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Abstract

The application of Agent-Based Modelling to Game Theory allows us to benefit
from the strengths of both approaches, and to enrich the study of games when
solutions are difficult to elicit analytically. Using an agent-based approach to
sequential games, however, poses some issues that result in a few applications of
this type. We contribute to this aspect by applying the agent-based approach to
a lobbying game involving environmental regulation and firms’ choice of abate-
ment. We simulate this game and test the robustness of its game-theoretical
prediction against the results obtained. We find that while theoretical predic-
tions are generally consistent with the simulated results, this novel approach
highlights a few differences. First, the market converges to a green state for a
larger number of cases with respect to theoretical predictions. Second, simula-
tions show that it is possible for this market to converge to a polluting state
in the very long run. This result is not envisaged by theoretical predictions.
Sensitivity experiments on the main model parameters confirm the robustness
of our findings.

JEL classification: C63; D72; L13; L51.
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1 Introduction

Agent-based modelling (ABM) is a computational method that allows to simulate
models composed of autonomous and possibly heterogeneous agents that interact
with each other as well as with the environment according to set rules of behaviour
(Salgado and Gilbert, 2013; Tesfatsion, 2006). Important features of agent-based
models include the possibility to model realistic agents’ characteristics such as limited
rationality and heterogeneity and identify the mechanisms that determine emergent
phenomena.
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Following the development of computational techniques, agent-based models have
been increasingly adopted in different branches of economics in the last two-three
decades (Axtell and Farmer, 2022). Numerous applications can be found in microe-
conomics, models of markets and matching mechanisms (Epstein and Axtell, 1996;
Vriend, 2004; Axtell and Kimbrough, 2008), labour markets and educational choices
(Fagiolo et al., 2004; Leoni, 2022), macroeconomics and finance –to reproduce large
scale economies– (Cincotti et al., 2010; Tedeschi et al., 2021; Delli Gatti et al., 2011;
Riccetti et al., 2015; Borsato, 2022; Ladley, 2013), as well as in studies of complex
dynamics with a smaller scale focus (Caravaggio and Sodini, 2022; Dávila-Fernández
and Sordi, 2023).

Given the similarities in aim and the same focus on individual behaviours, it
is not surprising that ABMs have also found applications in Game Theory since
they offer the possibility to add on games that present non-standard specifications
or are difficult to treat analytically. A large amount of research has adopted this
methodology to study the prisoner’s dilemma game and cooperation (Axelrod et al.,
1987; Ladley et al., 2015; Hales, 2002; Szilagyi, 2012). Rational behaviour has been
contrasted by inductive learning through the well-known El Farol problem (Arthur,
1991, 1994). More specifically, applications of ABM can be found also in Indus-
trial Organization (IO). However, attempts to replicate standard oligopoly models
such as Cournot are limited and rely on rather simple and non-sophisticated models
reproducing simultaneous games (Kimbrough and Murphy, 2009, 2013).

An isolated example of an agent-based approach to study a sequential game is
given by van Leeuwen and Lijesen (2016) who propose an agent-based version of
the Hotelling’s game of spatial competition. The issue with sequential games is that
while in ABMs agents form expectations on the basis of past information, the typical
solution concept of subgame perfection adopted to solve sequential games implies
that agents anticipate other players’ optimal actions. Nevertheless, van Leeuwen and
Lijesen (2016) claim that despite the evident differences between the two approaches,
Game Theory and ABM can be adopted complementary in such a way that one
approach’s weaknesses correspond to the other approach’s strengths and vice versa,
allowing for the exploitation of the synergies between the two.

Following this idea, in this paper, we apply an ABM approach to a lobbying game.
More precisely we adapt to the model used by Catola and D’Alessandro (2020) to
analyse an application of lobbying to environmental regulation. Among the several
approaches to model lobbying, this specific type analyses the lobbying interaction
as a common agency problem through menu auctions as pioneered by Bernheim and
Whinston (1986). The lobbyist offers the politician a menu of possible contributions
for every given choice of the objective policy and the government picks the one that
it prefers. This approach was popularised by the seminal paper of Grossman and

2



Helpman (1994) who applied this model to analyse trade policies and in particular
the lobbying in favour of sails protection. In this paper, the lobby is exogenously
given, while subsequent extensions of the model (see e.g., Mitra, 1999; Laussel, 2006;
Bombardini, 2008) relax this assumption and explicitly consider firms’ costly decision
to form the lobby. This class of models have found several applications, mostly in
international trade (Grossman and Helpman, 2002, e.g), multinational firms location
(Polk et al., 2014), industrial structure (Cerqueti et al., 2021) and has been widely
applied in the analysis of environmental regulation of imperfectly competitive mar-
kets (see for example Fredriksson 1997; Aidt 1998; Fredriksson and Svensson 2003;
Fredriksson and Wollscheid 2008, and the aforementioned Catola and D’Alessandro
2020).

This paper contributes to the literature in several ways. Firstly, methodologically.
To the best of our knowledge, this is the first attempt to apply the ABM approach
to study lobbying and one of the few attempts to model sequential games in general.
In our ABM, the economic actors combine maximising behaviours with bounded
rationality and limited access to information. Moreover, we provide an algorithm to
reproduce the subgame perfect interaction between the government and the lobby as
modelled by Grossman and Helpman (1994).

Secondly, our approach contributes to test the robustness of the prediction ob-
tained with a theoretical model in standard IO. Indeed, one of the main limitations
of the traditional IO models is that the analysis is limited to one-shot games. While
they still provide valuable insights into the incentives in play, they lack the dynamics
connected to the temporal dimension. At the same time, the introduction of such
dynamics through the use of repeated games suffers severe restraints connected to
tractability as well as the abundance of possible equilibria in such games (Folk The-
orem). In this regard, ABM could provide a useful tool to compare the behaviour
of complex systems with the predictions obtained by one-shot games. In the case
of Catola and D’Alessandro (2020), our results show that their equilibrium is rea-
sonably robust to the simulation over long periods, even when players are not fully
rational as assumed in the standard models.

The paper is organised as follows. Section 2 summarises the original game, Sec-
tion 3 presents the simulated model while Section 4 discusses the parametric setup
of the model. Section 5 discusses the main results of our simulations while Section 6
presents some sensitivity analysis on key parameters of the model. Finally, Section 7
concludes the paper.
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2 The reference model

In this section, we briefly summarise the key features of the model presented by
Catola and D’Alessandro (2020). They study a Cournot oligopoly with N firms and
a linear demand p = a−Q where firms choose between two technologies. The first one
(polluting) has zero marginal cost but generates polluting emissions and is subjected
to a unit tax τ . The second one (green) has a marginal cost c but does not cause
pollution. Profits when choosing the different technologies are therefore equal to:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

πp = (p − τ)qp,
πg = (p − c)qg.

(1)

The government impose taxation following a twofold motive. On the one hand,
it wants to minimise the environmental damage D. On the other hand, it is inclined
to accept political contributions L. The damage is modelled as a linear function
of the emission and the difference between the gross unitary damage and the tax:
D = (g − τ)Qp. The utility function G is assumed to be linear.

G = L − (g − τ)Qp. (2)

The final actor is the lobby formed by all the polluting firms that offers political
contributions, L, in exchange for lower τ . The objective function of the lobby, V , is
to maximise the profits of its members under the constraint of breaking even.

V = ∑πp −L − F, (3)

where F is the fixed cost connected to operating the lobby.
The costs of the lobby are then equally divided among the members of the lobby

in the form of a fee l. The game is finally solved as an entry game where the number
of firms that join the lobby is obtained by imposing:

πp − l = πg. (4)

The main result of the paper is that for values of g and F sufficiently low, both
technologies co-exist in the market, otherwise, the polluting technology is pushed out
of the market and all firms switch to the green one

3 The ABM model

In this section, we present the adaptation of the original theoretical model to an
ABM framework in which we combine the optimal Nash behaviour of agents with
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the typical features of ABM such as bounded rationality and limited access to infor-
mation.

We code and simulate the model in NetLogo (Wilensky, 1999), an open source
programming environment specifically designed for creating and experimenting with
agent-based models. NetLogo allows for the visualisation of agents in its world, a
two-dimensional grid of “patches”; each patch is a square piece of “ground” over which
agents are located. In our model agents are the n firms.

Figure 1 provides a snapshot of the NetLogo world of the model. The polluting
firms are depicted in red; the green firms are the non-polluting ones.

Figure 1: The NetLogo world of the model at its set-up.

3.1 Firms

In each period, firms have to take two decisions: in the first stage of the period they
need to decide which kind of technology to use and in the last stage of the period
how much to produce and then obtain profits.

3.1.1 Choice of type

At the beginning of period t, firms must decide whether or not to abate their emis-
sions. In other words, they have to choose their type k, where k ∈ {g, p}, where g is
the green type and p is the polluting one.

To decide over their type, each firm, given its type in the previous period, con-
fronts its profit from the previous period with the average profits of the other type
and decides whether or not to switch.

The first issue concerns how much information does a single firm have about the
profits of competitors in the market. In fact, it would be unreasonable to think that
that they have access to the information about profits (i.e. quantity produced) for
each competitor in the previous period. For this reason, we assume that each firm
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has access to this information for only a subset of the total competitors. We model
this limitation by borrowing the concept of Social Circle proposed by Hamill and
Gilbert (2009).

The idea is simple. Consider firm i. Its specific location in the space works as a
centre for a circumference Oi of a given radius, creating a spatial cut-off. Firms will
have information about profits for any competitor located within the circle.

An example is provided in Figure 2, where the circumference defines the set of
competitors for the blue firm. Firms coloured in yellow, outside of the circumference,
are not competitors.

Figure 2: Application of a social circle to define the set of firm’s competitors.

Bigger (smaller) values of the radius are associated with bigger (smaller) sub-
markets and thus will include more (less) competitors.

Following Hamill and Gilbert (2009), the relationship between agents is only
established if agents can reciprocate, which is always the case if the radius takes the
same value across firms, while it is not ensured when the measure of the radius is
different across agents (see Figure 3).

Figure 3: Types of Social Circle

(a) reciprocity (b) non reciprocity

In our case, we depart from the assumption of reciprocity allowing the radius
to be heterogeneous across firms. This implies that given firms x and y, it may be
the case that y ∈ Ox while x ∉ Oy, meaning that firm x will have information about
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firm y but not the other way around. While this is typically not the case for social
interactions, in discussing industrial competition it is perfectly plausible that some
firms have access to better information than others.

Once the information about the profits of its competitors within its circle is
collected, each firm will compare its profit of the previous period, with the average
profits of firms of the different type. If its profit is higher than the average, it will
remain of the same type. If its profit is lower than the average, the firm will consider
switching type (i.e. technology).

Formally, at the beginning of every period, each firm will choose whether to
maintain its type k from the previous period or to switch to the other type (−k)
according to this rule:

if π t−1 ≥ π t−1−k then kt = kt−1,

if π t−1 < π t−1−k then
⎧⎪⎪⎪⎨⎪⎪⎪⎩

kt = −k t−1 with probability θ

kt = k t−1 with probability 1 − θ
,

where π t−1−k is the average profit of rivals within firm i circle

(5)

To model the switching probability θ we again borrow from the ABM literature and
adapt the probability of switching from Delli Gatti et al. (2010) and Riccetti et al.
(2013) (time indices are omitted):

θ = Pr(switch) = eλ(π−k−πi)/π−k − 1, (6)

where λ is a parameter measuring the “intensity of choice”. This formulation captures
the idea that on the one hand switching technology is a process that costs time and
money while on the other hand, firm i only has partial information about the success
of the competitors. Therefore firm i will be more willing to switch the higher the
difference in profits obtained by its rival, but the switching is not certain.

After all firms take this decision, the total number of polluting firms (i.e. firms
of type p), np, and the total number of green firms (i.e. firms of type g), nG, are
computed.

3.1.2 Choice of quantity

In the last stage of the period, the n firms compete a la Cournot in a market char-
acterised by a linear demand.

p = a −
n

∑ qi (7)

As this is the final stage, the value of the tax τ has already been determined by
the government and therefore is known to all firms. Moreover, the abatement cost
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is the same for every firm. If we assume that the information about the number
of green (ng) and polluting firms (np) is also common knowledge, firms can choose
the Nash strategy in terms of quantity depending on their marginal cost ck and the
average marginal cost c . Namely:

qi,k =
a − ck + n(c − ck)

n + 1 where
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ck = {c, τ}
c = npτ + ngc

n

(8)

After every firm makes this decision, the total quantity is computed, thus deter-
mining the market-equilibrium price p∗. Finally, profits of each firm are realised, as
it is the environmental damage. At the end of the period then each firm will realise
a net payoff, which for the polluting firms must also include the cost of the lobbying.

3.2 The lobbying game

In this section we discuss our implementation of the lobbying game a la Grossman
and Helpman (1994) in the context of the ABM. Such a game is structured as a menu
auction, where the lobbyist offers a contribution schedule, where different amounts
of political contribution correspond to different decisions from the government. The
government will then pick its preferred option given such a schedule. A convenient
feature of this approach is that in a subgame perfect equilibrium, the outcome of
such a process implies that the level of the tax will in fact be the one that maximises
the objective function of the lobby. We can exploit this result to build an algorithm
that simulates the same procedure:

i) Firstly the lobby proposes a contribution schedule in the form of a vector L⃗.

ii) For every value Lj (i.e., for every element in L⃗), the government determines
the associated value of τj . Thus, L⃗ is associated to a second vector (of the
same length) T⃗ whose elements are the possible values of the tax.

iii) The lobby computes its objective function Vj for every possible pair (Lj , τj)
and implements the one that provides the higher value of V .

In what follows we discuss how each of these steps are implemented.

3.2.1 Lobbying schedule

To determine the lobbying schedule L⃗, the lobby apply a rule of thumb based on
the results from the previous year. Namely, the lobby collects from every polluting
firm a contribution computed as a fixed share αj of the average profits that polluting
firms obtained in the previous year. These collected resources, net of the fixed cost of
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running the lobby (F ), are then used to finance the campaign contribution, meaning

Lj = np ⋅ αj ⋅ π t−1p . (9)

Therefore, to every possible value of α, corresponds a given offer to the govern-
ment. In the model, we choose the following possible values for α

α⃗ = (0.2; 0.4; 0.6) (10)

3.2.2 Tax schedule

The government will weigh the political contribution offered by the polluting lobby,
against the expected environmental damage that will follow from the tax. Therefore,
the trade off to evaluate is between the contribution offered L and the expected
environmental damage E(D), which is equal to

E(D) = (g − τ)E(Qp), (11)

where E(Qp) is the expected total quantity produced by polluting firms.
Given this equation and the government’s objective function, the tax chosen by

the government will satisfy the following condition:

L − (g − τ)E(Qp) = 0. (12)

As for E(Qp), we assume that the government has a refined version of static ex-
pectations concerning quantity. More specifically, the government expects that the
average individual quantity produced by polluting firms will remain the same from
the previous period, however, it updates the expectations on the total quantity using
the information about the number of polluting firms. Formally:

E(Qtp) = np ⋅ q t−1p , (13)

combining equations 12 and 13 the optimal value of the tax set by the government
in period t is equal to:

τ t = g − Lt

ntp ⋅ q t−1p

. (14)

Thus, at the end of this process, the vector T⃗ is determined.

3.2.3 Tax Determination

Once the vector of taxes is determined, the lobby will combine L⃗ and T⃗ to compute
the value of its objective function for every value of α.
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The aim of the lobby is to maximise the profits of its members which depend on
the expectations of future profits given the level of the chosen tax and the expenditure
in lobbying. As Lj is already determined at this stage, the crucial variable is the
expected profits of the polluting firms given the tax level τj . Similarly to what
we did for the government, we assume that the lobby has a refined form of static
expectations. On the one hand, if the tax remains the same, the lobby assumes that
the average individual profits of its members in the upcoming period is equal to the
profit in the last period. On the other hand, if the tax in the new period changes,
the lobby updates its expectations about the profit in the same proportion.

Formally, the objective function of the lobby for every level of αj can be written
as:

Vj = np ⋅ π t−1p ⋅ (1 − δj) −Lj , (15)

where δj is the growth rate of the tax given αj : δj =
τ tj−τ t−1

τ t−1 .
The lobby will compute Vj for every possibility and select the highest outcome.

The lobby selection implies the selection of the realised value of α for period t, which
in turn determines the value of the L and τ .

Once the lobbying process is over, the lobby fee that each polluting firm needs
to pay is computed. The value of such a fee will be the total amount contributed
to the government (Lt) plus a share of the fixed cost of running a lobby F that is
divided evenly among members. The lobby fee that each polluting firm has to pay
is therefore equal to:

lt = L
t + F
ntp

. (16)

4 Model setup

In setting the model we choose the size of the market a = 1000 and a number of firms
n = 100. At the initialisation, each firm is assigned a random position, a random
radius for its social circle in the range (5,25) and flips a coin to decide its type at
round 0, thus determining n0g and n0p.

After that every firm has been placed in the space, the initial value of the tax
(τ0) is determined. To provide the maximum comparison with the theoretical model,
we assume as a starting value for the tax the equilibrium tax level given the number
of polluting firms.1

τ0 = c − a − g − n(g − c)
2n0p

+ a − c
2 + 2n0g

. (17)

It is worth mentioning that assuming this starting point also provides a condition
over the value of the marginal cost c, namely c ≤ a+n∗t

1+n , which constrains the selection

1For all analytical results we refer to reader to Catola and D’Alessandro (2020).
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of the value at the setup. We chose a value of the marginal cost equal to 10.
As for the switching probability from equation 6, we selected a value of λ that

would ensure that θ ∈ [0,1]. Among those values, we selected λ = 0.5.
An overview of the values used at the model setup is reported in Table 1

Variable input
N. firms 100
a 1000
λ 0.5
radius U(5,25)
marginal cost 10
fixed cost 100

Table 1: Variables’ values used in the model setup

After the setup, we run the model until the market converges to one technology
(i.e. either ntp = 0 or ntg = 0) but we impose a limit of 3000-time steps above which
the simulation stops.

Since we want to test the robustness of the theoretical predictions of the model,
we use environmental damage as a main variable, ad we run different scenarios for
different values of g and compare our results with the prediction from the game.

The following Box provides an overview of the simulation algorithm.



The simulation algorithm

1. initialisation

(a) Population and agents’ attributes

– Create 100 firms

– Set position, radius and type randomly

(b) Round 0

– Compute the tax rate τ0 given c, n0p, n0g
– Firms produce the optimal quantity given c, τ0, n0p, n0g
– Compute market outcome: p, π0p, π0g

2. Model dynamics For each t:

(a) firms interact with local competitors and:

– compute average profits of competitors

– compute profits gap

– take a decision: switch/do not switch status

(b) the lobby determines the 3-item L⃗

(c) the government compute the 3-item T⃗

(b) the lobby determines the 3-item V⃗ and choose the best τ

(d) the lobby computes the lobby fee

(e) Firms produce the optimal quantity given c, τ , np, ng

(f) Compute market outcome: p, πp, πg

Iterate the model until convergence (i.e. np = 0 or ng = 0) with a maxi-
mum limit of 3000-time steps.

3. Monte Carlo experiment

(a) Define output variables of which results must be collected

(b) Run 500 experiments using the Behaviour Space
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5 Results

In this section, we present the results of the Monte Carlo simulations. We run 500
simulations for each value of g and let the model run until there is convergence to
either of the 2 states (i.e. polluting or green). Results are summarised in Table 2.2

Table 2: Monte Carlo simulation

g N Converge average number of standard
time steps to converge deviation

10 499 polluting 39.94 16.40
10.25 500 polluting 67.14 21.30
10.5 499 polluting 155.90 47.93
10.65 500 polluting 584.74 166.77

10.7 195 polluting 2250.13 674.11
304 green 299.86 140.98

10.75 498 green 139.21 40.39
11 500 green 48.74 8.33
12 500 green 17.11 2.83
13 500 green 10.76 1.58
14 499 green 8.14 1.16

Results from Table 2 show that for values of g sufficiently low, the market actually
converges to a situation in which all firms choose not to abate (polluting state), while
for g ≥ 10.75 the market will converge to a situation in which all firms will choose
the clean technology (green state). There is also an “ambiguous case”, corresponding
to g = 10.7 where depending on the starting point the market can converge to either
state. Notably, though, the time required for the market to converge to the polluting
state sharply increases the higher g, with cases in which the number of time steps
approaches the upper bound of 3000.

We can compare these results with the theoretical prediction of Catola and
D’Alessandro (2020). The first difference between the theoretical and the simu-
lated model concerns the possibility that the market reaches the polluting states. In
fact, in the theoretical model this outcome is not possible. Polluting firms may be
able to remain in the market but are never able to push the green ones out. Our
results instead suggest that this could happen for values of g sufficiently close to c,
meaning that the theoretical model might be too optimistic concerning the inefficacy
of lobbying to push out green technology. However, it is also worth mentioning that
this scenario requires a substantial amount of time even for values of g very close to

2Notice that the number of observations is not always 500. The reason is that, because of the
randomness of the social circle, in few runs there was a firm without competitors inside its circle
which prevented convergence. These observations were therefore dropped.
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10.
The second point concerns the green state. According to the theoretical predic-

tion, the green state requires as a necessary condition values of g ≤ a+cn
1+n ≈ 19.80.

Instead, our simulations show that the market converges to green even for values of
g significantly smaller and in a little amount of time. In this sense, we could argue
that the theoretical model is too pessimistic about the strength of the green firms to
push polluting firms out of the market.

A final point concerns the timing. In fact, the number of time steps that the model
requires to converge varies significantly in the scenarios. Notably, it is increasing in g
for the outcomes in which the market converges to the polluting states and decreasing
in g for the outcomes in which the market converges to the green states. On the one
hand, this can be considered in line with the theoretical prediction if we think about
speed as reflecting the strengths of the economic incentives in choosing one technology
over the other. On the other hand, we should also reconsider the prediction of a mixed
market outcome. Indeed, if we accept that a time step corresponds to a cycle that
includes production, sales and political process leading to a new tax, it is clear that
a market that requires several hundred ticks to converge (which is often the case for
the polluting state) is in fact a market that one could reasonably consider as mixed.

To provide further insights, we are interested in observing the behaviour of the
tax throughout the simulations. In Figure 4 we plot the difference between the values
of the actual tax and of the theoretical value according to the model for every tick.
We include 6 simulations for 6 different values of g. Two scenarios in which the
market converges to polluting and 4 in which the market converges to green.

At the beginning of the simulation, the two values coincide since the tax is ini-
tialised at the theoretical value. Then, as time steps move one, the two values diverge,
and as the model tends to converge to either outcome the difference explodes, as the
theoretical value becomes extremely large (if the model converges to polluting) or
extremely negative (if the model converges to green).3

We can notice that for values of g close to the critical values, the behaviour of
the two taxes is similar for a longer period before it starts to diverge. Conversely,
for higher and lower values of g, the divergence happens in a much smaller number
of time steps.

3It should be noted that when convergences happen, the value of the theoretical tax derived in
the game would violate its regularity conditions and it is therefore not any more meaningful.
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Figure 4: Tax level for different values of g with seed set to 1000.
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6 Sensitivity experiments

In this section, we test the model reaction to changes in the value of three model’s
inputs: the fixed cost associated with running the lobby, λ, the intensity of the
decision to switch status, and the share of green firms at the model setup.

We set the seed of the pseudo-random number generation process to 1000 at the
setup in order to isolate the effect of the parameters.

For the fixed cost, we set g = 10.5 and we run a simulation for 14 different values,
including the benchmark value of 100. Increasing values of the fixed cost should
discourage firms from lobbying. Results are shown in Figure 5. For increasing values
of the fixed cost, convergence to the polluting state becomes more erratic and takes a
longer time. When fixed cost changes from 200 to 250, the model begins to converge
to the green state with the number of time steps decreasing in increasing values of
fixed costs. While this result follows the expected model behaviour, it indicates that
the value of the fixed cost is relevant for convergence to one or the other state even
though for the set value of g Monte Carlo experiments showed that no outcome other
than convergence to the polluting state can be obtained (Table 2).
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Figure 5: Sensitivity experiments on the fixed costs (g = 10.5; seed = 1000).
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For λ, we test 9 values including λ = 0.5 used in the main Monte Carlo simula-
tions. This parameter measures the intensity of the gap in profits with respect to
competitors. Thus no matter the sign of this gap, λ will reinforce but never change
the effect given by the gap on the probability to switch, and thus the preference to
go green or pollute. For this reason, we run the experiment on two values of g, so
to test the effect in both cases of convergence. Results confirm the expectation as
displayed in Figure 6. For greater intensity of the profits gap (increasing values of
λ), the system converges faster to the expected state for the set values of g.

Figure 6: Sensitivity experiments on λ (seed = 1000).
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We also test how changes in the initial number of firms of each type affect the final
outcome. In our main model we assumed that, at the setup, each firm is assigned
the green technology with probability 0.5, therefore, on average firms are equally
divided between the types. In what follows we test again the model by imposing
a fixed share of green firms from 10% to 90% for two specifications of the models.
The results are reported in Figure 7. In this case, the effect of the change in the
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initial share of green firms on the time steps required to converge is not monotonic.
However, despite the changes in time steps, the different shares of green firms do not
affect the final outcome in terms of convergence.

Figure 7: Sensitivity experiments on the share of green firms (seed = 1000).
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Additionally, the case of g = 10.7 deserves a closer look since the main simulations
present two possible outcomes in terms of convergence. We want to investigate
whether changes of λ or the initial share of green firms can affect the convergence.
We run additional sensitivity experiments holding g = 10.7 at the same seed of 1000.
In this case, we let the model run until convergence without imposing any time limit
given that being a critical value we expect that changes in those key parameters
will affect the convergence. Results (reported in Figure 8) confirm our expectations.
The kind of convergence is sensitive to the initial values of both λ and the share of
green firms. We can see that, while under the parametrisation of the main analysis
this simulation would converge to green, there are values of λ and initial shares of
green firms for which the simulation would converge to polluting. What is confirmed
tough is the large difference in terms of time steps. Convergence to polluting always
requires a substantially larger amount of time compared to the convergence to green.4

4In fact, for the sensitivity experiments of λ, all the cases of converges are well above the
maximum time limit of 3000-time steps imposed.
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Figure 8: Sensitivity experiments for g = 10.7 (seed=1000). Red dots indicate that the converge is
at the polluting state, green the other way around.
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7 Conclusions

In this article, we develop an agent-based model version of the one-shot lobbying
game analysed by Catola and D’Alessandro (2020), that we used to test the robust-
ness of their theoretical predictions. To this purpose we provide a novel approach to
simulate the specific lobbying interaction à la Grossman and Helpman (1994) and
tackle the issue of compatibility between ABM and the solution concepts typical of
sequential games. More specifically, we develop a model where on the one hand, firms
decide how much to produce following a Nash behaviour but decide which technol-
ogy to implement based on limited information about their direct competitors. On
the other hand, the government and the lobby interact to decide the tax level while
being constrained to static expectations.

We simulate the model for a set of values of the externality intensity parameter g
for 3000-time steps, or until the market converges to one technology, and compare our
results with the equilibrium of the game which predicts either a fully green market
or a mixed equilibrium where both technologies coexist.

Our results show that the market converges to green in a larger number of cases
than the one predicted by the game and with a steadily decreasing number of time
steps for increasing values of g. In this regard, we could argue that the original
prediction was rather pessimistic. On the other hand, however, our simulations show
that for values of g sufficiently low the market actually converges to polluting, an
outcome that was excluded by the original model. In this sense, we could argue that
the model was too optimistic regarding the inability of the lobby to push out green
technology. We also highlight a critical value of g in which the market converges
to either outcome. However, there is a substantial difference in the number of time
steps required between polluting or green convergence. The time factor is, indeed, a
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crucial feature of the model, since it can reconcile the mixed equilibrium with our
simulations. In fact, convergence to the polluting state usually requires a number of
time steps that are hardly comparable with the life span of any real market.

Finally, this being a first attempt to simulate such games, many features have
been left behind thus leaving a large scope for further research. In particular, future
attempts could aim at increasing the complexity of the model by relaxing even more
the Nash behaviour of firms, implying for example rules of thumb in deciding the
production. This would imply the possibility of negative profits and even bankrupt-
cies among firms. Other interesting avenues for further research are the use of more
sophisticated expectations for the government or the lobby.
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