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The Determinants of CO2 Emissions

Differentials with Cross-Country Interaction

Effects: A Dynamic Spatial Panel Data

Bayesian Model Averaging Approach.∗

Abstract

This study analyzes the importance of a large number of possible de-
terminants of CO2 emissions per capita during the period 1991-2014
for a sample of 123 countries. They key contributions are methodolog-
ical given that we consider the effect of a great number of economic,
institutional, demographic and socio-cultural factors that could af-
fect CO2 emissions employing Spatial Bayesian Model Averaging tech-
niques while accounting for different concepts of cross-country inter-
actions and different spillover processes. Over the different type of
interactions considered: geographical, genetic, linguistic and religious
we find that traditional geographical interactions outperform the oth-
ers. Spatial Bayesian Model Averaging analysis enable us to compute
the PIPs for the different indicators to generate a probabilistic ranking
of relevance for the various CO2 determinants. Our findings suggest
that CO2 emissions are mainly determined by economic factors such

∗This research has benefited from the financial support of the Spanish Ministry of Economy
and Competitiveness (Project ECO2016-76681-R).
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as the sectoral composition, the prices of gasoline, the intensity of fos-
sil fuels consumption and the level of output. In a intermediate level
of importance we find social and demographic factors such as the age
composition, the religious attitudes or the social globalization of the
population.

Classificazione JEL: C1, O13, C23
Keywords: Dynamic Spatial Panels, CO2 emissions, Determinants,
Spatial Bayesian Model Averaging
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I. Introduction

The causes and consequences of Carbon Dioxide (CO2) emissions to the atmo-
sphere have attracted the attention of many researchers during the last decades
also due to the recent Paris agreement on global warming hold in 2015. One
of the issues that has received the most attention and promoted heated debate
among environmental and economic researchers is the relationship between in-
come and pollution (Grossman and Krueger, 1995), which has crystalized in the
Environmental Kuznets Curve (EKC) literature. Nevertheless, the existence of
an EKC for the case of Carbon Dioxide (CO2) emissions is far from settled.

Figure (1) provides preliminary evidence on the existence of an non-linear
pattern between economic development and CO2 emissions during the period
1991-2014 for a global sample of 123 countries. The fit to the data shows the
quadratic fit describes better the data than the linear fit. Hence, the preliminary
evidence on the relation between GDP and CO2 emissions per capita suggests
that environmental degradation increases with income at lower levels of income
and then decreases once a threshold level of per capita income is reached.

Figure 1: Economic Development and CO2 Emissions per capita

Nevertheless, the information provided by Figure (1) can not be understood
as a causal link and the relationship should be interpreted with caution because
omitted variables may determine the observed connection between CO2 emissions
and economic development. In fact, it is likely that the level of CO2 emissions
does not depend exclusively on their degree of economic development.

In this regard, the empirical literature has stressed the role played by various
factors on CO2 emissions including the initial levels/conditions of CO2 emissions
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(Petterson et al., 2014; Ordas-Criado et al., 2011), the share of physical and
human capital investment economic growth (Brook and Taylor, 2010), the level
of financial development (Tamazian et al., 2009), the degree of trade openness
(Frankel and Rose, 2005; Managi et al., 2009), the foreign direct investment flows
(Erdogan, 2014; Omri et al., 2014), the employment of fossil fuels (Zhang and Lin ,
2012), the degree of economic, social and political globalization (Bu et al., 2016),
the different sectoral composition of economic activity (Hocaoglu and Karan-
fil, 2011), the demographic dynamics involving age structure and urbanization
trends (Cole and Neumayer, 2004; Liddle and Lung , 2010; Martinez-Zarzaroso
and Maroutti, 2011), the quality of the institutions (Farzin and Bond, 2006;
Li and Reuveny, 1995), the ideology of government (Neumayer, 2003; Garmann,
2014), the type of electoral systems and the quality of the political representation
(Fredriksson and Wollscheid, 2007; Lipscy, 2014), the corruption of the political
system and the media (Lopez and Mitra, 2000; Feldman et al., 2012), the reli-
gious and social values of the population (Morrison et al., 2015; Tjernstrom and
Tietenberg, 2008) or the degree of gender equality (Agarwal, 2009; Ergas and
York, 2012) among other determinants.

Empirical studies are crucial to obtain a deeper understanding of the deter-
minants of the evolution of CO2 emissions by confronting the plausibility of the
theories and the explanatory power of the variables involved in them. Never-
theless, the fact that previous studies have employed limited sets of variables
to explain the evolution of CO2 emissions is likely to create artificially narrow
confidence intervals. Moreover, previous studies have ignored the model uncer-
tainty surrounding the data generating process (DGP) of CO2 emissions, which
hampers consensus on the key determinants of CO2 emissions and the validity of
previous EKC analysis.

An additional methodological challenge in the analysis of CO2 emissions is
that the majority of the studies have focused on time-series issues such as sta-
tionarity, co-integration, etc., thus ignoring the fact that CO2 emissions are cor-
related in space (Maddison, 2006). From the theoretical point of view, spatial
dependence in CO2 emissions among economies may arise: (i) as a consequence
of countries strategic response to transboundary pollution flows as governments
might strategically manipulate environmental standards in an attempt to attract
capital, or for trade purposes and/or (ii) because of the geographical interde-
pendence in the technologies used to produced goods and services in the various
countries (Ertur and Koch, 2007; Ezcurra and Rios, 2015). The arguments sug-
gesting the relevance of space when modeling the phenomenon of CO2 emissions
can be corroborated when looking at Figure (2). Figure (2) displays the Moran’s
Scatterplot and provides a first insight on the role of space and geography in
the emissions per capita of CO2 emissions around the globe during 1991-2014.
The positive linear relationship between the logarithm of average C02 per capital
emissions during 1991-2014 suggest that space matters. In this regard, the omis-
sion of relevant spatial interaction terms in the econometric analysis is of major
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importance as it could lead to bias/inconsistent and inefficient estimates (LeSage
and Pace, 2009, Elhorst, 2014).

Figure 2: Economic Development and CO2 Emissions per capita

To extend our understanding of the determinants of CO2 emissions and the re-
lationship between pollution and economic development this study makes several
novel contributions to the literature.

First, we investigate the robustness of the link between income and CO2 emis-
sions per capita at the global level using dynamic spatial panel data econometric
techniques. The estimation of the spatial specification is performed employing
annual data in a global sample of 123 countries and for the period ranging from
1991 to 2014.

Second, given the uncertainty surrounding the nature of cross-country inter-
actions we perform a Spatial Bayesian Model Selection analysis following LeSage
(2014) and Rios (2016). Hence, we extend previous research on CO2 emissions to
account for different patterns of cross-country interaction and different connec-
tivity matrices based on geographical, genetic, linguistic and cultural distances
to describe the cross-sectional dependence of CO2 emissions among our sample
of countries. It represents, as such, a novel application at the worldwide level.
In this regard, the model selection analysis performed here is of major impor-
tance, as different spatial econometric models ultimately imply different types
of spillover processes and different spatial interactions matrices imply different
channels through which cross-country interactions occur.

Third, we extend previous work in Bayesian Model Averaging for cross-sectional
spatial models by LeSage and Parent (2007) to the context of dynamic spatial
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panels. The relevance of the determinants of CO2 emissions is analyzed comput-
ing Posterior Inclusion Probabilities (PIPs) in a set of more than thirty possible
explanatory variables that are expected to affect CO2 emission patterns, which
contrasts with the limited set of controls employed in the literature. Therefore,
compared with the limited set of regressors considered in the existing empirical
literature, this study rigorously assesses model uncertainty over a larger set of
environmental quality determinants. These covariates can be grouped into four
categories: (i) economic factors, (ii) institutional and political characteristics,
(iii) demographic factors and (iv) social cultural factors. Contrary to previous
studies on CO2 emissions where inference is based in single econometric model
analysis containing a small set of regressors, the Spatial Bayesian Model Averag-
ing (SBMA) approach employed here considers the full model space. As a conse-
quence, our analysis has the advantage of minimizing the likelihood of producing
(i) biased estimates and (ii) artificially low confidence intervals (Moral-Benito,
2015).

Therefore, the econometric modeling framework employed here has several
advantages with respect previous analysis that only consider time or spatial de-
pendence in the observations. First, (i) the unrealistic assumption of CO2 emis-
sions to be independent over space and time has no longer to be made, (ii) it
enables the investigation of the nature, magnitude and significance of spillovers
in a variety of CO2 determinants and (iii) it facilitates assessment of the relative
importance of different determinants for explaining CO2 emission patterns.

The paper is organized as follows. After this introduction, Section 2 presents
a brief literature review on previous CO2 EKC studies and the determinants of
CO2 emissions per capita considered in the present study. Section 3 describes
the econometric approach used in the analysis, the Spatial Bayesian Model Se-
lection and the Spatial Bayesian Model Averaging methodologies employed. The
empirical findings of the paper are discussed in Section 4. The final section offers
the main conclusions from this work and the policy implications of the research.

II. The Determinants of CO2 Emissions

According to the literature, CO2 emissions are driven by a myriad o factors
that could explain differences on the pollution patterns across-countries. This
is because of certain country-specific characteristics have been identified in the
literature as factors that may enhance/diminish CO2 emissions. This section
focuses on the determinants of CO2 emissions and summarizes the main findings
of previous empirical studies, distinguishing between pollution-enhancing and
pollution-hindering factors.
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II.A. The Pollution-Income Relationship

Theoretical and empirical contributions of Pollution-Income Relationship (PIR)
literature, linking economic growth and pollutant emissions, have considered the
later as a byproduct of economic activity (Brook and Taylor, 2010). According
to this literature, the PIR may take several forms of which the most widely sup-
ported is the EKC, which is an inverted U shape relationship. Table (1) below
summarizes some of the findings of this strand of literature over the last 20 years.
As it can be observed, the patterns discovered in empirical research are mixed,
since the results are sensitive to the sample, the period of analysis, the functional
form and the econometric methodology.

In the empirical literature there are three patterns that appear to be consistent
with the data.

The first one is the inverted U-type relationship, which implies that envi-
ronmental degradation increases with income at lower levels of income and then
decreases once a threshold level of per capita income is reached. With different
sample and methodologies (time series, cross section an panel data), this result
is confirmed in Holtz-Eakin and Selden (1995) Tucker (1995), Cole et al. (1997),
Schmalensee et al. (1998), Galeotti and Lanza (1999), Taskin and Zaim (2000),
Halkos and Tsionas (2001), Galeotti et al. (2006), Narayan and Narayan (2010),
Jobert et al. (2014), Apergis (2016),Shahbaz at el. (2017), Shahbaz at el.
(2017).

Despite the empirical evidence provided so far, other contributions have ar-
gued that such an inverted-U relationship may not hold in the long run. In
their contribution Taskin and Zaim (2000), Özokcu and Özdemir (2017), López-
Menéndez et al. (2014) obtain the so-called N-shaped relationship, which exhibits
the same pattern as the inverted-U curve initially, but beyond a certain income
level, the relationship between emissions and income becomes positive again. The
existence of an N-shaped curve implies that environmental degradation cannot
be solved automatically by economic growth, suggesting that at very high income
levels the scale effect of economic activity could become so large that its nega-
tive impact on environment might not be counterbalanced by the positive impact
induced by better techniques.

Finally, Shafik (1994), De Bruyn et al. (1998), Halkos and Tsionas (2001),
Azomahou and Van Phu (2001), Bertinelli and Strobl (2005), Azomahou and
Van Phu (2001), Dutt (2009) and Aslanidis and Iranzo (2009) present in their
empirical work a different pattern in favor of a monotonically increasing linear
relationship, indicating that rising incomes are associated with rising levels of
emissions. Their main critique to the inverted U-shape relationship observed
in the previous studies comes from the missing distinction between the short-
term costs of economic growth, its insecure long-term benefits and the difficulty
to capture all the complex factor under the relationship between pollution and
income with simple reduced form model.
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Table 1: Environmental Kuznets Curve empirical studies for CO2 emission

Author(s) and publication
year

Technique Data sample Time period Shape of EKC

Shafik (1994) Fixed country effects/Time trend 149 countries 1960-1990 Linear (positive) relationship
Holtz-Eakin and Selden (1995) Fixed country/Time effects 130 countries 1951-1986 Inverse U-shape (but turning point is

too high)
Tucker (1995) Cross-section regressions for each year 131 countries 1971-1991 Inverse U-shape (stronger over time)
Cole et al. (1997) Fixed country effects 7 world regions 1960-1991 Inverse U-shape (but turning point is

too high)
De Bruyn et al. (1998) Time series regressions 4 OECD countries 1961-1990 Linear (positive) relationship
Schmalensee et al. (1998) Spline model 141 countries 1950-1990 Inverse U-shape
Galeotti and Lanza (1999) Gamma and Weibull models 110 countries 1971-1996 Inverse U-shape in all the three cases
Taskin and Zaim (2000) Non-parametric models 52 countries 1975-1990 Inverse U-shape
Halkos and Tsionas (2001) Cross-section regression 61 countries 1980-1991 Monotonic relationship between envi-

ronmental degradation and income, so
no existence of an EKC

Azomahou and Van Phu
(2001)

Parametric and non parametric regression 100 countries 1960-1996 Monotonic relationship in the non-
parametric model and inverted-U curve
in the parametric model. However,
a differentiating test rejects the para-
metric approach in favor of the non-
parametric one.

Martińez-Zarzoso and
Bengochea-Morancho (2004)

Pooled mean group estimator 22 OECD countries 1975-1998 N-shape for majority of countries

Müller-Fürstenberger and
Wagner (2004)

Panel unit root &cointegration Tests 107 countries 1986-1998 Results are mixed

Bertinelli and Strobl (2005) Non-parametric models 122 countries 1950-1990 Linear (positive) relationship
Dijkgraaf and Vollebergh
(2005)

Polynomial & spline models 24 OECD countries 1960-1997 Inverse U-shapein 11 out of 24 coun-
tries

Azomahou and Van Phu
(2001)

Non-parametric models 100 countries 1960-1996 Linear (positive) relationship

Galeotti et al. (2006) Weibull model 125 countries 1960-1997 Inverse U-shape for OECD and concave
(but with no reasonable turning point)
for Non-OECD

Dutt (2009) Panel model with fixed effects 124 countries 1960-2002 Linear between 1960-1980 and inverted
U-shape between 1984-2002

Aslanidis and Iranzo (2009) Smooth transition regression models 77 non-OECD coun-
tries

1971-1997 Positive but at a slower rate after some
income threshold

Narayan and Narayan (2010) Cointegration test 43 developing coun-
tries

1980-2004 Inverse U-shape in 15 countries (time
series)in Middle Eastern and South
Asia panels

López-Menéndez et al. (2014) Fixed country/Time effects 27 countries of the Eu-
ropean Union

1996-2010 N-shaped curve for models with vari-
ables in levels while U patterns for the
logarithmic models

Jobert et al. (2014) Bayesian shrinkage estimator 55 countries 1970-2008 Inverse U-shape is observed some coun-
tries but not all of them

Apergis (2016) Panel/time series contegration analysis 15 countries 1960-2013 Inverse U-shape for 12 out of 15 coun-
tries

Grunewald et al. (2017) Panel fixed effect/group fixed effects 158 countries 1980-2008 Inverse U-shape
Shahbaz at el. (2017) Non-parametric models G7 countries 1950-2015 Inverse U-shape for all the countries,

except Japan

Özokcu and Özdemir (2017) Fixed effects panel model 26 OECD plus 52
emerging countries

1980-2010 N-shape and an inverted N-shape rela-
tionship for cubic functional form

II.B. Economic Factors

The set of economic determinants is perhaps the most important group of
factors driving CO2 emissions.

We first control for traditional economic growth determinants such as (i)
the ratio of investment to GDP and the (ii) the level of human capital. We
expect a positive effect of both human and physical capital since they are the
key determinants driving economic growth in standard macro-economic models
(Mankiw et al., 1992). Additionally, we control for the (iii) initial levels of CO2
per capita to check the existence of a process of convergence. While theoretical
growth models predict environmental convergence, the empirical literature has
shown highly contradictory results finding support to both, the hypothesis of
divergence and to the hypothesis of convergence (Petterson et al., 2014).

We also incorporate the share of (iv) trade openness and (v) financial openness
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in the GDP. According to Grossman and Krueger (1991) trade and financial
flows can influence the environment through two key channels that may work on
opposite directions: the scale and the composition effect. The scale effect refers
to the impact of trade on the level of economic activity whereas the composition
effect refers to the influence of trade on the productive structure of the economy.
While increased openness will lead to greater economic activity contributing to
environmental degradation, the composition effect is ambiguous. The empirical
evidence for the effect of trade openness is mixed. There are studies finding
the effect is that of a reduction of emissions as observed in Frankel and Rose
(2005) and Antweiler et al. (2001) while others such as Cole and Elliot (2003) find
that this effect is dependent on the pollutant and that for the CO2 emissions,
increasing trade openness increases emissions. Regarding the effects of foreign
direct investment and capital openness, there are two competing hypothesis. The
pollution-haven hypothesis (PHH) and the halo hypothesis. The first one suggests
that increasing financial openness leads to higher pollutant emissions given that
in order to attract foreign investment, the governments of developing countries
have a tendency to undermine environment and relax regulations. However, the
literature review of Erdogan (2014) suggests empirical studies do not support
the PHH. The halo hypothesis suggests that financial openness should decrease
emissions through a technique and management effect, given that multi-national
corporations tend to introduce clean-state-of-the-art production techniques from
high-standard countries of origin to host countries where they are not yet known.
The findings regarding the effect of financial openness are also mixed, as there
are analysis finding a positive (Omri et al., 2014), insignificant (Lee, 2013, You
et al., 2015) and negative (Eskeland and Harrison (2003)) link.

As explained by Dinda (2004), as income grows, the structure of the econ-
omy tends to change which may affect the level of emissions. In particular, it is
expected that with higher economic development gradually increases cleaner ac-
tivities that produce less pollution. Specifically, environmental degradation tends
to increase as structure of the economy changes from agricultural to industrial,
but it starts to fall with another structural change from industry to services and
knowledge based technology. For this reason, we control for the sectoral compo-
sition of the economy and we consider (vi) the share of agriculture and (vii) the
share of industry in the value added. We expect a negative effect for the share of
agriculture and a positive effect of the industry. We do not include the share of
services to avoid multi-collinearity problems.

The different specialization patterns in the production of goods and services
may require varying amounts of fossil fuels as inputs for production, which are
deemed to be one of the key determinants of pollutant emissions (IEA, 2016).
To control for disparities in the production and use of fossil fuels, we add in our
econometric analysis (viii) the total production of oil and (ix ) the total production
of gas. Additionally we introduce two demand controls (x ) the gasoline prince
and the (xi) the share of fossil fuels in the total energy consumption. While the
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effect of producing oil, gas and the intensity in the use of fossil fuels is expected
to be positive, the effect of prices is expected to be negative as found in Agras
and Chapman (1999).

Finally, we also consider the potential effects of (xii) income inequality and
(xiii) financial development. Income inequality can affect the evolution of CO2
emissions given that in contexts of high income inequality, agents that bear the
cost of pollution will not enjoy a sufficiently strong bargaining position to im-
pose environmental regulations on those who benefit from it (Torras and Boyce,
1998). This, in turn, will result in inefficiently high levels of pollution and a
positive correlation between income inequality and pollution. On the contrary,
as long as poor agents display higher propensities to consume than rich agents,
an increase in the level of income inequality may decrease consumption and CO2
emissions. Contradictory evidence about the effect of income inequality is again
observed between the analysis of Torras and Boyce (1998) and Grunewald et al.
(2017). On the other hand, a higher financial development is expected to reduce
CO2 emissions due to the induced technological innovations in the energy sup-
ply sector, the financing of investment in environmental projects at lower costs
(Tamazian et al., 2009).

II.C. Institutional and Political Factors

Attempting to explain changes and cross-country differentials in CO2 emis-
sions researchers have also considered the impact of political and institutional
factors. Nevertheless, the effect of these factors on the environmental quality, is
more indirect than economic ones given that it depends on whether laws enacted
and policies ultimately affect the behavior of agents, the production processes
and the technological techniques involved in them.

Our first determinant is (i) the level of democracy for which we do not ex-
pect a concrete effect on emissions. On one hand, environmental quality has
been linked to political rights, free information and free participation. In this
context, a representative democracy, which guarantees wider citizen participa-
tion and a greater plurality of political forces, is expected to deliver better public
policies than autocratic regimes (Torras and Boyce, 1998; Li and Reuveny, 1995;
Farzin and Bond, 2006). This is because of an autocratic system is expected to
limit information flows by promoting unilateral decision making and decreasing
collective awareness about environmental issues. On the other, as explained by
Midlarsky (1998) and Scruggs (1998), a common problem of democratic regimes
is the difficulty in identifying, circumscribing, and hence protecting public goods.
This could lead to the mismanagement of natural resources by some economies
which in turn, may decrease environmental standards.

Differences in the (ii) ideology of the party in government might be a relevant
factor influencing the behavior of CO2 emissions as suggested by Neumayer (2003)
and Garmann (2014). Left-wing parties are known to be in favor of government



The determinants of CO2 emissions with cross-country effects 12

intervention and closer to the labor base whereas right-wing governments, are
usually closer to capital owners and dislike interventionism. If ecological policies
convey substantial tax increases and adjustments costs because of emission re-
duction requirements, the effect of a right wing-government on emissions should
be negative. Similarly, if ecological policies threaten the jobs in heavily-polluting
industry sectors, left-wing governments might not promote a reduction of emis-
sions. On the other hand, the traditional left-wing interventionism may translate
in the restructuring of the economy towards cleaner technologies and because of
the clientele of left-wing parties is more likely to be affected by air pollution,
they may have a rationale for ecological policies (Garmann, 2014). Given that
the empirical evidence provided by Neumayer (2003) and Garmann (2014) sug-
gests left-wing governments reduce emissions, we expect a negative effect of our
ideological variable.

We also take into consideration the (iii) share of seats of the party in govern-
ment in the legislative chamber and (iv) the degree of government fragmentation.
Weak governments may face difficulties in changing policy, which may exert a
positive effect on emissions as ecological policies aiming at reducing emissions
may become more difficult to pass due to policy inertia. Evidence supporting
this view is provided by Garmann (2014). Similarly, a high margin of majority
or a high share of seats of the government could lead to an increase of the emis-
sions. In this regard, note that electoral rules (i.e, majoritarian/proportional) are
a key determinant of the number of parties and the distribution of power across
parties in the political system. Electoral rules also provide different incentives to
environmental conservation. As explained by Liphart (2012), majoritarian rules
usually imply higher concentrations of power whereas proportional rules deliver
consensual party systems with a more equally distributed power. These also
provide different incentives to environmental conservation. Under proportional
rules, political parties consider the welfare of the entire population to maximize
its representation, which induces political parties to pay greater attention to is-
sues that are national/global in scope such as the transboundary pollution flows.
This contrasts with majoritarian systems, where parties may focus on a subset of
population, thus, presenting weaker incentives to enact stringent environmental
policies (Fredriksson and Wollscheid, 2007, Lipscy, 2014).

Additionally, we take into account the potential effects of (v) corruption.
Lopez and Mitra (2000) and Welsch (2004) analyze the role that corruption and
rent-seeking behavior can play on environmental quality. These studies suggest
existence of a positive relationship between corruption and emissions.

Finally, we control for (vi) the possible effects of political globalization and
(vii) a time-dummy which captures the effect of the adoption of the Kyoto-
protocol. Theoretically, there are a number of reasons to believe that political
globalization and the Kyoto-protocol should decrease emissions. First, coun-
tries that are part of intergovernmental organizations (IGOs), can be compelled
by member states to obey their rules, they are subject to norms defining good
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behavior and bad conducts and they are exposed to the other purposes of the
organization, such as environmental protection. Taking the Kyoto Protocol as
an example, there is evidence that many of the developed countries in Annex I,
which faced a reduction target, increased their emissions at a much slower rate
than developing countries who had no targets. However, the overall empirical
evidence on the effect of these variables is mixed. Bu et al. (2016) find a posi-
tive link between political globalization and CO2 emissions whereas Aichele and
Felbermayr (2012) and Aichele and Felbermayr (2013) find both, negative and
positive effects of the Kyoto-protocol. Thus, we do not expect a concrete effect
for these regressors.

II.D. Demographic Factors

Other studies identify the connection between demographic factors, urbaniza-
tion trends and CO2 emissions.

While a decline in the (i) size of the population or the (ii) population growth
rate is likely to improve environmental quality (Shi, 2003; Cole and Neumayer,
2004), the demographic structure of populations may affect environmental con-
ditions in a variety of ways, especially through the age-dependent levels and
patterns of output and consumption (York, 2007; Dalton et al., 2008). Another
important channel through which aging may affect environmental quality refers
to the demand for environmental regulation and the underlying environmental
preferences (Menz and Welsch, 2010). However, the evidence on the effect of
population shares across age groups is somewhat mixed (see Liddle (2014) for
a recent literature review). We control for the age composition by considering
(iii) the share of population below 15 years old, (iv) the share of population be-
tween 30-49 years old and (v) the share of population above 65 years old. Thus,
the overall expected effect of these factors defining the demographic composition
change is ambiguous.

Finally, we control for (vi) urbanization and (vii) population density. Urban-
ization and rural migration into cities are frequently deemed to increase energy
consumption and to greater CO2 emissions. However, as Martinez-Zarzaroso
and Maroutti (2011) point out, the a priori effect of urbanization is ambigu-
ous. On one hand, urbanization requires transportation systems and usually
displaces traditional energy with modern energy, which substantially increases
the energy intensity of some activities while decreasing traditional energy use,
which ultimately results in increasing emissions. On the other hand, the process
of urbanization involves firm concentration and a reduction of the costs needed to
enforce environmental legislation encouraging the use of mass transport instead
of individual motor vehicles. Additionally, urbanization may decrease emissions
through economies of scale in the provision of sanitation facilities. In this regard,
empirical studies show mixed results finding both, a positive (Cole and Neumayer
(2004); York, 2007; Martinez-Zarzaroso and Maroutti, 2011) and a negative link
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(Fan et al., 2006) between urbanization and CO2 emissions per capita. Simi-
larly, the effect expected of population density is ambiguous given that similar
arguments to those of urbanization apply. Higher population density may place
an excessive burden on the absorptive capacities of the environment. However,
countries where most of the population is concentrated in cities with large popu-
lation densities may have less carbon emissions per capita compared to countries
with lower density suburban areas, mainly due to the efficiency gains implied by
public transportation services and walking accessibility (Gately et al., 2015).

II.E. Socio-Cultural Factors

The sociological characteristics of a country may also affect the level of CO2
emissions.

We first account for (i) the degree of women empowerment in the society.
Women’s traditional roles as caregivers, subsistence food producers, water and
fuelwood collectors and reproducers of human life suggests that women more
likely to support environmental protection. Ergas and York (2012) and Agarwal
(2009) using different methods and samples find evidence supporting hypothesis
of societies with greater gender equality have a lower impact in the environment.
Thus, we expect that countries with greater gender equality will tend to display
lower emissions.

Another potential determinant of CO2 emissions is (ii) the process of social
globalization (Bu et al., 2016). Transportation and lifestyle changes implied by
the social globalization process are expected to increase emissions (i.e, transporta-
tion systems such as the airplane have contributed greatly to carbon emissions).
These lifestyles are often associated with deforestation which makes emissions
even worse. However, the dimension of social globalization related to the in-
crease of personal contacts and information flows is expected to increase collec-
tive awareness. Therefore, the expected effect of social globalization on emissions
is ambiguous beforehand, given that it is likely to produce impacts that go on
different directions.

The different values and attitudes towards the environment that different re-
ligions carry on may also exert a significant effect on emissions (Tjernstrom and
Tietenberg, 2008; Morrison et al., 2015). The intuition is that different religions
imply different values and attitudes towards the environment which ultimately
gives rise to actions and patterns of behavior that may have a consequence on the
overall degree of pollution generated (Tjernstrom and Tietenberg, 2008; Morri-
son et al., 2015). According to the hypothesis developed in White (1967), Judeo-
Christian perspective and desire for dominion over nature which is also present in
the Islam, is negatively related to environmental respect and concerns while other
religions such as the Buddhism or Hinduism, that reject the dualism between hu-
mans and nature, should have a positive effect on environmental conservation.
Thus, we expect a positive effect on the level of emissions for the share of (iii)
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Christian and Islamic population and a negative effect for the share of (iv) Bud-
dhist and Hinduist population.

Finally, we identify the (vi) corruption of the mass-media as potential deter-
minant of emissions. Note that quality of the information flows can shape the
viewers opinions regarding the challenged implied by global warming and climate
change (Feldman et al., 2012; Brulle et al., 2012; McRight and Dunlap, 2011).
Hence, we expected that countries with more corrupt media, where the news
reported and interviewed scientists are used generate doubts about the human
impact in climate change display higher emission levels.

Definitions, abbreviations, descriptive statistics, data sources and expected
effects are presented in Table (2).
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Table 2: Definitions. sources and descriptive statistics of the explanatory variables

Variable Definition Source Mean Std Expected
Effect

Outcome variable
Ln CO2 Emissions per capita Natural log of the CO2 emissions pc WB 7.32 1.70
(i) EKC Profile
Ln GDP per capita (GDP1) Natural log of the GDP per capita in PPP PWT 8.98 1.24 +
Ln GDP per capita2 (GDP2) Square of the natural log of the GDP per capita in PPP PWT 78.89 21.56 ?
Ln GDP per capita3 (GDP3) Cube of the natural log of the GDP per capita in PPP PWT 720.52 286.82 ?
(ii) Economic Factors
Investment ratio (INV) Share of investment in GDP (%) PWT 20.63 7.91 +
Human Capital(1) (HC) Index of Human Capital PWT 2.37 0.71 +
Initial Emissions (CO2LAG) Natural log of the initial CO2 emissions WB 7.25 1.73 ?
Agriculture (AGRI) Share of GVA in agriculture (%) WB 15.16 13.85 -
Industry (INDUS) Share of GVA in industry (%) WB 30.72 11.68 +
Trade Openness (TRADE) Share of Exports + Imports in the GDP (%) WB 75.79 37.07 ?
Financial Openness(FDI) Share of FDI inflows and outflows in the GDP (%) WB 6.48 12.61 ?
Oil production (OIL) Oil production (in metric tons) Ross 24433761.32 70076856.23 +
Gas production (GAS) Gas production (million barrels oil equiv) Ross 150.37 559.61 +
Gasoline price (PRICEG) Pump price for gasoline (US$ per liter) WB 0.89 0.46 -
Fossil fuel consumption (FFUELC) Share of fossil fuels in total energy consumption (%) WB 58.82 31.37 +
Financial Development (2) (FDEV) Index of Financial Development IMF 23.44 9.05 -
Income Inequality (INEQ) Gini index SWIID 38.72 8.39 +
(iii)Institutional and Political Factors
Democracy Index (DEMO) Index measuring the level of democracy (scale 0 to 10) Polity IV 6.60 2.99 ?
Ideology (IDEO) Ideological Index measuring the ideology of the government (scale 1 to 3) DPI 2.08 0.64 ?
Political Corruption(3) (PCOR) Index measuring the level of political corruption (scale 0 to 100) VDEM 50.74 27.98 +
Government Seats Share (GOVS) Vote share of the parties in government (%) DPI 64.90 18.87 +
Government Fragmentation (4) (GOVF) Index measuring the fragmentation of the government DPI 22.68 25.50 +
Political Globalization (5) (GLOBP) Index measuring the degree of political globalization . scale 0 to 100 KOF 68.28 19.65 ?
Kyoto (6) (KYO) Dummy variable, 1 if the country signed the Protocol, 0 otherwise UN 0.60 0.49 ?
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Definitions. sources and descriptive statistics of the variables (Continued)

Variable Definition Source Mean Std Expected
Effect

(iv) Demographic Factors
Ln Population size (POP) Natural log of the total population (thousands) WB 16.37 1.44 -
Population growth (POPG) Growth rate of the population (%) WB 1.49 1.38 -
Ln Population density (POPD) Natural log of the population density (thousands/squared km) WB 4.70 4.95 ?
Urban population (URB) Share of population living in urban areas (%) WB 54.38 21.96 ?
Population < 15 years old (YNG) Share of total population that is 15 years or younger (%) WB 31.21 11.09 ?
Population 30-49 years old (PMED) Share of total population with ages between 30 and 49 years old (%) WB 48.40 9.46 ?
Population > 65 years old (OLD) Share of total population that is 65 years or older (%) WB 7.69 5.23 ?
(v) Sociological Factors

Media Corruption (7) (MCOR) Index of media corruption (scale 0 to 4) VDEM 2.61 0.94 +
Women Empowerment (8) (WPOWR) Index of women empowerment (scale 0 to 100) VDEM 70.376 18.039 -
Social Globalization (9) (GLOBS) Index of social globalization (scale 0 to 100) KOF 45.75 23.40 ?
Dual Religions (RELD) Share over the total population of catholic christians, muslims and jews (%) ARDA 78.70 25.86 +
Non Dual Religions(RELND) Share over the total population of hindus and buddhists (%) ARDA 6.95 19.98 -

Notes: WB denotes World Bank, PWT: Penn World Tables, IMF: International Monetary Fund, SWIID: Standardized World Income Inequality Database, DPI, Database
of Political Institutions, UN: United Nations, VDEM: Varieties of Democracies, ARDA: The Association of Religion Data Archives. (1) The human capital index is based
on the average years of schooling and an assumed rate of return to education, based on Mincer equation estimates. (2) The financial development index is a composite
indicator that weights 20 sub-indicators to measure the development of (i) financial institutions and the (ii) development of financial markets in terms of depth, access and
efficiency. (3) Political corruption runs from less corrupt to more corrupt. It weights 4 sub-indicators of corruption that cover different areas and levels of the polity realm
(i) public sector corruption, (ii) executive corruption, (iii) legislative corruption and (iv) judicial corruption. (4) Government fragmentation indicates the probability that
two deputies picked at random from among the government parties will be of different parties. (5) Political globalization weights the number of embassies in a country,
its membership in IGOs, the participation in U.N. Security Council missions and in International Treaties. (6) The Kyoto dummy is a country specific time-varying
variable that takes value of 1 if the country signed the Kyoto protocol and if it belongs to the set of countries included in Annex I.It takes a value of 0 otherwise. (7)
The media corruption index is constructed by means of an ordinal scale with the answers to the question: Do journalists, publishers, or broadcasters accept payments in
exchange for altering news coverage?. (8) The variable women empowerment measures the extent to which women are increasing their capacity for choice, agency, and
participation in societal decision-making. (9) The social globalization index measures the spread of ideas, information, images, and people. It aggregates three sub-indexes
with information on personal contact, information flows and cultural proximity. .
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III. Econometric Methodology

Most of the empirical cross-country studies analyzing CO2 emissions treat
the units of analysis as isolated entities, ignoring the spatial characteristics of the
data and the potential role of space modulating the evolution of CO2 emissions.1

Nevertheless, insofar every country evolves interacting with other countries, as
suggested by the preliminary evidence in Figure (2), major problems may arise
if the spatial characteristics of the data are ignored. Therefore, our empirical
analysis is based on modern spatial econometric modeling techniques.

III.A. Spatio-Temporal Models of CO2 Emissions

In the context of spatial econometrics, model uncertainty stems from various
sources. First, there are many candidate functional forms to define the spatial
weights matrix. Second, there could be three different types of interaction effects
operating through space: (i) endogenous interaction effects among the dependent
variable, (ii) exogenous interaction effects among the independent variables and
(iii) interaction effects among the disturbance terms (Elhorst (2014)).

To address this issue we begin by considering the Dynamic Spatial Error Model
(DSEM) and the Dynamic Spatial Durbin Error Model (DSDEM) specifications
which are given by Equations (1) and (2), respectively:

Yt = αιnt + τYt−1 + φWYt−1 +Xtβ + ǫt

ǫt = λWǫt + υt
(1)

and
Yt = αιnt + τYt−1 + φWYt−1 +Xtβ +WXtθ + ǫt

ǫt = λWǫt + υt
(2)

Yt denotes a N × 1 vector consisting of observations for the natural logarithm
of the average annual CO2 emissions per capita measured over 5 years windows
for every country i = 1, . . . , N at a particular point in time t = 1, . . . , T , Xt and
WXt are N × K matrices of exogenous aggregate socioeconomic and economic
covariates with associated β response parameters contained in K×1 vectors, that
are assumed to influence CO2 emissions per capita.2 τ is the response parameter
of the lagged dependent variable Yt−1. The variables WYt and WYt−1 denote
contemporaneous and lagged endogenous interaction effects among the dependent
variable. In turn, λ is the spatial diffusion which captures spatially correlated
shocks working through the error term. W is a N × N matrix describing the
spatial arrangement of the countries in the sample. α is the constant term, ιnt is
an NT × 1 vector of ones and ǫt = (ǫ1t, . . . , ǫNt)

′

is a vector of i.i.d disturbances

1The only exceptions are Zheng et al. (2014) and Pythagore et al. (2014) but these analysis
are carried out for samples of countries of the European Union or regions in China.

2We use five-year averages to define each time interval t as it is common in the literature
economic development.
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whose elements have zero mean and finite variance σ2. In addition, the SDEM
includes the spatial lag of the rest of control variables (exogenous effects), WX ,
whose impact is reflected by the K × 1 vector of coefficients θ. Additionally, we
also consider the Dynamic Spatial Lag Model (DSLM) and the Dynamic Spatial
Durbin Model (DSDM) which are given by Equations (3) and (4)

Yt = αιnt + ρWYt + τYt−1 + φWYt−1 +Xtβ + ǫt (3)

Yt = αιnt + ρWYt + τYt−1 + φWYt−1 +Xtβ +WXtθ + ǫt (4)

Some comments are worth mentioning with respect to the choice of the DS-
DEM/DSEM and the DSLM/DSDM specifications. First, DSDEM/DSEM do
not require a theoretical model for spatial or social interaction process as it is com-
mon in the case in spatial models including endogenous interactions. Indeed, as
explained by Gibbons and Overman (2012) and Halleck-Vega and Elhorst (2015),
spatial models containing endogenous interactions such as the DSDM/DSLM are
generally difficult to justify from a theoretical basis. In the context of CO2
emissions, endogenous interactions would lead to a scenario where changes in
one country set in motion a sequence of adjustments in (potentially) all units in
the sample such that a new long-run steady state equilibrium of CO2 emissions
arises. Second, SDEM/SDM specifications also produce local spillovers given by
θ, which allows to analyze whether there are important differences in the magni-
tude of impact associated to a regressor Xk within the country and outside the
country WXk affecting emissions. On the contrary DSLM/DEM do not allow for
such type of interactions.

III.B. Spatial Weight Matrices for Cross-Country Interactions

The estimation of the various spatial models described above requires to pre-
viously define a spatial weights matrix. Given that this is a relevant issue in
spatial econometric and social interactions modeling, a broad range of alterna-
tive specifications of W are considered taking into account different concepts of
distance. Note that the geographical distance, which is the most common one
employed in applied work is only one of the possible concepts of distance defining
the interface that connects economic and social processes. Therefore, we also con-
sider genetic, religious and linguistic distances to model the degree of relatedness
among countries.

Nevertheless, a complicating factor when modeling interactions is the wide
variety of potential forms for modeling spatial and cross-sectional dependence
(neighbors, distance, links, etc). Therefore, we also consider different functional
forms to model the wij terms of the W matrix, which denote the spatial weights
connecting countries i and j. In particular, we built k-nearest neighbor matrices
(k = 5, 10, 15, 20), exponential decay matrices (ω = 0.01, 0.025, 0.05) and inverse
power-distance based matrices (α = 1.5, 2, 3) to reflect that relatedness decreases
with distance. Furthermore, as is common practice in applied research, all the
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matrices are row-standardized, so that it is relative, and not absolute, distance
which matters. Moreover, if i = j, wij is set to 0, to avoid self-influence.

Geographical Distance Interactions
Geographical distances are measured as the kilometer-converted great circle dis-
tances (dij) on the sphere:

dij = arccos [(sinφi sinφj) + (cos φi cosφj cos |δγ|)] (5)

where φi and φj are the the latitude of country i and j respectively and |δγ| reflects
the absolute value of the difference in longitude between i and j. The geographical
distance dij used to generate the spatial weights wij is then normalized by means
of a max-min normalization so that it ranges between 0 and 100. The purpose of
this normalization is to facilitate the comparison with other concepts of distance.

Genetic Distance Interactions
As explained by Spolaore and Wacziarg (2009, 2016a) populations that share
a more recent common ancestry exchange goods, capital, innovations and tech-
nologies more intensively. In this regard, genetic distance measures capture how
distant human societies are in terms of the frequency of genes among them and
constitutes a molecular clock that characterizes the degree of relatedness between
human populations. Typically, people over the world tend to share the same set
of gene variants (alleles), but with different frequencies across different popula-
tions. Thus, we rely on the update of the weighted FST metric developed by
Spolaore and Wacziarg (2016b) that measures the variation in the allele frequen-
cies for each pair of populations. Denote p = 1, . . . , P the populations of country
i, q = 1, . . . , Q the populations of country j, spi the share of population p in
country i and (similarly for country j) and dpq the genetic distance between pop-
ulations p and q. Then the weighted genetic FST distance between a pair of
countries i and j is defined as:

FW
ST,ij =

P
∑

p=1

Q
∑

q=1

spi × sqj × dij (6)

The FST metric takes a value of 1 when genetic distance is maximum and a value
of 0 when the distribution of genes is identical. This metric is post-multiplied by
100.

Linguistic Distance Interaction Matrices
Linguistic distance metrics are based on language trees which is a methodology
borrowed from cladistics. Linguists group languages into families based on per-
ceived similarities between them. Specifically, the classification of languages used
here relies on the Ethnologue classification and the variation in the number of
common nodes (CN) between languages corresponds to variation in linguistic
distance. However, rather than using the number of common nodes between the
languages of each country i and j in a pair, (CN) we use the expected or weighted
common nodes (CNW ). As described in Spolaore and Wacziarg (2009, 2016a)
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both (CN) and (CNW ) range from 0 to 15. More formally, for each country in a
pair CNW is given by:

CNW =
P
∑

p=1

Q
∑

q=1

spi × sqj × cpq (7)

where spi is the share of linguistic group p in country i, sqj is the share of linguistic
group q in country j, and cij is the number of common nodes between languages
p and q.

To obtain a measure bounded between 0 and 1, a normalization as in Equation
(8) is performed. This metric exploits the fact that countries can be linguistically
heterogeneous. For each country pair i and j, linguistic distance is calculated as:

TLDij =

√

15− CNW

15
(8)

This computation implies that after multiplying by 100, the TLD metric also
ranges from 0 to 100, where 100 denotes the maximum linguistic distance.

Religious Distance Interaction Matrices
Religion is another feature that characterizes differences and relatedness among
human societies. To capture religious distance between countries we use the tree-
based distances between world religions developed by Spolaore and Wacziarg
(2016a) who built upon the religion trees developed by Mecham, Fearon and
Laitin (2006) and the World Christian Database (WCD). As in the context of
language, the number of common nodes between religions is a metric of religious
proximity. As before, we calculate the expected number of common nodes be-
tween the religions of each country in a pair and normalize it using Equations (8)
and (7) above.

III.C. Bayesian Model Selection

According to the literature, there are different criteria to determine the spa-
tial weights matrix that best describes the data: the log-likelihood of the model,
the variance of the residuals, or the posterior model probability (PMP), among
others. In this regard, the employment of PMP’s stemming from Bayesian model
comparison exercises has been shown to perform with high accuracy (LeSage,
2014). In this study, we draw on work by Rios (2016), where a Bayesian model
comparison analysis is used to choose (i) between DSDM, DSLM, DSDEM and
DSEM specifications, and thus between different spatial spillovers specifications,
and (ii) between different potential specifications of the spatial weight matrix
W . The underlying idea of Bayesian model selection is to consider a finite set
of alternative models Mi = M1,M2, ..,MN based on different spatial weight ma-
trices and/or functional forms, while holding the other model aspects constant.
Proceeding in this way, we determine the PMP of the alternative specifications
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given a particular spatial weight matrix, as well as the PMP of different spatial
weight matrices given a particular model specification. These probabilities are
based on log marginal likelihood calculations by integrating out all parameters
of the model over the entire parameter space on which they are defined. For any
model Mi with its corresponding vector of parameters Θi log marginal likelihoods
can be calculated as:

p (y|Mi) =

∫

p
(

y|Θi,Mi

)

p
(

Θi|Mi

)

dΘi (9)

where p (y|Θi,Mi) is the probability of the data conditional on the parameters and
the model and p (Θi|Mi) denote the priors of the vector of conditional parameters
to the model. 3

Columns (1) to (4) of Table (3) report PMPs for the different spatial weight
matrices given a concrete spatial model specification whereas Columns (5) to (8)
report the PMPs for the different spatial model specifications given a particular
spatial weight matrix. As it can be observed, the results derived from the cal-
culation of PMPs imply that conditional on the spatial model (DSEM, DSLM
vs DSDM, DSDEM) interactions across countries may be driven by either geo-
graphical distances or linguistic distances. Additionally, for the various concepts
of distance, different functional forms of the W matrix point to different specifica-
tions. Nevertheless, averaging the probability over the W ’s, points to the DSEM
as the preferred specification. This is because of it displays a higher cumulative
probability (45.2%) than the DSLM (11.7%), the DSDM (19.7%) or the DSDEM
(23.4%). Conditional on the use of the DSEM, we find that the geographical dis-
tances are preferred over other types of distance and in particular, the functional
form with the highest probability is the traditional gravity inverse-squared dis-
tance matrix (57.7%). Thus, our model selection favors the DSEM specification
with W :

W =







wij = 0 if i = j

wij =
1/d2ij∑

j

1/d2ij
if i 6= j (10)

3In particular, we employ a normal-gamma conjugate prior for δ = [α, β, τ, φ] and σ and a
beta prior for λ:

p(δ) ∼ N (c,Σ)

p

(

1

σ2

)

∼ Γ (d, v)

p (λ) ∼
1

Beta (a0, a0)

(1 + λ)
a0−1

(1− λ)
a0−1

22a0−1

To avoid situations where the conclusions depend heavily on subjective prior information we
rely on diffuse or non-informative prior distributions. Parameter c is set to zero and Σ to a
very large number (1e+ 12) which results in a diffuse prior for δ. The diffuse priors for σ and
λ (in the case of the SLM/SDM ρ), are obtained setting d = 0 and v = 0 and a0 = 1.01.
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Table 3: Model Selection.

Posterior Probabilities Posterior Probabilities
Across Spatial Models Across Spatial Weight Matrices

Weight Matrix DSLM DSEM DSDM DSDEM DSLM DSEM DSDM DSDEM
Geographical Distances
1/dα. α = 1.5 0.092 0.403 0.000 0.000 0.054 0.946 0.000 0.000 1.00
1/dα. α = 2 0.788 0.577 0.000 0.000 0.411 0.589 0.000 0.000 1.00
1/dα. α = 3 0.092 0.006 0.000 0.000 0.838 0.162 0.000 0.000 1.00
K-Nearest neighbors (K = 5) 0.000 0.000 0.000 0.000 0.229 0.771 0.000 0.000 1.00
K-Nearest neighbors (K = 10) 0.000 0.000 0.000 0.000 0.055 0.945 0.000 0.000 1.00
K-Nearest neighbors (K = 15) 0.000 0.000 0.000 0.000 0.006 0.994 0.000 0.000 1.00
K-Nearest neighbors (K = 20) 0.000 0.000 0.000 0.000 0.001 0.998 0.000 0.001 1.00
exp− (ωd). ω = 0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.877 0.123 1.00
exp− (ωd). ω = 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.925 0.075 1.00
exp− (ωd). ω = 0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.919 0.081 1.00
Linguistic Distances
1/dα. α = 1.5 0.000 0.000 0.989 0.969 0.000 0.000 0.000 1.000 1.00
1/dα. α = 2 0.000 0.000 0.011 0.031 0.000 0.000 0.000 1.000 1.00
1/dα. α = 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.00
K-Nearest neighbors (K = 5) 0.000 0.000 0.000 0.000 0.079 0.921 0.000 0.000 1.00
K-Nearest neighbors (K = 10) 0.000 0.000 0.000 0.000 0.069 0.848 0.035 0.048 1.00
K-Nearest neighbors (K = 15) 0.000 0.000 0.000 0.000 0.037 0.963 0.000 0.000 1.00
K-Nearest neighbors (K = 20) 0.000 0.000 0.000 0.000 0.119 0.881 0.000 0.000 1.00
exp− (ωd). ω = 0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.740 0.259 1.00
exp− (ωd). ω = 0.025 0.000 0.000 0.000 0.000 0.000 0.001 0.019 0.980 1.00
exp− (ωd). ω = 0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.00
Religious Distances
1/dα. α = 1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.506 0.494 1.00
1/dα. α = 2 0.000 0.000 0.000 0.000 0.000 0.000 0.229 0.771 1.00
1/dα. α = 3 0.000 0.000 0.000 0.000 0.000 0.000 0.051 0.949 1.00
K-Nearest neighbors (K = 5) 0.000 0.000 0.000 0.000 0.393 0.607 0.000 0.000 1.00
K-Nearest neighbors (K = 10) 0.000 0.000 0.000 0.000 0.380 0.620 0.000 0.000 1.00
K-Nearest neighbors (K = 15) 0.000 0.000 0.000 0.000 0.160 0.840 0.000 0.000 1.00
K-Nearest neighbors (K = 20) 0.000 0.000 0.000 0.000 0.127 0.873 0.000 0.000 1.00
exp− (ωd). ω = 0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.862 0.138 1.00
exp− (ωd). ω = 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.816 0.184 1.00
exp− (ωd). ω = 0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.065 0.935 1.00
Genetic Distances
1/dα. α = 1.5 0.000 0.000 0.000 0.000 0.096 0.904 0.000 0.000 1.00
1/dα. α = 2 0.000 0.000 0.000 0.000 0.187 0.813 0.000 0.000 1.00
1/dα. α = 3 0.000 0.000 0.000 0.000 0.363 0.637 0.000 0.000 1.00
K-Nearest neighbors (K = 5) 0.000 0.000 0.000 0.000 0.518 0.482 0.000 0.000 1.00
K-Nearest neighbors (K = 10) 0.000 0.000 0.000 0.000 0.093 0.897 0.000 0.010 1.00
K-Nearest neighbors (K = 15) 0.000 0.000 0.000 0.000 0.011 0.989 0.000 0.000 1.00
K-Nearest neighbors (K = 20) 0.000 0.000 0.000 0.000 0.029 0.971 0.000 0.000 1.00
exp− (ωd). ω = 0.01 0.020 0.005 0.000 0.000 0.385 0.251 0.292 0.071 1.00
exp− (ωd). ω = 0.025 0.008 0.008 0.000 0.000 0.043 0.127 0.688 0.142 1.00
exp− (ωd). ω = 0.05 0.001 0.001 0.000 0.000 0.011 0.041 0.848 0.099 1.00

1.00 1.00 1.00 1.00 0.117 0.452 0.197 0.234
Notes: Bayesian Markov Monte Carlo (MCMC) routines for spatial panels required to compute Bayesian posterior
model probabilities do not exist yet. As an alternative all cross-sectional arguments of James LeSage routines are
replaced by their spatial panel counterparts, for example a block-diagonalNT×NT matrix, diag(W, ...,W ) as argument
for W . All W’s are row-normalized.
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III.D. Bayesian Model Averaging

In this subsection we describe the functioning of the Spatial Bayesian Model
Averaging approach used here. A feature of this methodology is that it consider
all possible combinations of regressors and takes a weighted average of the co-
efficients. Sub-structures of the model in Equation (1) are given by subsets of
coefficients ηk =

(

δk, λ
)

and regressors Xk. Assuming that the total number of
possible explanatory variables is K, the total number of possible models is 2K

and k ∈
[

0, 2K
]

. Inference on the parameters of the variables X explicitly takes
into account model uncertainty and it is based on probabilistic weighted averages
of parameter estimates of individual models:

p (η|y,X) =
2K
∑

k=1

p (ηk|Mk, y, X) p (Mk|y,X) (11)

The weights, the PMP’s are given by:

p (Mk|y,X) =
p (y,X|Mk) p (Mk)

∑2K

k=1 p (y,X|Mk) p (Mk)
(12)

Model weights can be obtained using the marginal likelihood of each individual
model after eliciting a prior over the model space. The marginal likelihood of
model Mk is given by: 4

p (y,X|Mk) =

∫

∞

0

∫

∞

−∞

∫

∞

−∞

p (y,X|δ, λ, σ,Mk) dδdλdσ (13)

The Posterior Mean (PM) of the distribution of η is:

E (η|y,X) =
2K
∑

k=1

E (ηk|Mk, y, X) p (Mk|y,X) (14)

while the Posterior Standard Deviation (PSD) reads as:

PSD =
√

V ar (η|y,X) (15)

4We use the same prior distribution configurations for the parameters δ, σ and λ employed
in the model selection analysis. However, p(δk) is adjusted following the convention in BMA
analysis by means of the g-prior hyper-parameter which takes the value of gk = 1/max

{

n,K2
}

such that:

p(δk)
(

δk|σ
2
)

∼ N

[

0, σ2

(

gkX
′

k
Xk

)

−1
]

The employment of the g-prior scales the variance of the coefficients in δk reflecting the strength
of the prior. Lastly, we employ a binomial prior on the model space p (Mk) = φk (1− φ)

K−k
,

where each covariate k is included in the model with a probability of success φ. We set φ = 1/2
which assigns equal probability p (Mk) = 2−K to all the models under consideration.
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where the V ar (η|y,X) is given by:

V ar (η|y,X) =
∑2K

k=1 V ar (ηk|Mk, y, X) p (Mk|y,X) + (16)
∑2K

k=1 (E (ηk|Mk, y, X)−E (η|y,X))2 p (Mk|y,X)

where the first term reflects the variability of estimates across different regres-
sion models and the second term captures the weighted variance across different
models. We compute the posterior inclusion probability (PIP) for a variable h as
the sum of the PMP’s including the variable h:

PIP = p (ηh 6= 0|y,X) =

2K
∑

k=1

p (ηk|Mk, y, X) p (Mk|ηh 6= 0, y, X) (17)

Finally, we compute the conditional posterior positivity of a parameter h as:

p (ηh ≥ 0|y,X) =

2K
∑

k=1

p (ηk,h|Mk, y, X) p (Mk|y,X) (18)

where values of conditional positivity close to 1 indicate that the parameter is
positive in the vast majority of considered models. Conversely, values near 0
indicate a predominantly negative sign.

We use the Monte Carlo Markov Chain Model Composition (MC3) method-
ology for spatial models developed by LeSage and Parent (2007) which builds
upon Madigan and York (1995) to evaluate a relevant sample of the full model
space, which consists in 86,899 million models. The key feature of this econo-
metric procedure is that it eliminates the need to consider all possible models by
constructing a sampler that explores relevant parts of the large model space. The
algorithm operates in the model space as follows. If we let M denote the current
state of the chain, models are proposed using a neighborhood, nbd(M) which
consists on the model itself and models containing either one variable more (birth
step) or one variable less (death step) than M . A transition matrix q, is defined
by setting q(M → M ′) = 0 for all M ′ /∈ nbd(M) and q(M → M ′) constant for
all M ′ ∈ nbd(M). The proposed model M ′, is compared with the current model
state M using the acceptance probability:

P = min

[

1,
p (M ′|y)

p (M |y)

]

(19)

The vector of log-marginal values for the current model M and the proposed
alternative models M ′ are scaled and integrated to produce Equation (12). In
addition to the birth and death steps, the sampler employed here includes a third
strategy to create models which LeSage and Parent (2007) label as move step
consisting on replacing randomly variables in X with variables not included cur-
rently in the model which leaves the model proposal M ′ with the same dimension
as M .
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IV. Results

At this point, it is important to discuss the problems that the methodol-
ogy applied here can handle and the potential problems that may persist which
could affect the quality of the estimates. The SBMA methodology employed here
accounts for the uncertainty of the parameter estimates across different models
when there is spatial dependence in the data while controlling omitted variable
bias (LeSage and Parent, 2007, Moral-Benito, 2015). However, it does not correct
for the potential negative effect of endogeneity caused by reverse causal relation-
ships or measurement errors. The potential negative effect of reverse causality is
partially solved by using data at the beginning of the time-period interval. As
an example, if the observation of CO2 emissions per capita at t=1, corresponds
to the time interval 1991-1995, the X, is taken at 1991. On the other hand,
to minimize the potential problems implied by measurement errors, outliers and
heterogeneity we perform a robustness check in a DSEM where heteroscedasticity
in the variance of the error terms is allowed.5

IV.A. Baseline Results

Table (4) reports the results obtained under the DSEM specification for the
5,000 top models obtained when implementing the MC3 algorithm, out of the
26,954 generated by the sampler and a W matrix based on the inverse-squared
geographical distance.6 The concentration of the posterior density across models
is very high. In particular, the top 1% models concentrate the 26.45% of mass,
while the top 5% concentrate the 62.6%. We scale the PIPs of the different vari-
ables in quartiles to classify evidence of robustness of CO2 per capita covariates
into three categories so that regressors with PIP ∈ [0 − 25%] are considered as
weak determinants, variables with PIP ∈ [25 − 75%] as moderate determinants
and with PIP ∈ [76− 100%] as highly important.

Columns (2) to (5) show the mean and the standard deviation of the posterior
parameters distributions, along with the lower and upper bounds, conditional on
the variable being included in the model.7 To complement these statistics, Col-
umn (6) reports the fraction of models where the t-stat of the corresponding vari-
ables is higher than 1.96 (which implies statistical significance at the 5% level),

5We do not include here the additional results of the heteroscedastic DSEM given that
changes with respect the baseline specification are negligible.

6The number of draws in the sampling exercise over the model space was 100,000.
7The key difference with respect to unconditional posterior estimates of Equations (14) and

(15) is that conditional posterior estimates for a particular variable are obtained as the weighted
average over the models where the variable is included. On the contrary, the unconditional
posterior estimate is the averaged coefficient over all models, including those in which the
variable does not appear, hence having a zero coefficient. Thus, the unconditional posterior
mean can be computed by multiplying the conditional mean in Column (3) times the PIP in
Column (1)
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while Column (7) presents the results of the posterior sign certainty, which mea-
sures the posterior probability of a positive coefficient expected value, conditional
on inclusion.

As observed, there is a consistent set of top variables that appears with high
frequency in the group of very important determinants. Within this group, we
find on the top the diffusion error term, the time lag and the space-time lag terms.
Some comments about the spatio-temporal parameters (ρ, τ, φ) model averaged
estimates are worth mentioning. The spatial diffusion parameter λ appears to
be positive and significant at the 5% level in the 100% of the models. Similarly,
the time lag τ and the space-time lag φ are significant at conventional levels
in the 100% and the 97.7%. The model averaged estimated time lag is 0.7179,
the space-time lag term is -0.0466 whereas the error diffusion term is 0.3962.
This implies that a 1% shock to the estimated error term of CO2 emissions per
capita in one location propagates to all the other locations of the sample with
an average quadratic decay of the 39.62% as distance increases. Importantly,
the averaged sum of parameters over models suggest the analysis not suffer from
space-time cointegration issues (i.e, τ+φ = 0.67). Moreover, our findings suggest
that lagged values of CO2 emissions per capita in neighboring economies affect
emissions per capita of any country. Another salient feature of these results is
that of a process of convergence in the evolution of CO2 emissions per capita. The
time lag estimated value implies and speed of convergence of the 6.59% per year.
This value is higher than previous estimates of convergence in CO2 emissions per
capita of Brook and Taylor (2010) who find a speed of convergence of the 1.6%.

To provide further evidence on the relevance of the spatio-temporal terms
in the DSEM specification, Figure (3) shows the different PIPs for the full set
of regresors when the model is a Dynamic non-spatial panel. As observed, for
variables with PIPs above the 75% or below the 25% the differences are small
whereas for the set of regressors with PIPs ranging between 25% and 75% ac-
counting for the spatial dependence in the error process implies drastic changes.
Variables with marked geographical patterns such as the degree of financial open-
ness, population density, the production of oil, the income inequality, the share
of young population and followers of non dual religions experiment fluctuations
of probability of an order about the 30%. These suggest that omitting spatio-
temporal interactions across-countries and the possibility of spatially correlated
shocks when analyzing CO2 emissions may lead to fallacious inferences. All in all,
these results stress the relevance of space and confirm that the dynamic spatial
panel data modeling framework adopted in this analysis is suitable for studying
the evolution of CO2 emissions per capita.

A feature of the group of highly relevant determinants is that it is not only
characterized by higher PIPs than the others, but also because of it displays
totally certain (or almost totally certain) sign effects (either positive or negative)
that are significant at the 5% level in 97 to 100% of the models. The share
of agriculture in the GDP (96.4%) is the most clear driver of CO2 emissions
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Figure 3: Dynamic SEM vs Dynamic OLS
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Table 4: Main Results: Dynamic Spatial Error Model Averaged Estimates

Variable PIP Lower 5% Cond Post. Cond Post. Upper 95% T-Stat Sign
Mean Std > 1.96 Pos.

(1) (2) (3) (4) (5) (6) (7)

Time lag (τ) 1.000 0.6993 0.7179 0.0138 0.7428 1.000 1.000
Space-Time lag (φ) 1.000 -0.0557 -0.0466 0.0062 -0.0355 0.977 0.000
Error Diffusion (λ) 1.000 0.3715 0.3962 0.0161 0.4267 1.000 1.000
Agriculture 0.964 -0.0114 -0.0095 0.0021 -0.0075 1.000 0.000
Gasoline price 0.953 -0.1984 -0.1680 0.0436 -0.1310 1.000 0.000
Fossil fuel consumption 0.856 0.0020 0.0026 0.0008 0.0031 1.000 1.000
Ln GDP per capita 0.766 0.2271 0.7255 0.2979 1.0779 0.972 1.000

Population < 15 years old 0.691 -0.0196 -0.0117 0.0050 -0.0068 0.993 0.000
Ln GDP per capita 2 0.595 -0.0514 -0.0010 0.0427 0.0751 0.964 0.322
Ln GDP per capita 3 0.543 -0.0047 -0.0024 0.0015 -0.0010 0.964 0.034
No Dual Religions 0.314 -0.0018 -0.0013 0.0006 -0.0010 0.972 0.000
Financial Openness 0.301 0.0019 0.0027 0.0012 0.0032 0.928 1.000
Investment Ratio 0.256 0.0041 0.0049 0.0021 0.0057 0.958 1.000

Population > 65 years old 0.209 -0.0286 -0.0201 0.0081 -0.0012 0.908 0.045
Social Globalization 0.191 0.0025 0.0037 0.0015 0.0046 0.759 1.000
Ln Population density 0.135 0.0153 0.0252 0.0094 0.0342 0.712 1.000
Income Inequality 0.090 -0.0051 -0.0040 0.0013 -0.0028 0.529 0.000
Political Globalization 0.086 0.0012 0.0017 0.0005 0.0022 0.458 1.000
Trade Openness 0.048 0.0003 0.0006 0.0002 0.0010 0.226 1.000
Human Capital 0.045 -0.0887 -0.0615 0.0161 0.0008 0.177 0.060
Oil Production 0.036 0.0000 0.0000 0.0000 0.0000 0.177 0.984
Government Strength 0.033 0.0005 0.0016 0.0004 0.0026 0.342 0.997
Women Empowerment 0.032 -0.0014 -0.0010 0.0002 -0.0007 0.010 0.000
Dual Religions 0.024 -0.0015 0.0001 0.0002 0.0009 0.000 0.689
Government Fragmentation 0.021 -0.0007 -0.0005 0.0001 -0.0003 0.000 0.000
Ln Population 0.019 0.0263 0.0446 0.0089 0.0588 0.000 1.000
Kyoto 0.019 -0.0045 0.0079 0.0019 0.0189 0.017 0.922
Population Growth 0.016 -0.0098 -0.0069 0.0014 -0.0023 0.000 0.004
Industry 0.015 0.0000 0.0006 0.0002 0.0014 0.000 0.940
Political Corruption 0.015 0.0001 0.0008 0.0002 0.0014 0.000 0.968
Urban Population 0.014 -0.0010 -0.0004 0.0001 0.0001 0.000 0.104
Population 30-49 years old 0.014 0.0000 0.0000 0.0000 0.0000 0.000 0.876
Gas Production 0.013 -0.0003 0.0005 0.0002 0.0013 0.000 0.823
Media Corruption 0.013 -0.0032 0.0014 0.0008 0.0064 0.000 0.641
Democracy 0.012 -0.0129 0.0005 0.0022 0.0180 0.000 0.393
Financial Development 0.011 -0.0004 0.0000 0.0002 0.0005 0.000 0.439
Ideology 0.011 -0.0065 0.0014 0.0021 0.0067 0.000 0.692

Notes: The dependent variable in all regressions is the CO2 emissions per capita. All the results reported here
correspond to the estimation of the top 5,000 models from the 86,899 million possible regressions including any
combination of the 33 variables. Prior mean model size is 18. Variables are ranked by Column (1), the posterior
inclusion probability. Columns (2) to (5) reflect the lower 5% bound, the posterior mean, standard deviations and
upper 95% bound for the linear marginal effect of the variable conditional on inclusion in the model, respectively.
Column (6) is the fraction of regressions in which the coefficient has a classical t-test greater than 1.96, with all
regressions having equal sampling probability. The last column denotes the sign certainty probability, a measure of
our posterior confidence in the sign of the coefficient.
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per capita. It is followed by a range of economic factors, including the price of
gasoline (95.3%), the share of fossil fuel consumption in the total energy (85.6%)
and the GDP (76.6%). As expected, there is a negative relationship between the
share in agriculture and CO2 emissions per capita, which is line with the findings
of other studies that included this control (Aichele and Felbermayr, 2013). The
rationale for this finding is that agrarian economies are characterized by low
resource depletion rates and waste generation rates, which results in pristine
environmental conditions. Similarly, increasing prices of the gasoline exert a
negative effect on CO2 emissions per capita as in Agras and Chapman (1999). The
negative link between higher gasoline prices and CO2 emissions, is explainable
through economic theory, given that lower gasoline prices result in increased
consumption and transportation, and thereby, in increased pollutant emissions.
On the other hand, we find that the share of fossil fuel consumption in the total
energy is positively related to CO2 emissions per capita, as fossil fuels are the
more environmental damaging inputs used in the process of production. Finally,
the level of production is observed to have a positive effect on CO2 emissions. If
there is no change in the input-output ratio or in the techniques of production, a
higher scale of production generates a higher level emissions.

In the group of determinants of medium level of importance, we find the share
of population below 15 years old (69.1%), the squared and cubic terms of the GDP
with PIPs of 59.5% and 54.3% respectively, the share of population following a
non dual-type religion (31.4%), the degree of financial openness (30.1%) and the
share of investment in the GDP (25.6%). The negative effect of the share of
population with less than 15 is explained by the fact that (i) the higher the
share of population is in a stage of life characterized by low economic activity
and energy consumption (Liddle, 2014) and (ii) because of the higher the share
of young/old population the stronger the preferences of environmental quality
(Menz and Welsch, 2010). Another interesting result is that the higher the share
of population following religions where there is no dualism between human and
nature, the lower the level of emissions, which goes in line with theoretical insights
of White (1967) and the empirical analysis of Tjernstrom and Tietenberg (2008)
and Morrison et al. (2015). The findings for financial openness and investment
suggest they exert a positive impact on CO2 emissions which supports previous
findings of Omri et al. (2014) and Brook and Taylor (2010) respectively. An
explanation for this result is that financial flows may be directed to energy-
intensive industries of developing countries with fewer environmental controls
and where the level of efficiency in power-generation is low. On the other hand,
the positive effect of the overall investment share is explained by the fact that
investment promotes GDP growth and the scale effect of GDP rises emissions.

Taking into account the fact that in the group of highly relevant determinants
we already observed a positive relationship between pollution and the GDP, an
interesting finding that emerges from the model-averaged estimated parameters
of the squared and cubic terms of GDP is that the pollution-income relationship
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in this context appears to be U-shaped, given that both the squared and cubic
terms are negative. Hence these findings support previous results of Holtz-Eakin
and Selden (1995),Tucker (1995), Galeotti et al. (2006) or Grunewald et al. (2017)
who also observed an inverted U-shape relationship. Our parameter values for
the linear, quadratic and cubic terms of the logarithm of the GDP per capita
suggest the turning point is located in ln(10.1) ≈ 23, 623 US dollars. However,
the uncertainty regarding the sign of the quadratic term is very high. In 32% of
the regressions the value is positive while it is negative in 68% of them, which
implies that in a substantial number of models, the implied EKC pattern could
be N-shaped.

Finally, weak CO2 emissions per capita drivers include other economic factors
(e.g. inequality, trade opennesss, human capital, oil and gas production, the
share of industry in the GDP and the level of financial development), political
factors (the level of democracy, the ideology, fragmentation and the government’s
strength, the level of political corruption, the degree of political globalization),
demographic factors (population density, population growth, the share of urban
population, the share of population between 30-49 years old) and social factors
(the media corruption, the women empowerment, the social globalization, dual
religions). With the exception of the effect of the share of population above
65 years old, social globalization and population density, which are (i) either
positively or negatively related to CO2 emissions with almost certainty in all
regressions in which the variables are included, and (ii) appear to be significant
at 5 % level in the 70-90% of the models, the results obtained for the other weak
determinants do not allow to draw clear conclusions on the effect exerted on
CO2 emissions. The reasons are twofold. First, in many cases the posterior sign
certainty of these regressors is around 0.3-0.7, suggesting that both positive and
negative effects can be observed. Consequently, the causal relationships for this
group of variables are not robust. Second, the fraction of regressions where these
variables exhibit t-stats above the 5% significance level is always below the 50%
and even virtually 0% in many cases.

Overall, our findings suggest that economic factors are the key factors shaping
the evolution of CO2 emissions, even though some demographic factors and social
factors also play a non-negligible role. On the contrary, political and institutional
factors appear to be of minor importance.

V. Conclusions

This study analyzes the importance of a large number of possible determi-
nants of CO2 emissions per capita during the period 1991-2014 for a sample of
123 countries. They key contributions are methodological given that we consider
the effect of a great number of determinants employing Spatial Bayesian Model
Averaging techniques while accounting for different concepts of cross-country in-
teractions and different spillover processes. Over the different type of interactions
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considered: geographical, genetic, linguistic and religious we find that traditional
geographical interactions outperform the others whereas our findings regarding
the spatial interaction model points to the Dynamic Spatial Error model.

Spatial Bayesian Model Averaging analysis enable us to compute the PIPs
for the different indicators to generate a probabilistic ranking of relevance for the
various CO2 determinants. Our results point out the existence of a set of robust
determinants of CO2 emissions. These consist of: (i) initial level of CO2 emis-
sions and the initial level of emissions of neighboring countries, (ii) the share of
agriculture in the value added (iii) the gasoline price, (iv) the age composition of
the population, (v) the linear, quadratic and cubic terms of income (vi) the share
of population following non-dual religions, (vii) the level of financial openness
and (viii) the ratio of investment to GDP. Therefore, we find strong support to
the idea that economic factors are the key sources of CO2 emission differentials
while political and institutional factors are of minor importance.
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