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I. Introduction

In spatial econometric literature, “the matrix is the fundamental tool used to
model the spatial interdependence between regions. More precisely, each region is
connected to a set of neighboring regions by means of a spatial pattern introduced
exogenously as a spatial weight matrix W” (Le Gallo et al., 2003, p.110).

The traditional specification of the spatial weights matrix relies on the geo-
graphical relation between observations, implying that areal units are neighbors
when they share a common border (first-order contiguity), or the distance between
their centroids is within a distance cut-off value (distance-based contiguity). As
pointed out by Anselin and Bera (1998), other specifications of the spatial weights
matrix are possible as, for example, weights reflecting whether or not two individ-
uals belong to the same social network, or based on some “economic” distance.
Although these specifications are desired, the resulting spatial process must sat-
isfy necessary regularity conditions. “For example, this requires constraints on
the extent on the range of interaction and/or the degree of heterogeneity implied
by the weights matrices” (Anselin and Bera, 1998, p. 244).

Moreover, “in the standard estimation and testing approaches, the weights
matrix is taken to be exogenous” (Anselin and Bera, 1998, p. 244). Therefore,
the W matrix represents the a priori assumption about interaction strength be-
tween regions. However, in many cases considerable attention should be given
to specifying the matrix W to represent as far as possible economic links (see
Corrado and Fingleton, 2012).

In a companion paper (see Fiaschi and Parenti, 2013) we show how is possible
to estimate the interdependence between European regions by a connectedness
matrix, which is the result of a general variance decomposition analysis on the
residuals of a VAR model. The connectedness matrix has the advantage to be
immediately interpretable as a network, allowing for the use of network connect-
edness measures to understand the interdependence among regions (see Diebold
and Yılmaz, 2014).

The aim of the paper is to discuss how our (contemporaneous) connectedness
matrix is strictly related to the spatial matrix W , and to compare the network
deriving from connectedness matrix with that deriving from a spatial model that
can display mixed dynamics in both space and time. An empirical application
using growth rate volatility of per capita GDP of 199 European NUTS2 regions
(EU15) over the period 1981-2008 is used to illustrate our analysis.

The paper it is organized as it follows: Section II. explains the methodology
to estimate the connectedness matrix. Section III. traces a comparison between
our connectedness matrix and the spatial weights matrix. Section IV. contains
the empirical application to EU regions. Section V. concludes.
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II. The Methodology

The estimate of connectedness matrix follows the methodology described in
Fiaschi and Parenti (2013). To sum up: firstly, a panel of growth rate volatilities
(GRV) of per capita GDP for a sample of regions is estimated; then, the panel
is used to perform a general variance decomposition analysis (GVD hereafter)
on the residuals from a VAR in order to estimated the so-called connectedness
matrix. The procedure is largely inspired by Diebold and Yılmaz (2014), with
the additional difficulty arising in the estimate of VAR, that the number of ob-
servations for each region is generally lower than the number of regions, i.e. we
face a typically high-dimensional problem (see Hastie et al., 2008). To overcome
this problem a Bayesian Model Averaging is used.

II.A. The Connectedness Matrix

Following McConnell and Perez-Quiros, 2000 and Fiaschi and Lavezzi, 2011
the basic idea to build a panel of GRV is that the dynamics of growth rate of
per capita GDP can be well-approximated by an autoregressive process of order
p (denoted by AR (p)):

γjt = µj + φ1γj,t−1 + ...+ φpγj,t−p + ǫjt, (1)

where ǫjt is assumed to be normally distributed. Given that ǫjt follows a normal
distribution, an unbiased estimator of the standard deviation of ǫjt, σ

ǫ
jt, is given

by:

σ̂ǫ
jt =

√

π

2
|ǫ̂jt|. (2)

From Eq. (2) we derive the unbiased estimator of the standard deviation of the
growth rate of per capita GDP, σγ

jt. For example, if the growth rate follows an
AR(1) process (see Hamilton (1994), p. 53), the standard deviation of the growth
rate is given by:

σ̂
γ
jt =

σ̂ǫ
jt

√

1− φ2

1

=

√

π
2
|ǫ̂jt|

√

1− φ2

1

. (3)

This method is easily extended to higher-order AR models (see Hamilton, 1994,
pp. 58-59).

Once the panel of GRV has been estimated, we follow Diebold and Yılmaz
(2014) in the use of a vector-autoregressive (VAR) model to represent the process
governing the GRV of regions, and estimate the GVD which allows to measure
the population connectedness, i.e. assessing the share of forecast error variance
in a region due to shocks arising elsewhere.

The use of VAR implicitly implies that relationships across units of observa-
tions are essentially linear, and that the contemporaneous relationships are well
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represented by pairwise correlations (i.e., the variance-covariance matrix). More-
over, the use of GVD is subject to some restrictive assumptions, the most notable
is the Gaussian distribution of shocks.1

Assume that a VAR of order p is a good approximating model of the process
governing the GRV of regions:2

xt = c+

p
∑

i=1

Φixt−i + ǫt, t = 1, ..., T, (4)

where c is a N × 1 vector of constants, xt = (x1t, ..., xNt)
′ is a N × 1 vector of

jointly determined dependent variables, Φi, i = 1, ..., N is the N ×N coefficients
matrix and ǫt is an error term such that E(ǫt) = 0, E(ǫtǫ

′

t) = Σ ∀t, where
Σ = {σij , j = 1, ..., N} is an N × N positive definite matrix, and E(ǫtǫ

′

t′) = 0

for all t 6= t′.
Assuming also that all roots of |IN −

∑p

i=1
Φiz

i| = 0 fall inside the unit circle,
that is xt is covariance-stationary (see Pesaran and Shin, 1998), Eq. (4) can be
rewritten as the infinite moving average representation:

xt = µ+
∞
∑

i=0

Θiǫt−i, t = 1, ..., T, (5)

where µ = (IN −Φ1 − · · · −Φp)
−1c is the mean of the process, and the N × N

coefficient matricesΘi can be obtained asΘi = Φ1Θi−1+...+ΦpΘi−p, i = 1, 2, ...
with Θ0 = IN and Θi = 0 for i < 0.

To measure the effect of shocks at a given point in time on the expected
future values of variables in a dynamical system, Koop et al. (1996) advance
the generalized impulse response function. In particular the scaled generalized
impulse response function of xt at horizon H is given by:

ψ
g
j (H) = σ

−
1

2

jj ΘHΣej , (6)

where ej is the selection vector (a vector of all zeros with 1 in the j-th element),
which measures the effect of one standard error shock to the j-th unit of obser-
vations at time t on expected values of x at time t +H .

From the above generalized impulses, Pesaran and Shin (1998) derive the
generalized (i.e., order-invariant) forecast error variance decomposition, defined
as the proportion of the H-step ahead forecast error variance of variable i which
is accounted for by innovations in variable j. Then, for H = 1, 2, ..., H -step GVD
matrix DgH = [dgHij ] has entries:3

d
gH
ij =

σ−1

jj

∑H−1

h=0
(e

′

iΘhΣej)
2

∑H−1

h=0
(e

′

iΘhΣΘ
′

hei)
(7)

1Alternatively, the use of Cholesky-factor identification is sensitive to ordering of the units
of observations.

2Notation refers to Pesaran and Shin (1998).
3Notice that H = 1 actually corresponds to the contemporaneous connectedness.
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where Θh is the coefficient matrix of the h-lagged shock vector in the MA repre-
sentation of the non-orthogonalized VAR, Σ is the covariance matrix of the shock
in the non-orthogonalized VAR, and σii its diagonal.

As in Diebold and Yılmaz (2014) we normalize the GVD matrix by row in
order to have unity sums of forecast error variance contribution (remember that
the shocks are not necessarily orthogonal in GVD, therefore their sum is not equal
to 1 in the standard decomposition). Therefore, the connectedness matrix has
entries as:

d̃
gH
ij =

d
gH
ij

∑N

j=1
d
gH
ij

. (8)

x1 ... xN From Others

x1 d̃
gH
11

... d̃
gH
1N

∑N

j=1
d̃
gH
1j , j 6= 1

...
...

...
...

xN d̃
gH
N1

... d̃
gH
NN

∑N

j=1
d̃
gH
Nj , j 6= N

To Others
∑N

i=1
dHi1, i 6= 1 ...

∑N

i=1
d̃
gH
iN , i 6= 1 1

N

∑

i, j = 1N d̃gHij , i 6= j

Table 1: Connectedness Matrix derived from the GVD Matrix.

In particular, d̃gHij is the fraction of region’s i H-step forecast error variance due
to shocks in region j. The cross-variance decomposition, that is the off-diagonal
elements (i.e., i 6= j), measure the pairwise directional connectedness ; in general,
d̃
gH
ij 6= d̃

gH
ji ), i.e. GVD matrix is not symmetric. On the other hand, the diagonal

elements (own connectedness) measure the fraction of region’s i H-step forecast
error variance due to shocks arising in the same region (i.e. idiosyncratic shocks).

The connectedness matrix is conditioned to the predictive horizon H , which
is in turn related to the concept of dynamic connectedness. In particular, GVD
1-step ahead represents the contemporaneous connectedness. As the predictive
horizon H increases there is more possibility for connectedness to appear. In this
sense, we can distinguish between short-run and long-run connectedness.

The typical dimensions of datasets used in cross-country and cross-region
analysis are such that the number of countries/regions N is much higher than
the length of time series T , i.e. we generally face a high-dimensional problem with
N ≫ T . Firstly, this suggests to maintain the order of VAR at the minimum
level equal to 1, i.e. GRV of each region at time t will depend on a constant,
on its lagged GRV at time t − 1, and on the GRV of all other regions at time
t − 1. Secondly, since the total number of parameters to be estimated equal to
K = N + 1, i.e. all lagged GRV of regions plus constant, is higher than the
number of observations T , the VAR(1) cannot be estimated by standard OLS.
We overcome this problem by using a Bayesian Model Averaging approach (see
Fiaschi and Parenti, 2013, for technical details).
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II.B. A Network Interpretation of Connectedness Matrix

The proposed methodology has a straightforward interpretation in terms of
network and of percolation of shocks through it. As stated by Diebold and Yılmaz
(2014, p.123) “[...] variance decompositions are networks. More precisely, the
variance decomposition matrix D, which defines our connectedness table, and
all associated connectedness measure, is a network adjacency matrix A. Hence
network connectedness measures can be used in conjunction with variance decom-
positions to understand connectedness among components”. Specifically, GVD
defines a weighted, directed network.

For the sake of simplicity consider the case with three regions and a represen-
tation by VAR(1), whose variance-covariance matrix Σ is given by:

Σ =





σ11 σ12 0
σ21 σ22 σ23
0 σ32 σ33



 , (9)

from which the GVD matrix at H = 1:

Dg1 =





1 σ12

σ22

0
σ21

σ11

1 σ23

σ33

0 σ32

σ22

1



 . (10)

In case of VAR(1) Θ0 = IN , Θ1 = Φ, Θ2 = Φ2, ..., where Φ is the coefficient
matrix of VAR.

The network representation related to Dg1 in Eq. (10) is reported in Fig. (1).
The structure of contemporaneous network fully reflects the shape of Σ both in
terms of existence of links and in terms of their strength. However, differently
from Σ, Dg1 is not symmetric, i.e. the contemporaneous network is both weighted
and directional. The row standardization has not an impact on the analysis in
the case we are interested in only the existence of links between two regions. In a
more complete analysis of percolation of shocks trough network this normalization
is however not neutral and the use of the original values of GVD matrix is the
best option.

Assuming that the coefficient matrix Θ1 of the 1 -lagged shock vector in the
MA representation of the VAR(1) is given by:

Θ1 = Φ =





φ11 0 φ13

0 0 0
φ31 0 φ33



 (11)
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GVD matrix at H = 2 is given by:

Dg2 =























σ11 + φ2

11
σ11

σ11 + φ2

11
σ11 + φ2

13
σ33

σ12

σ22

[

1 +
(

φ11 + φ13
σ32

σ12

)2
]

φ2

13
σ33

φ33φ13σ33 + φ31φ11σ11

σ21

σ11
1

σ23

σ33

φ2

31
σ11

φ11φ31σ11 + φ13φ33σ33

σ32

σ22

[

1 +
(

φ33 + φ31
σ12

σ32

)2
]

σ33 + φ2

33
σ33

σ33 + φ2

33
σ33 + φ2

31
σ11























(12)
The network representation related to Dg2 in Eq. (12) is reported in Fig. (2).

The structure of network appears crucially affected by Φ both in terms of the
emergence of new links and in terms of their strength.

1

2 3

σ21/σ11

σ12/σ22

σ23/σ33

σ32/σ22

Figure 1: Network representation of
GVD matrix at horizon H = 1.

1

2 3

σ21/σ11

σ12

σ22

[

1 +

(

φ11 + φ13
σ32

σ12

)

2
]

σ23/σ33

σ32

σ22

[

1 +

(

φ33 + φ31
σ12

σ32

)

2
]

φ2

31
σ11

φ11φ31σ11+φ13φ33σ33

φ2

13
σ33

φ33φ13σ33+φ31φ11σ11

Figure 2: Network representation of
GVD matrix at horizon H = 2.

In particular, new links appear connecting Regions 1 and 3 through the VAR
coefficients φ13 and φ31.

VAR coefficients also drive the extent of persistence of shocks over time; for
example, dg2

11
depends on φ11 (the effect of autoregressive component of Region 1)

and φ13 (the shocks received from Region 3); coefficients appear to have a power
proportional to time horizon (i.e. for H = 2), that is shocks have an exponential
decay. It is straightforward to show that a longer time horizon increases the
strength of links with an exponential decay (for example dg3

11
includes terms like

φ4

11
and φ2

13
).

Region 2, missing any lag with itself and with the other regions in the VAR,
displays a network partially independent of the time horizon considered. In par-
ticular, the connectedness from Region 2 to other regions are affected through
the contemporaneous covariances σ12, σ22, and σ32, while the connectedness from
other regions to Region 2 are not affected by H.

Relaxing the assumption of VAR(1), for example in favor of VAR(2), increases
both the percolation of shocks through network and their persistence, but the
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qualitative results remain the same.

III. Connectedness Matrix versus Spatial Weigths Matrix

As discussed in the introduction the main goal of the paper is to get some
insights on the shape of spatial weights matrix W, which in spatial literature
measures the spatial dependence across different regions.

W is generally taken as exogenous in spatial literature, and it is specified or
in term of geographic contiguity or in terms of geographical distance (see Anselin,
2001). Corrado and Fingleton (2012) formulate three main critiques to current
literature: i) the values in the cells ofW comprise an explicit hypothesis about the
strength of interlocation connection”, in particular, “a priori assumption about
interaction strength”; ii) “Typically, isotropy is assumed, so that only distance
between j and h is relevant, not the direction j to h”; iii) “The potential for
dynamicW matrices poses some problems for estimation, given the assertion that
W is necessarily a fixed entity. While this may not be such an issue for cross-
section approaches, [...], with the extension of spatial econometrics to include
panel data modelling it may be the case that W is evolving.”

To discuss how our contemporaneous connectedness matrix Dg1 is strictly
related to W assume that the data generating process of GRV of N regions y
follows:

yt = (IN − ρW)−1 [µN +Xtβ + ut] = (IN − ρW)−1 [µN +Xtβ] + vt (13)

where µN is the vector of fixed effects of length N , yt is a vector of length N , Xt

is a matrix of dimensions (N × k), β is a vector of coefficients of length k, and
ut is the vector of error component of length N , and vt is the vector of spatially
filtered error component of length N .4 The error component ut is specified as:

ut = λWut + ψWut−1 + δut−1 + ǫt, (14)

where ǫt is the vector of innovations, with E [ǫt, ] = 0, E [ǫtǫ
′

t, ] = σ2

ǫ IN , and
E [ǫtǫ

′

t′ , ] = 0 for each t′ 6= t. Eq. (14) reflect the possibility that ut can display
mixed dynamics in both space and time. We follow the literature assuming that
W is the same for the spatially lagged dependent variable and the errors.

From Eq. (14) we derive:5

ut = (IN − λW)−1

{

∞
∑

i=0

δi
[(

IN +

(

ψ

δ

)

W

)

(IN − λW)−1

]i

ǫt−i

}

4See Elhorst (2013) for a general introduction to spatial panel models.
5We are assuming that the first-order spatial autoregressive process is ergodic.
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from which we get the variance-covariance matrix of ut, U, for all t, i.e.:

U = E [utu
′

t] = σ2

ǫ (IN − λW)−1 ×

×

[

IN − δ2 (IN − λW′)
−1

(

IN +

(

ψ

δ

)

W′

)(

IN +

(

ψ

δ

)

W

)

(IN − λW)−1

]

−1

×

× (IN − λW′)
−1

(15)

Therefore, the variance-covariance matrix of vt, V, for all t is given by:

V = E [vtv
′

t] = (IN − ρW)−1
U (IN − ρW′)

−1
. (16)

Assuming that the VAR representation well approximates the dynamics of
yt, a possible estimation of V is given by the variance-covariance matrix of the
VAR(1) model, i.e. Σ̂.

The approximation of stochastic process of yt through a VAR representation
allows to overcome the incidental parameters problem discussed in Anselin (2002).
In our model the total number of parameters to be estimate is equal to N2−N+5
(all no-zero elements ofW plus λ, δ, ψ, ρ, and σ2

ǫ ) and the number of observations
are equal to N2 (the elements of V); under the assumption N > 5 it is therefore
possible to estimate the elements of W as well as the other parameters of Eq.
(16). But the estimate of W from Σ̂ becomes very unreliable already for small
N : for our sample of N = 199 observations, the total number of parameters o
estimate is equal to 39407 against a number of observations equal to 39601.

However, a comparison between Eqq. (7) and (16) makes clear that Dg1 and
W are calculated on the same information set, i.e. Σ̂.

Moreover, the comparison highlights how spatial panels whose observations
refer to variable with different timing (e.g. panel of annual observations versus
panel with five-year average observations) should include different spatial matrix
reflecting the different degrees of interconnectedness (five-year average observa-
tions are likely to have a higher level of interconnectedness). A similar argument
is made in network literature (see, e.g., Newman, 2009).

IV. Empirical Application

Our sample consists of a panel of GRV of per capita GDP of 199 European
NUTS2 regions belong to EU15 over the period 1981-2008.6

In order to compare our connectedness matrix with the spatial weights ma-
trices mostly used in the spatial econometric literature, we construct a network
derived from the contemporaneous connectedness matrix Dg1 (that is the GVD

6See Fiaschi and Parenti (2013) for details on the sample, sources of data and estimation
of the GRV. All the calculations are made using R (R Core Team, 2014). Codes and data are
available on author’s web page http://dse.ec.unipi.it/~fiaschi/.



11

at time horizon H=1)7 and two networks derived from the GVD of the variance-
covariance matrix of a spatial model as the one in Eq. (16) of Section III.. In
particular, we assume two different spatial weights matrices, i.e. a first-order
contiguity matrix, Wcont, and a distance based matrix with cut-off, WinvDistQ1,
(both row-standardized) whose weights are given by:

wcont(i, j) =

{

1 if i and j share a border
0 otherwise

,

and

winvDistQ1(i, j) =

{

dist−2

ij if distij < 370 miles
0 otherwise

;

we have calibrated the parameters of the model as ρ=0.32, λ=0.42, φ=0.32, ψ=0
and σ2

ǫ=1 to get networks which are similar to our contemporaneous network in
terms of mean degrees (see Table 2).8

n m c S l d C r
Dg1 199 1188 5.97 1 3.3 6 0.15 0.83
Wcont 199 1082 5.44 18 2.47 16 0.56 0.94
WinvDistQ1 199 1237 6.22 5 4.05 21 0.63 0.97

Table 2: Characteristics of the networks derived from the GVD matrix with H=1, Dg1,
Wcont and WinvDistQ1. n is the number of vertices (the number of regions), m the
number of edges (the number of no-zero links), c the mean degree (i.e. m/n), S the
fraction of vertices in the largest (weakly connected) component, l the mean geodesic
distance (any two no-connected links are excluded by calculation), d the diameter
of network (the length of the longest finite geodesic path), C the average clustering
coefficient (based on transitivity in weak form), and r the assortative coefficient (see
Newman, 2009).

To analyze our connectedness matrix as an unweighed and direct network
links, i.e. pairwise directional connectedness, with a strength greater than 2.12%
will be set equal to 1, while all the others equal to 0. In other words, we have
assigned a value of 1 to the ij element of adjacent matrix if the fraction of region’s

7In Fiaschi and Parenti (2013) we extensively discuss the connectedness matrix estimated at
different time horizons (contemporaneous H1, 5-year ahead H5, 10-year ahead H10 and 20-year
ahead H20).

8Table 2 reports some basic statistics of the networks. We follow the notation in Newman
(2009) labelling by n the number of vertices (the number of regions), m the number of edges
(the number of no-zero links), c the mean degree (i.e. m/n), S the fraction of vertices in the
largest (weakly connected) component, l the mean geodesic distance (any two no-connected
links are excluded by calculation), d the diameter of network (the length of the longest finite
geodesic path), C the average clustering coefficient (based on transitivity in weak form), and r
the assortative coefficient.
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i 1-year ahead forecast error variance due to shocks in region j, d1ij, is higher
than 2.12%, which corresponds to a significance level equal to 2.5% under the
null hypothesis of no percolation of shocks from region j to region i (see Fiaschi
and Parenti, 2013 for details).9

Figures (3)-(5) report the Kamadakawai network for the adjacent matrix de-
rived from Dg1, Wcont and WinvDistQ1 respectively. In all the figures the colours
of the vertices are the same for regions belonging to the same country.

9In the estimation of the unweighed and direct networks derived from the two spatial matrices
we have used the same level of significance on the pairwise directional connectedness equal to
2.12%.
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Figure 3: Kamadakawai network with
threshold on the share of GVD equal to
2.12% for the adjacent matrix derived
from D

g1.
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Figure 4: Kamadakawai network with
threshold on the share of GVD equal to
2.12% for the adjacent matrix derived
from the spatial model with Wcont.
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Figure 5: Kamadakawai network with
threshold on the share of GVD equal to
2.12% for the adjacent matrix derived
from the spatial model with WinvDistQ1.
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The network for the adjacent matrix derived from the contemporaneous con-
nectedness matrixDg1, is very different fromWcont andWinvDistQ1. In particular,
although the number of mean degrees, i.e. the mean number of links, is very sim-
ilar across the three networks (we choose the parameters in Eq. 16 to match
this characteristic), the network derived from the GVD matrix with H=1 shows
no evidence of specific geographical pattern.10 The opposite holds for the net-
works derived from the GVD matrix with Wcont and WinvDistQ1, which obviously
impose a geographical structure through the exogenous definition of W.

Hence, the assumption that spatial interaction between regions is represented
by a geographical weights matrix can lead to a misspecification of the spatial
interdependence structure. The effects of such a misspecification are studied
by Florax and Rey (1995), who show that both over and under-specification
of the geographical weights matrix increases the mean square errors for spatial
econometric models. However, no systematic exploration has been conducted so
far; the intuition is that misspecification of the spatial weights matrix could lead
to a substantial bias in the estimate.

V. Concluding Remarks

The estimate of the connectedness matrix for EU regions proposed in the
paper has allowed to highlight how the most popular spatial weights matrices
used in literature are very far from the true spatial weights matrix (if any).

This paper would represent a first step in the development of a methodol-
ogy to estimate a spatial weights matrix which explicitly takes into account the
critiques advanced by Corrado and Fingleton (2012). The next step should be
the definition of a methodology that, starting from the estimated connectedness
matrix, allows to estimate the associated spatial weights matrix. The biggest
obstacle appears the high number of matrix elements to estimate, which calls for
some non-standard econometrics techniques and /or for imposing some regularity
conditions on the shape of the spatial weights matrix.
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