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Abstract 

Motivated by the complicated control issues of COVID-19, this article aims at investigating the 

optimal control of an epidemic of a Susceptible-Infective-Removed-Susceptible (SIRS) infection, 

where social distancing is the only control action in a first stage, whereas a combination of social 

distancing and vaccination is available in a second stage. The resulting two-control optimal problem 

is set within a parsimonious economic framework in which a social planner minimises an objective 

function weighting epidemiological and economic costs by choosing the strength of social distancing 

in the first stage and both social distancing and the extent of an income tax to finance vaccination in 

the second stage. The article shows (i) how to mix social distancing and vaccination depending on 

the planner's degree of rationality; (ii) the importance of the planner's expectation about the date of 

vaccine arrival, and how the actual efficacy of the vaccine against the infection can affect the optimal 

social distancing policy in the pre-vaccination period, and (iii) the use of the social distancing 

instrument as the only optimal control under vaccine rationing. 
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where social distancing is the only control action in a �rst stage, whereas a combination of social

distancing and vaccination is available in a second stage. The resulting two-control optimal problem

is set within a parsimonious economic framework in which a social planner minimises an objective

function weighting epidemiological and economic costs by choosing the strength of social distancing

in the �rst stage and both social distancing and the extent of an income tax to �nance vaccination

in the second stage. The article shows (i) how to mix social distancing and vaccination depending

on the planner�s degree of rationality; (ii) the importance of the planner�s expectation about the

date of vaccine arrival, and how the actual e¢ cacy of the vaccine against the infection can a¤ect

the optimal social distancing policy in the pre-vaccination period, and (iii) the use of the social
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1 Introduction

The recent COVID-19 pandemic with its dramatic impact worldwide has highlighted the lack of

resiliency of Western societies to infectious diseases threats (WHO, 2022) due to the di¢ cult handling

of the trade-o¤ between the direct protection of health from the consequences of infections, on the one

hand, and the protection of the economy and the society as a whole from the nasty measures necessary

to contain epidemic spread, on the other hand. This trade-o¤ has provided a dramatic impulse to

the study of the interplay between infection transmission and the economy that remained somewhat

neglected before the pandemic (Gori et al., 2020 and references therein).

As a consequence of this momentum, virtually any area of economic research and policy have

tackled the interplay between a serious epidemic and the macro-economy with an endless list of con-

tributions (e.g., Alvarez et al., 2021; Acemoglu et al., 2021; Eichenbaum et al., 2021; Glover et al.,

2021; Gori et al., 2021a, 2021b; La Torre et al., 2021; Davin et al., 2022) of which we can obviously

only cite a few.

A major area of research amongst this new wave of economic epidemiology has regarded the optimal

control of serious epidemic outbreaks by also accounting for the nasty implications of the undertaken

measures for the economy and the society. This has led for the �rst time to consider optimal control

problems of a social planner trying to globally minimise not only the direct e¤ect of the disease but also

the potentially devastating indirect e¤ects induced by the pandemic control measures at all societal

level (WHO, 2022).

In this direction, the road map has been indicated by a few pioneering works, amongst which we

recall Alvarez et al. (2021) and Acemoglu et al. (2021), who were �rst in considering the potential

e¤ect of long-lasting lockdown measures on the economy. The present article follows and contributes

to this vein by investigating the optimal control of a Susceptible-Infective-Removed-Susceptible (SIRS)

epidemic of an infection, which is directly transmitted from person to person by social contacts and

imparts only temporary immunity. In particular, we consider the situation in which two control

stages (say, Stage 1 versus Stage 2) are identi�ed by the availability of e¤ective control tools, as has

been the case for COVID-19 (WHO, 2022). The realm of COVID-19 has indeed shown that social

distancing has been the major control option in the �rst stage (due to the lack of a vaccine and to the

secondary role of testing and tracing), whereas a combination of social distancing and vaccination by

a vaccine imparting short-lasting immunity has been the control option available during the second

stage. Consistently, we study a two-control optimal policy targeting social distancing and vaccination

in a simple economic set up in which the social planner minimises an objective function weighting

epidemiological and economic costs.

More in detail, we consider two main �nite-horizon control problems. The former one is the

generic problem of epidemic control in the presence of two control instruments, in which the second

instrument, i.e., vaccination by a fully e¤ective vaccine, appears only in the second stage of the

epidemic. Here we assume vaccine e¢ cacy to be maximal simply because we are interested in the

optimal vaccination schedule. This control problem is further distinguished into two main sub cases

depending on the planner�s degree of rationality. More precisely, we considered an optimal control

problem that we termed two-stage disjoint optimal control, where the social planner optimally controls
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the epidemic since the beginning of Stage 1 by tuning the strength of social distancing only and then

re-optimises at the beginning of Stage 2 (i.e., at the arrival time of the vaccine) with respect to both

control instruments, as opposed to a joint optimal control over the two stages of the epidemic, where

the social planner attempts at optimally controlling the epidemic over the entire horizon since the

beginning of the alert. The latter one is given by the optimal control by a single instrument (social

distancing) combined with a fully exogenous vaccination schedule re�ecting vaccine supply rationing

or scarcity (that we �tted to observed Italian data), regardless of the scales (international, national,

local, etc.) at which such vaccine shortages might appear, thereby preventing the optimal use of

vaccination. In particular, in all the problems analysed we consider the following temporal sequence

of actions: (a) an early phase of free epidemic growth due to the lack of any planned or spontaneous

control action, (b) a social distancing phase, (c) a vaccination phase, where the two controls coexist.

Our main results across the various sub-cases considered show the �ne dependence of optimal

trajectories on the weight attributed to direct cost of the epidemic compare to its indirect (i.e.,

economical) costs and on the characteristics (e¢ cacy of take and duration of vaccine immunity) of the

vaccine.

In the fully optimal case (the joint problem), it happens that the social distancing is enacted early

and massively and can be substantially decreased even before the vaccine arrival and completely lifted

once the vaccine is available without compromising full epidemic control. The disjoint problem results

are clearly sub-optimal compare to the joint problem. On one hand, for high values of the weight of the

epidemiological cost, social distancing must be persistently maintained at high levels (to also account

for immunity losses) during Stage 1, but the availability of an e¤ective vaccine whose distribution

can be optimised allows to rapidly achieve high levels of epidemic control. On the other hand, for

low values of the weight of the epidemiological cost, social distancing is obviously kept at moderate

levels during Stage 1, but the arrival of an e¤ective vaccine at Stage 2 allows to achieve analogous

levels of epidemic control by joining the natural immunity acquired during Stage 1 with the optimal

vaccine-induced immunity during Stage 2.

When the vaccine coverage is an exogenously given function, social distancing can never be fully

relaxed for high values of the weight of the epidemiological cost: relaxation is possible in an initial

phase of Stage 2 and can be substantial at high levels of vaccine e¢ cacy but needs to be always

strengthen in a later phase regardless of vaccine e¢ cacy.

Finally, when the temporal pro�le of vaccination coverage is given (due to organisational and lo-

gistic constraints), and therefore social distancing is the only available control over the entire horizon,

we show the conditions allowing the relaxation of social distancing and the subsequent need for re-

lapsing it due to the progressive loss of immunity amongst vaccinated individuals. Here, our results

are fairly general and hold for both the case of linear vaccine rationing and of a logistic increasing

vaccine coverage.

The rest of the article proceeds as follows. Section 2 presents the epidemiological and economic

modelling frameworks. Section 3 formulates the control problems, reporting the �rst-order conditions

and the main theoretical results. Section 4 reports the main simulative results and the ensuing

substantive implications. Concluding remarks follow in Section 5.
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2 The model

2.1 The epidemiological model: SIRS with vaccination

The model describes the active population only, whose size N(t) is divided into three classes: suscep-

tible, infected and recovered individuals, denoted respectively as S(t), I(t) and R(t), where N(t) =

S(t) + I(t) + R(t) and t 2 R+ is the time index. The population is assumed to mix homogeneously
with a time-varying per capita transmission rate, �(t), representing the number of secondary infec-

tions caused an infective individual per unit of time in a wholly susceptible population. The overall

infection incidence, therefore, is �(t)I(t)s (t), where s(t) = S (t) =N (t) is the susceptible fraction. The

time dependency in the transmission rate mirrors the e¤ects of public interventions aimed to mitigate

transmission (e.g., by social distancing) and the ensuing spontaneous behavioural responses by indi-

viduals. Infected individuals are assumed to recover and acquire immunity at a constant rate  > 0.

Recovered individual acquire temporary natural immunity after which they return to full suscepti-

bility at a constant immunity waning rate � > 0. The model also considers vaccination according

to a time-varying function V (t) representing the absolute number of susceptible individuals who are

e¤ectively immunised against the infection per unit of time. For the sake of simplicity, we assume

that vaccine-related immunity vanishes at the same rate � as natural immunity. The ensuing model

has the following SIRS structure:8>>><>>>:
�
S(t) = ��(t) I(t)S(t)N(t) � V (t) + �R(t)
�
I(t) = �(t) I(t)S(t)N(t) � I(t)
�
R(t) = I(t) + V (t)� �R(t)

; (1)

where the dots denote time derivatives. We remark that the epidemiological set up (1) represents

a pure transmission-infection-control model and, therefore, it disregards: (i) realistic complications

such as vital dynamics and infection-related mortality (for instance, infection related mortality from

COVID-19 was dramatic amongst the elderlies but rather negligible in the active population), implying

that the population is constant over time: N (t) = N ; (ii) a latency phase and other possibly realistic

feature shared by COVID-19, such as asymptomatic transmission; (iii) other possible intervention

options such as testing, tracing and isolating. By this, we do not mean that these interventions are

not relevant, rather that their role is expected to be secondary compared to the two major instruments

considered in this article. As for the two main control actions (social distancing and vaccination), they

are embedded through the time-dependent functions �(t) and V (t) that will be suitably modelled later

on.

By considering the per capita quantities, i.e., s(t) = S(t)
N , i(t) = I(t)

N , r(t) = R(t)
N and v(t) = V (t)

N ,

with s(t) + i (t) + r (t) = 1, one gets the �nal epidemiological system:8>><>>:
�
s(t) = ��(t)i(t)s(t)� v(t) + �r(t)
�
i(t) = �(t)i(t)s(t)� i(t)
�
r(t) = i(t) + v (t)� �r(t)

: (2)
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2.2 The economy

Healthy (that is, susceptible and recovered) individuals (N � I(t)) actively work to produce con-
sumption goods (Q(t)) using a linear technology employing only labour. For parsimony and to focus

e¢ ciently on a two-control (�rst-best) optimal policy in the short term, we disregard capital accumu-

lation1 and assume that the social contacts determining infection transmission are the same contacts

(the so-called work contacts) that allow productive activities (Eichenbaum et al., 2021).2

The consumption goods are produced, in the short term, by a linear (constant-return-to-scale)

production function given by:

Q(t) = AL(t): (3)

where A > 0 is a scaling parameter and L(t) = N � I(t) = S(t) +R(t) is the available labour force.
As s(t) + r(t) = 1� i(t), one can get the production function in per capita terms, that is:

q(t) = A(1� i(t)): (4)

The share 0 � u(t) � 1 of workers that are forced to unemployment following the closure of

�rms represents the strength of public social distancing, which determines net production as Y (t) =

(1� u(t))Q(t) that can be written in per capita terms as follows:

y(t) = (1� u(t))q(t); (5)

where y(t) = Y (t)
N(t) . Therefore, Q(t) represents the potential output at time t and Y (t) the actual

output at the same time given the constraints on production through social distancing measures for

infection containment.

The social planner can also levy (capital and labour) income taxes at the rate 0 � �(t) � 1 and
use the revenues so collected to �nance and organise the R&D-related activity, production, logistics

and administrations of vaccines. Although in the actual world these tasks occur at di¤erent moments

in time, we assume they coincide in the logical timing of the events detailed in the present work.

The disposable income (net of taxation) is entirely distributed and consumed, so that aggregate

consumption is C(t) = (1� �(t))Y (t), which can be written in per capita terms as follows:

c(t) = (1� �(t))y(t): (6)

The tax revenue T (t) = �(t)Y (t) is entirely used to �nance vaccination spendingX(t) at a balanced

budget. This (public) expenditure works exactly out as a subsidy to the pharmaceutical sector directly

devoted to the production of vaccines (and subsequent logistics). Therefore, for any t, the government

satis�es the budget constraint:

X(t) = T (t): (7)

Eq. (7) can also be written in per capita terms as x(t) = �(t)(1� u(t))q(t), where x(t) = X(t)
N(t) .

1See Gori et al. (2021) for an analysis of second-best optimal policies targeted on social distancing and testing, tracing

and isolation in an epi-econ long-term Solow-like growth model with capital accumulation.
2The introduction of a fraction of social contacts at work resulting in a transmission rate di¤erent from the one

emerging by overall social contacts does not change the qualitative results of the model.
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The supply of vaccines made available by the government, V S(t), is a function of the public

expenditure, X(t), that is:

V S(t) = Z(X(t)): (8)

By assuming that Z is linear technology transforming the public spending in available vaccines to be

administrated to susceptible individuals we get V S(t) = BX(t), where B�1 > 0 represents the public

expenditure per single vaccine dose (or pairs of doses). From (8), the per capita supply of vaccines is

given by:

vS(t) = Bx(t): (9)

Remark 1 Eq. (9) aims to capture the two main public activities undertaken to develop a COVID-19
vaccine: the large-scale public initiative aimed to the fast mapping of the virus genome and the massive

transfer of public resources to the pharmaceutical industry for supporting the COVID-19 vaccine R&D

costs.

Equation (9) represents the number of vaccines available to the planner when the tax revenue is

given by T (t). In this work, we will mainly consider two cases: (1) the planner can optimally choose

the desired number of vaccines and then design the tax trajectory to �nance vaccination. Under this

assumption, we have that v(t) = vS(t), where v(t) is the number of actually administered vaccines; (2)

the number of available vaccine is exogenously given (and then rationed) by some logistic constraints.

Under this assumption, the planner will set the tax rate to purchase the exogenously given number

of vaccines. The rationing model (�xed capacity) represents the case in which the actual vaccine

administrations remain below the desired supply, i.e., v(t) < vS(t).

Some clari�cations regarding the timing of the events and the model structure are now useful.

From a chronological point of view, we will consider the evolution and control of the epidemic as

sub-divided into three stages: (1) an initial phase (Stage 0) characterised by free growth of the

epidemic due to the lack of control by the authorities. This delay in intervention is basically due

lack of knowledge characterising new infections in the very early epidemic stages. At Stage 0, the

epidemiological dynamics are completely characterised by system (2), in the absence of any control,

that is v(t) = 0 and �(t) = �. We will assume that the length of this initial phase is 30 days; (2)

a subsequent phase (Stage 1), characterised by the intervention of the social planner through social

distancing only. We will assume that the length of Stage 1 is almost one year; (3) a �nal phase (Stage

2), where the availability of a vaccine (regardless its e¢ cacy) allows the social planner to intervene

through both social distancing and vaccination, possibly aiming at relaxing social distancing. The last

two phases can be related to each other in various ways, either in relation to the predictive capacity

of the vaccine discovery, or to the foresight and aims of the social planner, or � alternatively � in

relation to the production/distribution/administration capacity of the vaccine. We will assume that

the length of Stage 2 is almost one year. In the remainder of the article, we will describe Stage 1 and

Stage 2 separately, and then analyse how di¤erent hypotheses on the behaviour of the planner can

generate di¤erent outcomes.
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3 The control problem and theoretical results

Owing to the staged structure of interventions, the control problem will be designed as follows.

Stage 1 . The epidemic containment at this stage can be realised only through social distancing.

We assume that the planner at the beginning of Stage 1 expects that the vaccine will be available at

the expected time t = T eV . Therefore, the aim of the public authority is to compare bene�ts and costs

of the intervention by speci�cally considering the direct epidemiological costs of the infection and the

indirect economic costs due the undertaken control measures, which, in turn, result in a decrease in

aggregate production and thus in aggregate consumption. Eventually, the aim of the social planner

will be that of minimising the following functional:

F1(s(t); i(t); u(t)) =

T eVZ
TSD

1

2

�
ki2(t) + (1� k)u2(t)q2(t)

�
e��(t�TSD)dt; (10)

where q(t) is de�ned in (4), by taking into account the dynamics of the epidemic, that is:

�
s(t) = �(1� u(t))�i(t)s(t) + �(1� s(t)� i(t))
�
i(t) = (1� u(t))�i(t)s(t)� i(t)

; (11)

and the initial conditions s(TSD); i(TSD) 2 (0; 1), where u(t) 2 [0; 1] is the strength of social distancing
and t = TSD is the date the government initiates control actions through social distancing measures.

We assume that the social planner also �xes at this stage an objective about the number of infective

in the population at time t = T eV , i.e., i(T
e
V ).

The �rst addendum in brackets in Eq. (10), weighted by k, represents the epidemiological costs,

i.e., a summary of the cost of hospitalisations/deaths resulting from the infection and thus both related

to i(t), for the sake of simplicity, in view of the parsimonious structure of our model). The second term

in brackets in Eq. (10), weighted by 1� k, represents the economic cost following the production loss
due to social distancing. Therefore, 0 � k � 1 weights the direct epidemiological costs in functional
(10) and incorporates the health costs of hospitalisation and those attributed to the losses of human

life used, e.g., in see Acemoglu et al. (2021) and Alvarez et al. (2021).

The expression in F1(s(t); i(t); u(t)) should be minimised by the planner by choosing u(t) subject

to the relevant dynamic constraints.

Stage 2 . By assuming that vaccines become actually available at time t = TV , the government

can act since TV onwards through two controls, that is social distancing u(t) 2 [0; 1] and the tax rate
�(t) 2 [0; 1]. Then, the total cost of implementing a two-control policy is given by:

F2(s(t); i(t); u(t); �(t)) =

TZ
TV

1

2

�
ki2(t) + (1� k)[u2(t)q2(t) + x2(t)]

	
e��(t�TV )dt+ �V iT e

��(T�TV );

(12)

where the economic costs are augmented by the public expenditure x(t) = �(t)(1�u(t))q(t) to �nance
the production/administration of vaccines. In this case, the epidemic dynamics are described by the
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equations:
�
s(t) = �(1� u(t))�i(t)s(t)� v(t) + �[1� s(t)� i(t)]
�
i(t) = (1� u(t))�i(t)s(t)� i(t)

; (13)

given s(TV ); i(TV ) 2 (0; 1), v(t) = Bx(t) and v(t) = vS(t). The expression in F2(s(t); i(t); u(t); �(t))
should be minimised by the planner by choosing u(t) and �(t). The term �V iT e

��(T�TV ) accounts

for the number of infective individuals at the end of the epidemic control plan, where �V � 0 is its

relative weight. We recall that though the tax rate is the control variable nothing prevents to refer to

optimal vaccination as the (optimal) tax rate is eventually used to collect resources to �nance x(t).

Remark 2 [Reproduction numbers]. In the proposed model, the basic reproduction number � repre-
senting the number of secondary infection in a fully susceptible population in the absence of intervention

(that is, in a free epidemic) �is given by R0 = �=. The corresponding e¤ective reproduction number
is equal to Re = R0 � s(t). In the presence of social distancing, infection reproduction is summarised
by the current (e¤ective) reproduction number Rt = R0 � (1� u(t)) � s(t). The last expression remains
valid under vaccination since successful immunisation against infection simply acts by reducing the

susceptible fraction.

3.1 Formulation of the control problem

Let us now consider the control programme. Di¤erent formulations are possible depending on the

degree of rationality and foresight ability of the social planner, ranging from a naïve behaviour to a

rational one (�rst best).

The naïve control at Stage 1 and the optimal control at Stage 2 . Let us �rst consider the case

in which the social planner does not have adequate information to optimally choose u(t) in the �rst

period and then it cannot de�ne an optimal plan at Stage 1. In this case, following Gori et al. (2021),

we assume that the planner adopts a �xed rule consisting of keeping the e¤ective reproduction number

Rt �= 1 during Stage 1 and only at Stage 2 it optimally enacts two instruments, i.e., social distancing
and vaccination, to de�ne a �rst best solution. The problem thus consists of minimising at Stage 2

the expression in (12) with respect to u(t) and �(t) subject to the dynamics in (13). The existence of

solutions to the optimal control problem is guaranteed because the requirements of classical existence

theorems (see Fleming and Rishel, 1975) are satis�ed.

Substituting the expressions of x(t) and v(t) from (7) and the per capita formulation referred to

(9) into (12), the corresponding Hamiltonian is:

H(s(t); i(t); u(t); �(t); �1(t); �2(t)) = k
i(t)2

2
+ (1� k) [A(1� i(t))(u(t) + �(t)(1� u(t))]

2

2
+ (14)

+ �1(t) [(1� u(t))((AB�(t)� s(t))i(t)�AB�(t))� + �(1� i(t)� s(t))]+
+ �2(t) [�s(t)i(t)(1� u(t))� i(t)]

from which the optimality conditions read as follows:
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�(t)� = min

�
1;max

�
0;
((1� k)A2(1� i(t))2 + �i(t)s(t)(�1(t)� �2(t)))
((1� i(t))A((1� i(t))(1� k)A�B��1(t)))

��
u(t)� = min

�
1;max

�
0;
�i(t)s(t)(�2 � �1)
(1� k)A2(1� it)2

��
if �(t) = 0 and u(t)� = 0 if �(t)� > 0

�
s(t) = �(1� u(t))�i(t)s(t)� v(t) + �[1� s(t)� i(t)]
�
i(t) = (1� u(t)�)�i(t)s(t)� i(t)
�
�1(t) = �1(t) [� + �(1� u(t)�)i(t) + �]� �2(t)(1� u(t))�i(t) (15)
�
�2(t) = �2(t) [� � ((1� u(t)�)�s(t)� )] + �1(t)((1� u(t)�)(s(t)�AB�(t)�)� + �)� ki(t)+

+ (1� k)(1� i(t)) [A(u(t)� + �(t)�(1� u(t)�)]2

s(TV ) = sTNV
; i(TV ) = iTNV

�1(T ) = 0; �2(T ) = �V e
��(T�TV );

where iTNV and sTNV are the actual value of infective and susceptible observed at the time of the arrival

of the vaccine under the naïve policy at the end of Stage 1. From (15) it is clear that the conditions

that guarantee at the optimum the existence of a positive income tax rate to �nance the vaccination

campaign imply setting the extent of social distancing measures to zero.

We pinpoint here that we will not present simulation results for this scenario for economy of space

and avoid increasing the number of �gures in the article, but they are available upon request.

The two-stage disjoint optimal control. Consider now the case in which the goal of the social

planner is to optimally control the epidemic at Stage 1, with the aim of leaving a given level of

infection at the beginning of Stage 2, in which the vaccine is available. The problem of the social

planner then consists in minimising F1 given the dynamic constraints in (11). We consider a �xed

target on the function i(T eV ) denoting infections considered optimal at the expected date of vaccine

arrival (T eV ). The associated Hamiltonian is:

H(s(t); i(t); u(t); �1(t); �2(t)) = k
i(t)2

2
+ (1� k) [A(1� i(t))(u(t)]

2

2
+ (16)

+ �1(t) [��s(t)i(t)(1� u(t)) + �(1� i(t)� s(t))]+
+ �2(t) [�s(t)i(t)(1� u(t))� i(t)]

and the optimality conditions read as follows:

9



u(t)� = min

�
1;max

�
0;
�i(t)s(t)(�2 � �1)
(1� k)A2(1� it)2

��
�
s(t) = ��s(t)i(t)(1� u(t)�) + �(1� i(t)� s(t))
�
i(t) = (1� u(t)�)�i(t)s(t)� i(t)
�
�1(t) = �1(t) [� + �(1� u(t)�)i(t) + �]� �2(t)(1� u(t))�i(t)
�
�2(t) = �2(t) [� � ((1� u(t)�)�s(t)� )] + �1(t)((1� u(t)�)�s(t) + �)� ki(t)+ (17)

+ (1� k)(1� i(t)) [Au(t)�]2

s(TSD) = sTSD ; i(TSD) = iTSD

�1(T
e
V ) = 0; i(T

e
V ) = iT eV :

where iT eV represents the percentage of infective individuals considered optimal by the social planner

when the vaccine is expected to be available. As for Stage 2, the same conditions stated in (15) hold,

where however s(TV ) = sTNV
and i(TV ) = iTNV

should be replaced with s(TV ) = sTOPTV
and i(TV ) =

iTOPTV
, where sTOPTV

and iTOPTV
are the values of the susceptible and infective de�ned by the optimal

control at Stage 1 at the actual time of vaccine arrival.

The joint optimal control. Under the assumption in which the social planner attempts at (jointly)

optimally controlling the epidemic over both Stage 1 and Stage 2 already at the end of Stage 0 (i.e.,

when it becomes aware of the epidemic seriousness), the optimisation problem consists in minimising

F1(s(t); i(t); u(t)) + F2(s(t); i(t); u(t); �(t)); (18)

subject to the dynamics of s(t) and i(t) described by a piecewise dynamic system de�ned in (11) and

(13), given the continuity conditions on s(t) and i(t) when the vaccine arrives. We do not report the

optimality conditions for this case as they are similar to those computed previously. We pinpoint,

however, that the latter optimisation problem resembles those in Acemoglu et al. (2021) and Alvarez

et al. (2021). Unlike them, however, we build on a vaccination plan beginning at the time of the

arrival of the vaccine.

Vaccine rationing during Stage 2 . As typically observed during the COVID-19 pandemic, we

consider the case of a non-optimal vaccination schedule _v(t) = g(t) > 0, where function g(t) is

exogenously given due to the concurrency of constraints on the organisational and logistic side. In

what follows we analyse the stylised case of linear rationing in which the number of vaccines that

can be administered per day is constant ( _v(t) = g > 0), generating a linearly increasing cumulative

coverage (in the simulation section, we will also consider the case of a generic data-based daily vaccine

coverage function, g(t)).

The optimal programme for the rationing problem reads as follows:

min
u(t)2[0;1]

TZ
TV

1

2

(
ki2(t) + (1� k)[u2(t)q2(t) +

�
g(t)

B

�2
]

)
e��(t�TV )dt+ �V iT e

��(T�TV ); (19)
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subject to
�
s(t) = �(1� u(t))�i(t)s(t)� EV � g(t) + �[1� s(t)� i(t)]
�
i(t) = (1� u(t))�i(t)s(t)� i(t)

;

and the initial conditions s(TV ); i(TV ) 2 (0; 1), with v(TV ) = 0. The parameter 0 � EV � 1 represents
the actual e¢ cacy of the vaccine against the infection, which can be interpreted as the probability that

a randomly selected person for vaccine administration is successfully immunised against the infection.

The optimality conditions for this problem are the following:

u(t)� = min

�
1;max

�
0;
�i(t)s(t)(�2 � �1)
(1� k)A2(1� it)2

��
�
s(t) = ��s(t)i(t)(1� u(t)�)� EV � g(t) + �(1� i(t)� s(t))
�
i(t) = (1� u(t)�)�i(t)s(t)� i(t)
�
�1(t) = �1(t) [� + �(1� u(t)�)i(t) + �]� �2(t)(1� u(t))�i(t)
�
�2(t) = �2(t) [� � ((1� u(t)�)�s(t)� )] + �1(t)((1� u(t)�)�s(t) + �)� ki(t)+ (20)

+ (1� k)(1� i(t)) [Au(t)�]2

s(TV ) = sTV ; i(TV ) = iTV

�1(T ) = 0; �2(T ) = �V e
��(T�TV ):

4 Results: simulations

Consistently with our theoretical objectives, we now report the main simulation results for a sample of

sub-cases. In particular, we will illustrate our main results for the generic abstract problem of epidemic

control in the presence of two control instruments, in which the second instrument (vaccination by an

e¤ective vaccine) appears only in the second stage of the epidemic. As discussed in the theoretical

part, this analysis will distinguish two main sub-cases, namely the two-stage disjoint optimal control

problem and the full joint optimal control problem. Additionally, we will report a number of results

on the problem in which the vaccination schedule (i.e., the number V (t) of susceptible successfully

immunised against the infection per unit of time) is given, re�ecting vaccine supply rationing at various

scales (international, national, local, etc.), thereby yielding an optimal control problem in which social

distancing is the unique available instrument.

The values of the parameters used in the simulations are all drawn from the COVID-19 literature

(Table 1). In particular, we adopted a value of the basic reproduction number ofR0 = 3:0 as consistent
with the values estimated from the original strains responsible for the �rst and the second pandemic

waves in Italy. The waning rate of natural and vaccine-related immunity (�) is set to 1=135, re�ecting

the short average duration of protection (less than �ve months) o¤ered by the vaccine against infection.

The e¢ cacy of the vaccine against the infection (EV ) is drawn from the entire range of COVID-19

e¢ cacies against the original strains and the various COVID-19 variants of concern (VoC).

We preliminary recall that in the full absence of any control the infection shows an initial epidemic

phase but, unlike pure SIR models, the infection does not go extinct due to acquired immunity,
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instead it steadily oscillates around an endemic state whose appearance and stability are induced by

the waning of natural immunity (Figure 1).

Parameter Baseline value or range Source

A 0:3 Arbitrary (economic scaling parameter)

� 0:03=365 Literature (subjective discount rate)

R0 3:0 Literature

 1=7 (day�1) Literature

� 3=7 (day�1) Computed from the relation R0= �=
� 1=135 (day�1) Literature

EV 0:2� 0:8 Literature.

Table 1. Values of the main epidemiological and economic parameters used in the numerical
simulations.

Figure 1. The free epidemic case showing (for R0 > 1) the temporal trend of state variables (s,
i, r) resulting in damped oscillations about the endemic state.

In what follows, we report the main simulation results for the various cases considered in the

theoretical analysis. We recall that in all simulations presented the social distancing is activated

(during Stage 1) after an initial stage (Stage 0) of free epidemic growth lasting one month initialised

from an initial infective case in a fully susceptible population.

4.1 The two-stage disjoint optimal control problem with realised expectations on
vaccine arrival

The simulation results related to this case refer to the two-stage disjoint optimal control problem

discussed so far by assuming that the expectations of the planner about the arrival date of the vaccine

are fully realised. In this scenario, the social planner aims to control (since the beginning of Stage

1) the epidemic only by means of the social distancing instrument, taking into account their e¤ects

in terms of both epidemiological and economic costs. In fact, faced with great uncertainty about the

12



arrival of the vaccine during Stage 1, the social planner�s objective is to control the epidemic over

a relatively short time horizon until the expected arrival date of the vaccine with a given level of

infection. This follows the spirit of Acemoglu et al. (2021) and Alvarez et al. (2021).

We then assume that the vaccine will become available at the beginning of Stage 2 and then the

social planner will seek to optimally tune (by re-optimising) the social distancing strength and the

vaccination plan by inheriting the exit conditions from Stage 1. This approach is not trivial as, for

example, it re�ects the intervention undertaken in Italy (and in other European countries), in which a

change of the Italian central government temporally occurred at the start of the vaccination campaign,

implying that the decisions about the control over Stage 1 and Stage 2 of the epidemic were completely

disjoint.

In this regard, Figures 2 and 3 report the outcomes of the optimal control problems for di¤erent

values (k = kHigh = 0:97 and k = kLow = 0:2) of the relative weight (k) of the direct versus indirect

component of the costs to be minimised by the planner.

For k = kHigh (Figure 2), the social distancing intensity in Stage 1 fastly reaches a maximum,

then relaxes in view of the achieved high degree of control and �nally relapses to contrast the e¤ects

of the immunity loss, and of the control of the potential increase of epidemic activity at the end of

Stage 1 horizon. Once the vaccine becomes available, which occurs at a rather low level of population

immunity (that is, for a susceptible fraction rather large) due to the intense control activity during the

pre-vaccine period, the vaccination component of the optimal programme starts with a massive initial

campaign (thanks to the free accessibility to the vaccine) which is subsequently relaxed, but it allows

to bring epidemic activity to highly controlled levels for the entire control horizon, and consequently to

fully relax the social distancing instrument. Notably, the social distancing component of the optimal

programme can be completely relaxed (i.e., decreased to zero) because the administered vaccination

allows the full control of the epidemic over the horizon considered. Remarkably, the (postulated) full

e¤ectiveness of the vaccine allows to optimally joining the two components of the programme and

achieving a very high level of epidemic control by a total cumulative vaccination coverage slightly

above 60%.

For k = kLow (Figure 3), the low weight attributed to the epidemiological cost implies that the

social distancing is enacted at a much lower intensity. Therefore, the natural waves due to the epidemic

are not prevented and social distancing is activated just to mitigate them, consequently yielding a much

larger societal impact of the epidemic compare to kHigh. Therefore, prior to arrival of the vaccine,

three epidemic waves are observed with a time spacing much closer to the duration of the immunity.

Nonetheless, the high degree of natural immunity allowed by the mild social distancing implemented

prior to vaccine arrival allows �once the vaccine becomes available �to rapidly bring epidemic activity

at fully controlled levels with a very low vaccination e¤ort compare to kHigh. Notably, the building of

susceptibles rapidly restarts, but the epidemic remains well controlled for the entire residual control

horizon. Last, note that also the optimal tax rate oscillates to follow epidemiological trends.
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Figure 2. The two-stage disjoint optimal control problem under realised expectations for kHigh.

Temporal trends of (i) optimal social distancing and the tax rate to �nance vaccination (top left panel),

(ii) cumulative vaccine function (top right panel), (iii) Rt (bottom left panel), (iv) epidemiological

state variables (bottom right panel).

14



Figure 3. The two-stage disjoint optimal control problem under realised expectations for kLow.

Temporal trends of (i) optimal social distancing and the tax rate to �nance vaccination (top left panel),

(ii) cumulative vaccine function (top right panel), (iii) Rt (bottom left panel), (iv) epidemiological

state variables (bottom right panel).

4.2 The two-stage disjoint optimal control problem with non-realised expectations

The simulation results now refer to the two-stage disjoint optimal control problem by assuming that

the actual arrival of the vaccine occurs prior to the expected arrival date (k = kHigh). In Figure 4

we assume that the time horizon of the social planner is still two years as in the previous experiment,

but the arrival of the vaccine that was expected by the end of year 2 actually occurs at the end of

year 1. At Stage 2, the planner will then re-optimise by leaving the previous plan (chosen at Stage

1) and choosing a new optimal mix of social distancing and vaccination. This discrepancy between

expected and actual arrival date of the vaccine yields (compare to the case of realised expectations)

an interesting e¤ect by which a lower social distancing is rapidly crowded out by a more intense and

concentrated vaccination e¤ort.
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Figure 4. The two-stage disjoint optimal control problem in the case of anticipated arrival of the

vaccine compared to expectations for kHigh. Temporal trends of (i) optimal social distancing and the

tax rate to �nance vaccination (top left panel), (ii) cumulative vaccine function (top right panel), (iii)

Rt (bottom left panel), (iv) epidemiological state variables (bottom right panel).

4.3 The joint optimal control problem over the two stages of the epidemic

As for this case, we only report simulations referred to the case in which the expectations of the

planner about the arrival date of the vaccine are fully realised. The planner builds an optimal plan

since the beginning of Stage 1 (t = TSD) by relying only social distancing instrument at Stage 1

and switching to a mix of social distancing and vaccination at Stage 2, instead of re-optimising at the

beginning of Stage 2 as in the disjoint problem. Sticking on the case of k = kHigh, the main qualitative

news (Figure 5, top left panel), compared to the disjoint problem reported in Figure 2 stems in the

shape of both the optimal controls: the optimal social distancing can be substantially relaxed prior

to the arrival of the vaccine, while the optimal vaccination does not set to its maximum value at the

programme start, but it follows a plateau for a quite long period of time before declining to zero.
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Figure 5. The joint optimal control problem over the two stages of the epidemic under realised

expectations for kHigh. Temporal trends of (i) optimal social distancing and the tax rate to �nance

vaccination (top left panel), (ii) cumulative vaccine function (top right panel), (iii) Rt (bottom left

panel), (iv) epidemiological state variables (bottom right panel).

4.4 Optimal social distancing under an observed vaccination schedule

The simulations related to this case refer to vaccine rationing �as was developed in the theoretical

part �under a generic data-based vaccine coverage function ~V (t), re�ecting a range of phenomena

such as vaccine scarcity, logistic bottlenecks and any other non-optimal allocation. Therefore, the

objective of this section is to investigate the optimal lifting of social distancing owing to the given

temporal pro�le of vaccination. We will speci�cally refer to COVID-19 as a case study and use actual

data from the Italian COVID-19 vaccination campaign to parametrise the V (t) curve under a grid of

values of the e¢ cacy of the vaccine against the infection. From a theoretical perspective, the planner

has an initial aim to contain the epidemic in Stage 1 through social distancing as was the case in the

disjoint optimal control problem analysed so far. To relate V (t) to actual data, we de�ne it as:

V (t) = EV �NV (t); (21)
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where NV (t) represents the actual number of vaccine administrations per day and 0 � EV � 1

represents the actual e¢ cacy of the vaccine against the infection, which is the probability that a

randomly selected person for vaccine administration is successfully immunised. In our experiments, we

will let EV vary (Table 1) in a grid re�ecting the di¤erent e¢ cacies of the vaccine against the di¤erent

VoC of COVID-19. In particular, we consider the following values: EV = 0:8 (roughly corresponding

to the original strains), EV = 0:5� 0:8 (delta/alpha VoC) and EV = 0:2� 0:3 (omicron VoC). As for
NV (t), we will measure it by daily data of second doses of COVID-19 vaccine administrations because

the available vaccines achieve their declared e¢ cacy only after the completion of a two-dose cycle.

We delayed the vaccination signal by two weeks to capture the time of full take of the vaccine. In

particular, we smoothed available cumulative vaccination data by a logistic curve showing an excellent

�t (Figure 6). The smoothed curve ( ~V (t)) was used as an input for the optimal control programmes.

Figure 6. Aggregate (all eligible age groups) cumulative temporal pro�le of second dose adminis-
trations of COVID-19 vaccines in Italy since the onset of the Italian vaccination campaign on December

27th, 2020, and the corresponding logistic smoothing curve. The eventual cumulative aggregate (in

the eligible population) second dose coverage was 77:6%.

The corresponding outcomes for the case k = 0:97 are reported in Figure 7. The optimal social

distancing (top left panel) keeps the already found U-shaped trend during Stage 1, whereas its shape

during Stage 2 strongly re�ects the vaccine e¢ cacy and duration. In particular, the optimal trajectory

u(t)� in Stage 2 rapidly climbs (disregarding the initial discontinuity) to values nearby those of Stage 1,

then it declines to a minimum in a time span of about 5 months, but it needs to relapse thereafter due

to the waning of vaccine protection, as expected. The extent of the decline is dramatically dependent

on EV : for EV = 0:8 (black) most social distancing can be relaxed, whereas for EV = 0:2 (blue), u(t)�

can never decline beyond 0:5. The (non-optimal) ensuing tax rate (top right panel) reveals a non-

trivial dynamics due to an indirect equilibrium economic e¤ect. Indeed, the number of administered

vaccine is the same in all scenarios, but the di¤erent intensity of social distancing poses di¤erent costs

to the economy, which requires to �nely tune the tax rate (the lower the e¢ cacy of the vaccine against

the infection, the higher the tax rate). The corresponding trajectories of the epidemiological variables
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(bottom left panel) clearly con�rm the need for the relapse of the optimal social distancing due to the

decline in (primarily) vaccine-related immunity caused by the short duration of vaccine protection.

The trajectories of Rt essentially overlap and (regardless the level of vaccine e¢ cacy) set on a temporal
trend that plateaus slightly below the unit threshold.

Figure 7. The one-control case with the logistic vaccination schedule reported in Figure 6 for
kHigh. Colours at Stage 2: black curve EV = 0:8; red curve EV = 0:5; blue curve EV = 0:2. Temporal

trends of (i) optimal social distancing (top left panel), (ii) (non-optimal) tax rate to �nance vaccination

(top right panel), (iii) epidemiological state variables (bottom left panel). (iv)Rt (bottom right panel).

4.5 Optimal social distancing under linear vaccine rationing

We now report a few summary results on the case of linear vaccine rationing. Still relying on the

Italian case, we simply assume that the cumulative second dose coverage eventually achieved (see the

previous sub-section) was distributed linearly with a constant number of vaccine administrations per

day (g = 117:000=55:000:000). Our �ndings for k = 0:97 are summarised in Figure 8, showing that

the outcome in this case is strongly overlapped with the one presented in Figure 7, with the exception

(besides some negligible loss of smoothing in the control solution) of the non-optimal temporal trend
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of the tax rate. Unlike the logistic case, in which the tax rate followed somewhat straightforwardly

the daily number of e¤ective immunisations, in this case the constant vaccination is more sensitive to

epidemiological trends.

Figure 8. The one-control case with linear vaccine rationing for kHigh. Colours at Stage 2: black
curve EV = 0:8; red curve EV = 0:5; blue curve EV = 0:2. Temporal trends of (i) optimal social

distancing (top left panel), (ii) (non-optimal) tax rate to �nance vaccination (top right panel), (iii)

epidemiological state variables (bottom left panel). (iv) Rt (bottom right panel).

5 Conclusions

This article aimed to tackle the issue of designing a two-control optimal policy against an outbreak

of a communicable disease conferring temporary immunity. Our analysis aimed to augment the post-

COVID-19 literature on economic epidemiology triggered by the early developments by Acemoglu et al.

(2021) and Alvarez et al. (2021). With this aim, we proposed a parsimonious economic-epidemiological

framework mixing a Susceptible-Infective-Removed-Susceptible (SIRS) model for a socially transmit-

ted infection with a (short-term) economic set up, in which the social planner minimises an objective
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function by choosing the strength of social distancing and the tax rate to �nance the vaccination

campaign. However, owing to the realm of COVID-19, the social distancing is the only available

control tool in a �rst stage of the epidemic because an e¤ective vaccine only arrives in a second stage.

The use of two control instruments depends on the degree of rationality and foresight ability of the

planner as well as on the availability of e¤ective vaccines against the infection. In addition, still owing

to the realm of COVID-19, we also considered the more realistic case where the amount of vaccine

stockpile is fully exogenously given due to a number of constraints (e.g., due to scarcity, rationing,

logistic bottlenecks and so on).

Being highly parsimonious, our framework resorted to a number of simplifying hypotheses. On the

epidemiological side, we disregarded realistic epidemiological factors used, for example, to describe the

COVID-19 epidemic, such as, e.g., a latency phase after infection, asymptomatic states of infection,

infection-related mortality, age structure, etc. Moreover, we disregarded further control options such

as testing and tracing (used, e.g., in both Acemoglu et al., 2021 and Alvarez et al., 2021). Another

limitation lies in the postulated equality between the rates of waning of both natural and vaccine-

related immunity. This issue is easily solved by adding an additional compartment distinguishing

natural versus vaccine-related removed individuals. Additionally, we kept the economic side as simple

as possible to concentrate on the short-term analysis of a planner that aims to trade-o¤ economic

and epidemiological costs having taxation as the only economic tool, without accounting for capital

accumulation. All previous points are easily removable �at least in principle �and will be the object

of our future research agenda. However, the parsimonious framework posed here included a great deal

of the fundamental qualitative features of the problem.
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