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Abstract

This paper propose a novel methodology to estimate the distribution
dynamics of income in presence of spatial dependence by representing
spatial dynamics as a random vector field in Moran space. Inference
on the local spatial dynamics is discussed, including a test on the
presence of local spatial dependence. The methodology also allows to
compute a forecast of future income distribution which includes also
the effects of spatial dependence. An application to US States is used
to illustrate the effective capacities of the methodology.
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I. Introduction

This paper proposes a new methodology to study the distribution dynamics
of income in presence of spatial dependence.

Our proposal is the result of two converging strands of literature denoted
ETSDA (Exploratory Time-Space Data Analysis) and ESTDA (Exploratory Space-
Time Data Analysis) by Rey (2014).

From one hand, literature on ETSDA extends the methods used in the tempo-
ral studies on income dynamics in order to incorporate spatial dimension. Quah
(1993) can be considered the pioneering contribution to ETSDA for his attempt to
measure the impact of spatial dependence mapping unconditioned income levels
of countries into normalized income levels, where normalization is respect to the
incomes of neighbouring countries. Gerolimetto and Magrini (2014) represents
one of more recent and most significant contribution in this line of research.

On the other hand, literature on ESTDA extends the spatial methods gen-
erally used for detecting spatial dependence in cross-sectional analysis, as the
Moran’s I and LISA statistics, to incorporate temporal dimension. Recently
within this line of research Rey et al. (2011) have proposed the Directional Moran

Scatter Plot to study the spatial dynamics of US states. The latter consists in
analysing in the Moran space (the space defined by countries’ income and its spa-
tially lagged value) the directions of the movement vectors standardized by their
beginning points, i.e. the transitions that each state has experimented between
the first and the last year centered in the orgin of axes.1

In this paper we propose a local version of the Directional Moran Scatter Plot,
labelled Local Directional Moran Scatter Plot (LDMS), which consists in the esti-
mate of a random vector field in the Moran space exploiting the information from
the observed movement vectors. With respect to Directional Moran Scatter Plot
our methodology allows to conduct inference on the local spatial dynamics, and
to provide a forecast of the future income distribution which takes into account
also spatial dependence.

The next section gives an heuristic introduction to the Local Directional
Moran Scatter Plot; Section III. discusses the nonparametric methodology used in
its estimate, and how to make some inference at local level; Section IV. illustrates
the use of LDMS to forecast the distribution dynamics of income in presence of
spatial dependence. Section V. concludes.

II. The Local Directional Moran Scatter Plot

To gain the intuition of our proposed methodology consider Fig. 1, which
reports the Moran Scatterplot (i.e. the levels of relative per capita GDP y versus

1The movement vectors can also be standardized by their ending point. In any case, the
standardized movement vectors are placed at a common origin, but they preserve their length
and direction.
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its spatially lagged values Wy) for a sample of 49 US states in 1987 (red points)
and 2013 (black points).2
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Figure 1: Moran Scatterplot of relative
GDP per capita of a sample of 49 US
states for 1987 (red points) and 2013
(black points). Spatial matrix W is de-
fined by rook contiguity.
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Figure 2: Movement vectors in the
Moran space (y,Wy) for a sample of 49
US states over the period 1987-2013.

For both years Moran’s I is positive (equal to 0.10 in 1987 and 0.13 in 2013)
and statistically significant at 10%, suggesting that some spatial dependence
should be at work; however, from Moran Scatter Plot no information can be
extracted on the impact of this spatial dependence on the distribution of GDP
per capita in terms of its strength and direction.3

A possibility to fill this gap is to assume that, in the same spirit of the distri-
bution dynamics approach (see Quah, 1997), the dynamics of GDP per capita of
an economy can be expressed as a (random) function of only its position in the
Moran space, i.e. the dynamics of GDP per capita follows a Markovian process,
where the states are defined in terms both of the (relative) level of GDP per
capita y and its spatially lagged values Wy (instead of only y). This corresponds
to the estimate of a random vector field in Moran space, which we label Local
Directional Moran Scatter Plot (LDMS).4

2The spatial matrix Wy is defined by rook contiguity; given this definition of spatial depen-
dence, we exclude from the sample the two US states without any link (Alaska and Hawaii).

3Using a six-nearest neighbor spatial weight matrix, Gerolimetto and Magrini (2014) finds
statistically significant spatial dependence across US States. Morevoer, their estimated Moran’s
I is generally higher.

4A vector field in a plane can be visualized as a collection of arrows with a given magni-
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The movement vectors reported in Fig. 2, representing all the observed tran-
sitions calculated with a time lag of 10 years and expressed in annual scale (1-year
ahead) in the Moran space (y,Wy), provides the basic information set to estimate
a LDMS.5 In particular, Fig. 2 contains 49 x (2013-1987-10+1) = 833 movement
vectors. For comparison, Rey et al. (2011) in the upper panel of their Fig. 2
reports only 49 movement vectors, representing the transitions from the first to
the last year (1969 and 2008 respectively) of each state in the sample. Nonethe-
less the different time period considered, the overall picture of spatial dynamics
looks very similar in the most of Moran space (the south-west quadrant contains
the most of observations with a spatial dynamics converging toward bisector),
but with some important differences (the spatial dynamics in the north-east and
south-east quadrants).

Figure 2 suggests an overall pattern of convergence to bisector and, in partic-
ular, towards the region around point (1,1), although such convergence is absent
or very weak for other regions of the Moran space, as for example that around
(1.3,1.1). In general, the presence of a strong random component in US states’
movements makes difficult to identify any spatial pattern by only a graphical
inspection, especially when the number of movement vectors is very large as in
our case.

In the next section we discuss how to properly estimate a LDMS by the set
of observed movement vectors.

III. Estimation of a Local Directional Moran Scatterplot

Consider a sample of N economies observed for T periods; economy j is
characterized by its level of relative (to the sample average) income in each point
in time yjt, and by the average income of its neighbours Wyjt, where W is the the
j-the row of the spatial weight matrix expressing which economies are neighbours
of j (j = 1, ..., N and t = 1, ..., T ), and yt is the vector of relative income of all
economies.

We assume that the spatial dynamics of economy j at period t, i.e. the
dynamics of economy j in the space (y,Wy), only depends on (yjt,Wyjt), i.e. yjt
follows a time invariant and Markovian stochastic process.

The spatial dynamics of the sample in the Moran space can be therefore
represented by a random vector field (RVF). In particular, given a subset L of
the possible realization of (y,Wy) (i.e. a lattice in Moran space, see small black
points in Figure 2), a RVF is represented by a random variable ∆τzi, where ∆τzi ≡

tude and direction (our movement vectors) each attached to a point in the plane (Polyanin
and Manzhirov, 2006). A random vector field consider for each point in the plane not just
a movement vector, but a set of movement vectors with an associate probability distribution
(Polyanin and Manzhirov, 2006).

5All the calculations are made using R (R Core Team, 2014). Codes and data are available
on author’s web page http://dse.ec.unipi.it/~fiaschi/.
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(∆τyi,∆τWyi) ≡ (yit+τ − yit,Wyit+τ −Wyit), indicating the spatial dynamics
(i.e. the dynamics from period t to period t + τ represented by a movement
vector) at zi ≡ (yi,Wyi) ∈ L.

For each point in the lattice zi, with i = 1, ..., L, we therefore estimate the dis-
tribution of probability Pr (∆τz|zi) on the N (T − τ) observed movement vectors
∆OBS

τ z. In particular, Pr
(
∆OBS

τ zjt|zi
)
measures the probability that the dynam-

ics at zi follows ∆OBS
τ zjt; this suggests that Pr

(
∆OBS

τ zjt|zi
)
should decrease as

function of the distance between zi and zOBS
jt .

Wy

y
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Figure 3: Local mean estimation of the expected movement from zi (µ̂∆τ zi) from four
observed movement vectors (zOBS

jt ). Probabilities attached to each observed movement

vectors, given by ω
(
zi, z

OBS
jt

)
, are a negative function of the distance between zi and

zOBS
jt .

Following this intuition Fig. 3 depicts a point of the lattice zi and four ob-
served movement vectors, which origin at different distance from zi. Function
ω
(
zi, z

OBS
jt

)
measures for each observed movement vector its probability to af-

fect the movement at zi; these probabilities decline with distance from zi (i.e.
ω
(
zi, z

OBS
1t

)
< ω

(
zi, z

OBS
2t

)
< ω

(
zi, z

OBS
3t

)
), and very far observed movement vec-

tors should have zero probability (ω
(
zi, z

OBS
4t

)
= 0). Blue vector is the expected

movement from zi, µ∆τzi, calculated on the base of the distribution of probabili-
ties on the observed movement vectors.

A convenient way to calculate these probabilities is to use a kernel function
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to measure the distance between zi and zOBS
jt . In particular:

ω
(
zi, z

OBS
jt

)
=

K
(

(zi−zOBS
jt )TS−1(zi−zOBS

jt )

h2

)
det(S)−

1
2

2h2

∑T−τ

t=1

∑N

j=1K
(

(zi−zOBS
jt )TS−1(zi−zOBS

jt )

h2

)
det(S)−

1
2

2h2

(1)

is assumed to be an estimate of the probability that at zi spatial dynamics follows
observed movement vectors ∆OBS

τ zjt, where K(·) is the kernel function, h is the
smoothing parameter and S is the sample covariance matrix of zOBS. The kernel
function K(·) is generally a smooth positive function which peaks at 0 and de-
creases monotonically as the distance between the observation zjt and the point
of interest zi increases (see Silverman, 1986 for technical details). The smoothing
parameter h controls the width of the kernel function.6 In the estimation we use
a multivariate Epanechnikov kernel (see Silverman, 1986, pp. 76-78), i.e.:

K(uTS−1u) =

{
2
π
(1− uTS−1u) if uTS−1u < 1

0 if uTS−1u ≥ 1,
(2)

where u ≡
(
zi − zOBS

jt

)
/h. Multivariate Epanechnikov kernel is particularly

adapted to our scope because it assigns zero probability to observed movement
vectors very far from zi.

7 The exact quantification of “very far” is provided by
bandwidth h, i.e. higher bandwidth means higher number of observed movement
vectors entering in the calculation of the movement at zi.

Given Eq. (1) for each point in the lattice zi we estimate the τ -period ahead
expected movement µ∆τzi ≡ E [∆τzi|zi] using a local mean estimator, firstly
proposed by Nadaraya (1964) and Watson (1964), where the observations are
weighted by the probabilities derived from the kernel function, i.e.:8

µ̂∆τzi =
T−τ∑

t=1

N∑

j=1

ω
(
zi, z

OBS
jt

)
∆τz

OBS
jt = ̂Pr (∆τz|zi)∆τz

OBS. (3)

The estimation of Eq. (3) strongly depends on the choice of τ . This choice
is the result of a trade-off: from one hand, a too short τ can increase the noise
in the estimation due to the possible presence of business-cycle fluctuations; on
the other hand, a too long τ could contrast with the local characteristics of the
estimate, increasing the probability that observed movement vectors very far from
zi affects the estimate of µ∆τzi .

9

6In all the estimation we use the optimal normal bandwidth; for a discuss on the choice of
bandwidth see Silverman (1986).

7Other possible kernels, as the Gaussian, does not allow such possibility.
8See Bowman and Azzalini (1997) for details.
9For samples with a very short time span a further limit to the choice of a long τ is the

relatively strong loss of observations.
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Figure 4: The Local Directional Moran
Scatter Plot including all the annu-
alized 10-years ahead expected move-
ments for the points in the lattice where
observed movement vectors are avail-
able.
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Figure 5: The Local Directional Moran
Scatter Plot including all the annu-
alized 10-years ahead expected move-
ments for the points in the lattice where
the estimated movements are statisti-
cally significant at 5% level.

Figure 4 reports the annualized 10-year ahead expected movements based on
Eq. (3) for a lattice 50×50 = 2500 points in the range (0.4− 1.6)× (0.4− 1.6) in
Moran space. For a wide area of Moran space we cannot calculate any expected
movement due to lack of observed movement vectors sufficiently close to the points
in the lattice (as discussed above such threshold in the distance is proportional
to the bandwidth h).

The overall spatial dynamics pattern suggested by the estimated expected
movements in Figure 4, is convergence toward a region around the bisector close
but below point (1,1) for the most of trajectories starting from points in the lattice
below the horizontal line Wy = 1; while for points above Wy = 1 a convergence
toward regions around points (1.3,1.1) and (1,1.3) is expected.

These findings are confirmed also after controlling for the statistical signifi-
cance of the estimated expected movements, whose results are reported in Figure
5 (see the next section for the bootstrap procedure used for the inference). In par-
ticular, the overall convergent spatial dynamics is confirmed; in addition, within
regions previously identified as loci of convergence no significant spatial dynamics
is present, suggesting that they are indeed regions of steadiness.

With respect to Rey et al. (2011) our analysis confirms the presence of spatial
dependence, i.e. y and Wy tends to have the same sign of variation over time
(the movement vectors show an orientation from south-west to north-east or
vice versa); however, the proposed Standardized Directional Moran Scatter Plot
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reported in the bottom panel of Fig. 2 in Rey et al. (2011) cannot identify the
remarkable heterogeneity of spatial dynamics among different regions of Moran
space emerging from Fig. 5, and its implications in term of the existence of
regions of steadiness.

III.A. Inference on Local Directional Moran Scatter Plot

Below we discuss in details how we have conducted the inference on the esti-
mated expected movements by a bootstrap procedure, whose results is reported
in Fig. 5.

Given the observed sample of observations zOBS
jt , with j = 1, ..., N and t =

1, ..., T , the bootstrap procedure consists of four steps.

1. Estimate the expected value of the τ -period ahead movement µ∆τzi by Eq.
(3) for each point of the lattice (i = 1, ..., L).

2. DrawB samples zb =
(
zb1, ..., z

b
N(T−τ)

)
and the associated ∆b

τz =
(
∆zb1, ...,∆zbN(T−τ)

)
,

with b = 1, ..., B, by sampling with replacement from the observed zOBS

and the associated movement vectors ∆OBSz.

3. For every bootstrapped sample b and for each point of the lattice i estimate
by Eq. (3) the expected value of the τ -period ahead movement µb

∆τ zi
.

4. Calculate the two-side p-value of the estimated movement vector at point
i in the lattice under the null hypothesis of no dynamics (note that null
hypothesis of no dynamics is separately tested in the two directions y and
Wy) as:

ÂSLi = 2×min

(
B∑

b=1

µ̂b
∆τ zi

≤ 0,
B∑

b=1

µ̂b
∆τzi

> 0

)
/B. (4)

In the analysis we have set B = 300, and used the usual significance level of
5% to decide which expected movements to report in Fig. 5.

III.B. Test on the Presence of Local Spatial Dependence

The local characteristics of LDMS allows also to test on the presence of local
spatial dependence in the same spirit of LISA (see Anselin, 1995). In particular,
the null hypothesis of no spatial dependence in the estimated movements in Moran
space can be formulated as follows:

H0 : µ∆τzi ≡ E [∆τzi|zi] = E [∆τzi|yi] , (5)

that is the null hypothesis is that the dynamics in point zi only depends on the
value of yi.
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In the following we describe a permutation test to test the null hypothesis in
Eq. (5).

1. Generate P independent permutation samples zp = (yp,Wyp), with p =
1, ..., P , by taking the entire time-series of an economy but randomly per-
muting its neighbours (therefore in every permutation sample yp is equal to
yOBS, but Wyp will be randomly different from WyOBS).

2. For every permutation sample p and for each point of the lattice i by Eq.
(3) estimate the expected value of the τ -period ahead movement µp

∆τ zi
.

3. For each point of the lattice i calculate the difference ∆µ̂i
≡ µ̂∆τ zi − µ̂p

∆τzi
.

4. Calculate the two-side p-value of the estimated movement vector at point
i in the lattice under the null hypothesis of no spatial dependence as

ÂSL
P

i = 2×min

(
P∑

p=1

∆µ̂i
≤ 0,

P∑

p=1

∆µ̂i
> 0

)
/P. (6)

Figure 6, which reports the results of the permutation test for P = 300 per-
mutations, highlights how within the three regions previously indicated as of
steadiness, spatial dependence is absent, while is particularly effective at the bor-
ders of the north-east quadrant. Spatial dependence appears to be a significant
force also around (1,1).

The overall picture suggests that spatial dependence is a pervasive phenomenon,
but its effects appears not so important at aggregate level because it is not signif-
icant in the regions of steadiness, where the most of US states are concentrated.10

IV. Forecasting by a Local Directional Moran Scatter Plot

The estimated LDMS also allows to compute F × τ -year ahead projections
starting from the observed cross-economy income distribution. The proposed
procedure is similar in the distribution approach to the use of the estimated
stochastic kernel to project in the future the actual distribution; in the limit
such projection leads to the ergodic (equilibrium) distribution. In particular, the
randomness of the estimated LDMS suggests to replicate S time the procedure
of computation of the F -period ahead projection and to calculate the average
distribution (the replications allows also to calculate confidence bands for our
F × τ -year ahead projected distribution).

The procedure for the computation of the F ×τ -year ahead distribution start-
ing from the distribution in the last year T zOBS

T is as follows.

10From the point of view of distribution dynamics the regions of steadiness can be seen as
also the loci in the plane where the US states should pass more time.
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Figure 6: Permutation test for the presence of local spatial dependence in RVF

1. For each replication s, with s = 1, ..., S:

(a) For each economy j = 1, ..., N set zfj = zf−1
j (z1j = zOBS

jT ).

(b) For each economy j individuate the closest point in the lattice, and
assign to the economy j the estimated probability distribution on the

observed movement vectors for that point, i.e.
̂

Pr
(
∆τz|zi∗j

)
, where

i∗j = argmin{i}Li=1
‖ zfj − zi ‖.

(c) For each economy j draw one transition, denoted by ∆τz
f
j , from the

observed ∆OBS
τ z with probability

̂
Pr
(
∆τz|zi∗j

)
and calculate z̃f+1

j =

zfj +∆f
τ z

f
j .

(d) For each economy j normalize yf+1
j =

ỹ
f+1

j
∑N

j=1
ỹ
f+1

j

in order to maintain

that the new calculated distribution yf+1
j has mean one.

(e) For each economy j calculate the spatial lagged value Wyf+1
j and set

zf+1
j =

(
yf+1
j ,Wyf+1

j

)
.
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(f) Repeat steps (a)-(e) for f = 2, ..., F .

(g) Estimate the cross-economy income distribution for the last forecast
period F φ̂s

F×τ = f̂
(
yF
)
.

2. Take the average of the estimated income distributions on all replications
¯̂
φF×τ =

∑S

s=1 φ̂
s
F×τ/S as the expected (F × τ)-year ahead forecast distribu-

tion.

Setting F = 5 and S = 1000, the distribution in Moran space of all computed
50-year ahead forecasts for a total of 49.000 points (49 US states times 1000 repli-
cations) reported in Fig. 7 highlights how no particular dispersion/polarization
emerges from the computation of forecast distributions; the most of economies
is expected to populate the regions of steadiness, and a region in the north-east
quadrant just above horizontal line Wy = 1.
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Figure 7: All computed 50-year ahead
forecasts for a total of 49.000 points
(49 US states times 1000 replications)
(green points), the observed US states
in 2013 (black points), and the esti-
mated LDMS.
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Figure 8: Expected 50-year ahead fore-
cast cross-economy income distribution
(green line), its 95% confidence bands
(green dotted lines), the observed dis-
tribution in 2013 (black line) and the
50-year ahead forecast distribution cal-
culated by the estimated stochastic ker-
nel (SK) (orange line).

Fig. 8 shows how the computed 50-year ahead forecast distribution of y (green
line) is not statistically different from the estimated income distribution in 2013
(black line). The actual income distribution across US states therefore should
tend to persist at least for the next 50 years.
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We also report the 50-year forecast distribution of y based on the use of a
stochastic kernel (SK) (orange line), which appears centered around 1 and more or
less symmetric.11 The difference between the 50-year ahead forecast distribution
calculated by LDMS and SK measures the magnitude of the bias in the estimate
of distribution dynamics deriving from the omission of spatial dependence.

With a very different approach Gerolimetto and Magrini (2014) find a sim-
ilar results. By using quarterly data for 48 conterminous US states over three
decades running between 1981:Q1 and 2010:Q4, they show that neglecting spatial
dependence substantially affect the estimate of distributional tendencies; in par-
ticular, in the second decade (1991:Q1 and 2000:Q4) the spatial estimator shows
a stronger tendency towards divergence in the ergodic distribution with respect
to the non spatial estimator.12

V. Concluding Remarks

This paper has proposed a novel methodology to analyse the distribution
dynamics in presence of spatial dependence by estimating a random vector field
in Moran space. The methodology has successfully identified local heterogeneity
in spatial dynamics for US States from 1987 to 2013. Inference on such local
heterogeneity has shown how spatial dependence is present only in some regions of
Moran space, and that there exists a converging dynamics to three regions where
local spatial dependence is instead very weak. The forecast of future income
distribution suggests that the most of US States should persist within the three
regions, and that no particular change is expected in the income distribution with
respect to 2013. The comparison with the forecasted distribution calculated by
stochastic kernel generally used in the distribution dynamics literature has shown
how the former can be bias from the omission of spatial dependence.

The methodology could be refined by adopting an adaptive kernel in the es-
timation of LDMS, i.e. a kernel whose bandwidth changes accordingly to the
density of observation around the point in the lattice (in particular, the band-
width is larger where observations are less numerous, see Silverman, 1986). More
important, the analysis can be extended to include other explanatory variables
of the movement vectors (e.g. the typically Solovian variables such as investment
rates and population growth); the limit is the so-called “curse of dimensional-
ity” that generally plagues the use of kernel in multivariate analysis (see, again,
Silverman, 1986).

11We use a Gaussian kernel with adaptive bandwidth. See Quah (1997) for more details on
the meaning of stochastic kernel and its use to forecast future distributions, and (Silverman,
1986, p. 100) for the procedure to estimate a stochastic kernel with adaptive bandwidth.

12Their results are not exactly comparable with ours both for the data used in the analysis
(we have a more limited time span), and for the estimation of the stochastic kernel made using
a nearest-neighbor bandwidth in the first year, normal scale bandwidth in the last year, a
Gaussian kernel and mean bias adjustment via a local linear estimate.
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