19 becomes

$$
\begin{equation*}
2\left(\alpha d_{0}^{p+1}+d_{0} \frac{c_{i}}{d_{i}}-p c_{0}\right)+\left(1+\alpha_{1} d_{0}^{p}\right)\left((p+1) c_{0}-2 \frac{c_{i}}{d_{i}} d_{0}\right) \leq 0 \tag{23}
\end{equation*}
$$

so that $\alpha d_{0}^{p+1}+d_{0} \frac{c_{i}}{d_{i}}-p c_{0}<0$ and hence ii) of Theorem 6 holds.
Case $\alpha_{1} \leq-\frac{1}{d_{0}^{p}}, \quad 0<p<1$. We refer to Theorem 7 .
If $\frac{c_{i}}{d_{i}}<\frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then f_{i}^{\prime} has a maximum point at \bar{x}_{i}. From Lemma 26 it is $f_{i}^{\prime}\left(\bar{x}_{i}\right)<0$, so that iii) of Theorem 7 holds.
If $\frac{c_{i}}{d_{i}} \geq \frac{p+1}{2} \frac{c_{0}}{d_{0}}$, then, from (23), we have $\alpha d_{0}^{p+1}+d_{0} \frac{c_{i}}{d_{i}}-p c_{0}<0$, so that ii) of Theorem 7 holds. The proof is complete.

Corollary 28 Assume $\operatorname{rank}[c, d]=2$, and $c \in \operatorname{int} \mathbb{R}_{+}^{n}$.
Then, f is pseudoconvex on $\mathbb{R}_{+}^{n} \backslash\{0\}$ if and only if f is pseudoconvex on int \mathbb{R}_{+}^{n}.

V.C. The particular case $\nabla f(0)=0$

So far, all results are obtained in the case $\nabla f(0) \neq 0$. The following example shows that when the origin is a critical point f may be not pseudoconvex.

Example 29 Consider the function

$$
f(x, y)=-\frac{1}{125} x-\frac{9}{500} y+\frac{x+2 y+1}{(x+y+10)^{2}} .
$$

It is to verify that conditions i), ii) and iii) of Theorem 19 hold with $\alpha_{1}=-\frac{1}{100}$ and $\alpha_{2}=\frac{1}{500}$, and hence f is pseudoconvex on $\mathbb{R}_{+}^{n} \backslash\{0\}$. Moreover $(0,0)$ is a critical point and it is a maximum for the restriction of f on the half-line $y \geq 0$. Therefore f is not pseudoconvex $\mathbb{R}_{+}^{n} \backslash\{0\}$.

The following theorem provides necessary and sufficient conditions for the pseudoconvexity of f when the origin is a critical point. Note that $\nabla f(0)=0$ if and only if $\alpha_{1}=-\frac{1}{d_{0}^{p}}$ and $\alpha_{2}=\frac{p c_{0}}{d_{0}^{p+1}}$.
Theorem 30 Assume $\operatorname{rank}[c, d]=2, c \in \operatorname{int} \mathbb{R}_{+}^{n}, \alpha_{1}=-\frac{1}{d_{0}^{p}}$ and $\alpha_{2}=\frac{p c_{0}}{d_{0}^{p+1}}$.
Then, f is pseudoconvex on \mathbb{R}_{+}^{n} if and only if the following conditions holds:
i) $p>1$;
ii) $\frac{2 p}{p+1} \frac{c_{0}}{d_{0}} \leq \min _{i} \frac{c_{i}}{d_{i}}$;
iii) $\max _{i} \frac{c_{i}}{d_{i}} \leq \frac{p+1}{2} \frac{c_{0}}{d_{0}}$.

Proof Assume that f is pseudoconvex. Condition ii) follows immediately from i) of Theorem 19
Consider now the restriction $\varphi_{u}(t)$ of f on the half-line $x=t u$, $t \geq 0, u \in \mathbb{R}_{+}^{n}$. We have

$$
\begin{gather*}
\varphi_{u}^{\prime}(t)=\frac{p c_{0} d^{T} u-d_{0} c^{T} u}{d_{0}^{p+1}}+\frac{(1-p) c^{T} u d^{T} u t+d_{0} c^{T} u-p c_{0} d^{T} u}{\left(t d^{T} u+d_{0}\right)^{p+1}} \\
\varphi_{u}^{\prime \prime}(t)=\frac{p d^{T} u}{\left(t d^{T} u+d_{0}\right)^{p+2}}\left[(p-1) c^{T} u d^{T} u t-2 d_{0} c^{T} u+(p+1) c_{0} d^{T} u\right] \tag{24}
\end{gather*}
$$

Since $\varphi_{u}^{\prime}(0)=0$, necessarily we must have $\varphi_{u}^{\prime \prime}(0) \geq 0$, i.e.

$$
\frac{c^{T} u}{d^{T} u} \leq \frac{p+1}{2} \frac{c_{0}}{d_{0}}, \forall u \in \Re_{+}^{n}
$$

which is equivalent to $i i i$). We are left to show that $p>1$.
Suppose that $0<p<1$; since ii) holds, there exists $u \in \mathbb{R}_{+}^{n}$ such that $\frac{c^{T} u}{d^{T} u}>\frac{p c_{0}}{d_{0}}$ and hence $\lim _{t \rightarrow+\infty} \varphi_{u}^{\prime}(t)<0$. Moreover, from (24) and from condition iii), $\varphi_{u}^{\prime}(t)$ has a maximum point $\tilde{t}>0$. Since $\varphi_{u}^{\prime}(\tilde{t})>0, \varphi_{u}^{\prime}$ has one zero corresponding to a maximum point for
$\varphi_{u}(t)$, contradicting the pseudoconvexity of f. Viceversa, assume that conditions i), ii) and iii) hold.
Taking into account $\alpha_{1}=-\frac{1}{d_{0}^{p}}$ and $\alpha_{2}=\frac{p c_{0}}{d_{0}^{p+1}}$, and conditions i) and ii), from Theorem 19, f is pseudoconvex on int \mathbb{R}_{+}^{n}. From Corollary 28, f is pseudoconvex on $\mathbb{R}_{+}^{n} \backslash\{0\}$. It remains to prove that any restriction of f on the half-line $x=t u, t \geq 0, u \in \mathbb{R}_{+}^{n}$ is pseudoconvex; observe that conditions $p>1$ and $\frac{c^{T} u}{d^{T} u} \leq \frac{p+1}{2} \frac{c_{0}}{d_{0}}, \forall u \in \mathbb{R}_{+}^{n}$, guarantee the convexity of every restriction $\varphi_{u}(t)$ and this completes the proof.

VI. Conclusion

In this paper we have characterized the pseudoconvexity on \mathbb{R}_{+}^{n} of a wide class of generalized fractional functions. The obtained conditions are very easy to be checked and according to them, several classes of pseudoconvex functions can be constructed.
The nice properties of pseudoconvexity suggest further developments. With respect to scalar optimization problems we aim to propose simplex-like sequential methods for solving problems having this kind of functions as objective and a polyhedral set as feasible region. Moving from the scalar to the bicriteria case, we aim also to derive the efficient frontier when one of the two objectives is linear and the other one belongs to the studied class.

References

M. Avriel, W.E. Diewert, S. Schaible and I. Zang, (1988), Generalized Concavity, Plenum Press. (Siam Edition 2010).
M. Avriel and S. Schaible, (1978), Second order characterizations of pseudoconvex functions, Mathematical Programming 14, 170-185.
A. Cambini and L. Martein, (2009), Generalized Convexity and Optimization: Theory and Applications, Lecture Notes in Economics and Mathematical Systems, Vol. 616, Springer.
L. Carosi, and L. Martein, (2008), A sequential method for a class of pseudoconcave fractional problems, Central European Journal of Operations Research, 16, 153-164.
L. Carosi and L. Martein, (2012), The Sum of a Linear and a Linear Fractional Function: Pseudoconvexity on the Nonnegative Orthant and Solution Methods, Bulletin of the Malaysian Mathematical Sciences Society, 35, 2A, 591-599.
R.W. Cottle and J.A. Ferland, (1972), Matrix-theoretic criteria for quasiconvexity and pseudoconvexity of quadratic functions, Linear Algebra and its Applications, 5, 123-136.
J.B.G. Frenk and S. Schaible, (2005), Fractional programming, in N. Hadjisavvas et al. (eds), Handbook of Generalized Convexity and Generalized Monotonicity, Springer, New York, 335-386
B. Martos, (1975), Nonlinear programming, Theory and methods, Holland, Amsterdam.
I. M. Stancu-Minasian, (2006), A sixth bibliography of fractional programming, Optimization 55, no. 4, 405-428.

Discussion Papers - Collana del Dipartimento di Economia e Management Universitá di Pisa

Comitato scientifico:

Luciano Fanti Coordinatore responsabile
Area Economica
Giuseppe Conti
Luciano Fanti
Davide Fiaschi
Paolo Scapparone

Area Aziendale

Mariacristina Bonti
Giuseppe D'Onza
Alessandro Gandolfo
Elisa Giuliani
Enrico Gonnella
Area Matematica e Statistica
Sara Biagini
Laura Carosi
Nicola Salvati
Email della redazione: lfanti@ec.unipi.it

