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Abstract

There is currently no consensus among scholars on how to achieve a just low-carbon tran-

sition. To address this issue, this paper subjects a macrosimulation model to an extensive

sensitivity analysis and then fits random forests to the simulation results to identify policy

combinations that can reduce carbon emissions while promoting income equality. Our find-

ings indicate that interventions aimed at supporting low-income groups result in an increase

in these groups’ energy demand and emissions, and that this negative effect should be off-

set through a faster deployment of renewable energy sources and measures that redistribute

income away from top earners. Our analysis also confirms the importance of well-known

policies such as carbon taxation and working time reduction. On the other hand, we do not

find energy efficiency to be crucial in achieving inequality and emission reduction goals.

Keywords: ecological macroeconomics, just transition, inequality, scenario discovery.

JEL Classification: Q56, Q57, C63.

1 Introduction

Seldom before have concerns about the environment and inequality been so closely related. Ev-

idence from surveys conducted around the world indicates that inequality and climate change

are frequently identified as among the most pressing issues of our day (see e.g. European Parlia-

ment 2019; Bowles and Carlin 2020), and public and scholarly debates abound on the kinds of
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measures necessary to secure people’s livelihoods in the transition away from fossil fuels. These

challenges are often framed within the concept of a ‘just transition’, which calls for action at the

international, national and local levels to ensure a fair and equitable transition for all individuals

(McCauley and Heffron 2018; O’Neill et al. 2018; Fanning et al. 2020; Millward-Hopkins and

Oswald 2021). A related principle has become central to the way some policymakers conceive

climate interventions. In late 2019, European Commission’s President Ursula von der Leyen

presented the European Green Deal as ‘a strategy for growth that gives more back than it takes

away’, stressing that ‘we have to be sure that no one is left behind [. . .] this transition will either

be working for all and be just or it will not work at all’ (European Commission 2019).

The need for tools to understand and guide the transition to sustainability has given impetus

to the emerging field of ecological macroeconomics (henceforth EM; Rezai and Stagl 2016).

The models developed in this literature typically feature a range of economy-environment inter-

actions, energy use, and disaggregated production and consumption (Barker et al. 2016; Dafer-

mos et al. 2017). Moreover, consistent with empirical evidence (Haberl et al. 2020), they share

a general skepticism about the possibility of rapidly achieving an absolute decoupling of eco-

nomic activity from environmental pressures.

It is perhaps surprising, however, that despite burgeoning advocacy for just transition ef-

forts, EM has paid relatively little attention to how to jointly meet low-carbon and distributive

goals. Research in this area tends to focus on the energy-environment-growth nexus, while in-

equality and other aspects of well-being receive considerably less attention (Hardt and O’Neill

2017). Often the income distribution is considered only in functional terms (that is in terms of

profit and wage shares, e.g. Jackson and Victor 2016; Dafermos et al. 2017), which makes it

difficult to thoroughly assess inequality. Inevitably this modelling stance influences the kinds of

policies EM seeks to examine: as detailed in Section 2, most studies are concerned with direct

climate mitigation measures, whereas those investigating the impact of socioeconomic policies

are considerably fewer in number.

A different but related point is that the standard approach in EM is to consider pre-conceived

scenarios featuring a small number of policies. This approach consists in choosing one or more

(usually two) policy measures that are deemed relevant to the context being studied, translating

them into suitable input parameters, and simulating the resulting dynamics. As a consequence,

on one hand, research ends up being guided by a priori prescriptions on how to address social

and environmental challenges; on the other, a large portion of the policy space is left unexam-

ined.

This paper proceeds in the opposite direction, taking a scenario discovery perspective (Lem-

pert et al. 2006; Groves and Lempert 2007) to explore interventions for a low-carbon, low-
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inequality transition. We introduce a revised version of the Eurogreen macrosimulation model

(D’Alessandro et al. 2020) and use data from about 16,000 simulation runs to identify policy

combinations that address distributive and climate challenges. Our findings and recommen-

dations are the result of an ex-post assessment. First, the model is repeatedly run within the

parameter space. In each simulation, more than one hundred parameters are randomly drawn

from a wide range of possible values. Second, random forests are used on the database of sim-

ulation results to understand which parameter combinations can simultaneously improve social,

economic and environmental indicators. Finally, successful combinations are interpreted either

as policy prescriptions or modelling choices. The paper addresses questions such as: what pol-

icy combinations, if any, make decarbonisation and inequality reduction compatible? Does the

pursuit of growth affect the set of policies available for achieving a just low-carbon transition?

Has the literature overlooked relevant policy alternatives or overemphasized others?

The results indicate that the achievement of low-carbon-and-inequality goals can benefit

from interventions targeted at both ends of the income distribution, which however have dif-

ferent effects on growth and emissions. Policies supporting bottom income groups do certainly

play a role in addressing inequality, but the consequent increase in these groups’ demand for

goods and energy calls for stronger environmental policies to cut emissions. Conversely, mea-

sures that redistribute income away from high earners can make the income distribution more

equal while balancing changes in energy consumption and emissions across income groups. Our

findings further suggest that although a just low-carbon transition neither prevents nor requires

sizeable GDP growth, the primacy of economic growth as a policy objective makes the path

towards a just transition narrower, that is it reduces the range of feasible policy combinations.

The remainder of the paper is organised as follows. Section 2 presents some stylised facts

about the use of scenarios in EM. Section 3 describes the main features and novelties of the

Eurogreen model, and then introduces our scenario discovery approach. Section 4 discusses the

main results and their policy implications. Section 5 concludes and suggests avenues for further

research.

2 Scenarios and policies in ecological macroeconomics

To place our work in perspective, we conducted a systematic review of the use of scenarios in

the EM literature. We limited the analysis to this specific research area to improve comparability

with the model presented in this paper. The term ‘scenario’ denotes a consistent, model-based

description of how the future may evolve under a certain set of input assumptions. Different sce-

narios result from alternative assumptions, which in turn reflect different policies or hypotheses

3



about socio-economic and environmental conditions (Moss et al. 2010). The full list of articles

and scenarios is available for download at Zenodo (see Code availability section below).

All publications dated 2010 or later and retrieved by posing the query ‘ecological macroe-

conomics’ in Scopus (34 results) and Web of Science (33 results) were initially considered for

analysis. Additionally, we considered the 44 publications included in the literature review by

Hafner et al. (2020, Table 2). After discarding duplicates from the three sources, we were left

with 87 publications. The sample was then restricted to articles featuring scenarios and pub-

lished in peer-reviewed journals. This reduced the number of publications to 25.

The next step was to determine how many scenarios were simulated in each article and what

policies comprised each scenario. To do so, we went through all articles and identified all in-

put parameters that varied across simulations. Often these exogenous parameter changes are

framed as hypotheses rather than policy measures. This is the case, for instance, for variations

in the pace of technological progress, changes in the wage and profit shares of income, and

higher or lower projections of emissions and temperature increases. We made no explicit dis-

tinction between policies and hypotheses, as we understand that both are equally important in

allowing articles to make their points. Moreover, whether a model can incorporate well-defined,

real-world policies rather than general hypotheses depends on its level of abstraction and ge-

ographical coverage. For brevity, hereafter we use the term ‘policies’ to refer to both actual

policies and hypotheses.

The review led to the identification of 199 scenarios and 105 policies. The latter were

finally grouped into 12 environmental and socio-economic categories (see Figures 1a and 1b

for the complete list of policy groups and for how groups were classified as environmental or

socio-economic). The classification process was largely based on the frequency with which

similar policies appeared in the literature. Some groups, such as Carbon price and Working time

reduction, are narrow in scope, as the policies that belong to them were observed frequently and

implemented in similar ways for simulation; the former comprises carbon taxes, cap-and-trade

schemes (such as the EU-ETS) and border carbon adjustments.

Other groups consist of several related policies. We briefly describe them in turn. The Di-

rect RES investments and incentives group mainly includes variations in the share of renewable

energy sources (RES) in total energy use; feed-in tariffs for wind and solar energy were also

grouped in this category. The Environmental taxes and regulations group comprises all kinds of

environmental taxes and regulations, excluding those included in the Carbon price and Direct

RES investments groups. Examples include regulations to prevent the construction of new coal

plants, material input taxes, taxes on the consumption of carbon-intensive goods, and subsidies

for green capital. The Technological progress group is composed of changes in energy and fuel
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efficiency, input-output technical coefficients, labour productivity, and R&D investments.

The Income distribution group includes changes in the functional income distribution, basic

income, job guarantee, and rebates to households from carbon tax revenues. Aggregate demand

policies encompass direct variations in aggregate demand components, such as pro- or counter-

cyclical government spending. Finally, the Behavioural change group comprises all changes

in agents’ behaviour, including voluntary reductions in private consumption and network and

snob effects in agent-based models; by definition these are not actual policies, although they

may depend indirectly on policy measures such as information campaigns on climate change or

energy efficiency improvements in household appliances.

Policies in the remaining categories — Population growth, Climate damage, Green finance

and Financial Stability — were observed sporadically, but were considered too different from

other policy measures to be grouped together with them. The Climate damage group consists of

alternative hypotheses about the functional form of the climate damage function (e.g. quadratic

rather than linear) and the likelihood of extreme climate events. The Green finance group in-

cludes reductions in interest rates and various forms of credit rationing influencing investment in

green capital. The Financial stability group is comprised of bailout measures and other policies

to sustain the financial system in face of increased climate risks.
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Figure 1: Summary of literature review
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Figure 1a shows the frequency of the 12 policy categories. About 70 percent of policies

consisted of environmental measures. Of these, 21 percent belonged to the Environmental taxes

and regulations group, 15.2 percent to the Technological progress group, 12.4 percent to the

Carbon price group, and 10.5 percent to the Direct RES investments group. Socio-economic

policies add up to the remaining 30 percent of the total, with Income distribution, Aggregate

demand, and Behavioural change being the most common groups (8.6, 6.7 and 5.7 percent,

respectively).

Figure 1b was constructed by considering pairwise combinations of policy types. Each

unique policy type combination featured in a given scenario adds 1 to the corresponding cell

in the matrix. For example, a scenario consisting of a single Carbon price policy adds 1 to the

(Single, CP) cell; a scenario with one Carbon price and one Income distribution policies adds 1

to the (Dist, CP) cell; a three-policy scenario featuring two different Carbon price policies and

one RES policy adds 1 to the (CP, CP) cell and 2 to the (CP, RES) cell. The figure shows that

most policy mixes combined policy instruments from the Environmental taxes and regulations,

Technological change, Carbon price, and Direct RES investments groups. Socio-economic in-

terventions were most often observed together with Carbon price and Technological progress

policies; this is so particularly in the case of Aggregate demand, Working time reduction, and

Income distribution.

The four bottom-row panels of Figure 1 provide summary information about the number of

policies per scenario and the numbers of scenarios, policies and policy categories per article.

About 60 percent of scenarios featured either 1 or 2 policies (Figure 1c), with the mean number

of policies per scenario being 2.43. On average, articles included 3.28 scenarios and examined

4.20 policies from 2.88 policy groups. Eighteen out of 25 articles considered 3 or less scenarios

(Figure 1d) and 3 or less policy categories (Figure 1f), and all except five articles considered 5 or

less policies (Figure 1e). Overall, these findings seem to indicate that a gap exists between the

positive and policy aspects of ecological macroeconomics. On one hand, research in this field

seeks to investigate the complex relation between social, economic and environmental sustain-

ability. On the other hand, however, scholars tend to rely on scenarios featuring a small number

of policies, which are hardly suitable for the analysis of multidimensional policy objectives.

This point is further discussed in Sections 3.2 and 5.

6



3 Methods

3.1 The model

The Eurogreen model is based on Post-Keynesian economic theory and combines system dy-

namics and stock-flow consistent methods. It is formulated at the country level and has pre-

viously been applied to France (D’Alessandro et al. 2020; Cieplinski et al. 2021a) and Italy

(Cieplinski et al. 2021b). The simulations presented in this study were obtained for Italy and

run from 2010 to 2050, while calibration is based on data for the period 2010-2020. Exoge-

nous shocks to private consumption, investment, exports and imports were included to account

for the Covid-19 pandemic. This section outlines the model structure, with emphasis on the

new features introduced in this version. For a comprehensive discussion, see the supplementary

material.

Aggregate demand drives production and consists of exports and government spending

(which are mainly governed by exogenous trends), consumer spending, and gross fixed capi-

tal formation.

Households’ consumption depends on disposable income, income-dependent marginal propen-

sities to consume, and prices. Consumption is allocated among 16 different goods1 as a function

of relative price changes, with elasticities ranging from 0 to 1.5. Disposable income is deter-

mined by government transfers (such as unemployment benefits and pensions), labour and fi-

nancial income, social security contributions, and income taxes. These variables differ by skill,

gender and employment status (employed, unemployed, out of labour force, and retired, with the

top 1 percent of individuals designated as capitalists or rentiers who only earn financial income).

The new version of the model incorporates gender differences among agents, leading to a total

of 25 different population groups and allowing for a thorough analysis of distributional issues.

Moreover, since consumers’ behaviour depends on income and prices, the model captures the

feedback effects that arise from distributional and price changes, which in turn may result from

such causes as technological progress, wage increases, or the introduction of a carbon tax.

Employment varies by skill and gender, and is determined as a function of labour productiv-

ity at the industry level, previous-period output, and weekly work hours. The skill composition

of labour demand reflects industry-specific historical trends, whereas the gender composition de-

pends on the difference between female and male unemployment rates within each skill group.

Pensions and unemployment benefits are paid in proportion to wages, which in turn are affected

by labour productivity, inflation, and group-specific employment rates. Financial income is

made up of dividends on equity and interests on government bonds.

1Categorised according to the Classification of Individual Consumption According to Purpose (COICOP) scheme.
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Figure 2: Model overview. The solid and dashed arrows represent monetary and non-monetary flows, respectively. The

Households, Industries, Resources, Assets, Government, and Rest of the world boxes summarily represent first-period

simulation results. The dashed lines in the Government and Rest of the world boxes are drawn for reference and cut

the area of the rectangles in half. Abbreviations in the Households box describe the following groups: E = employed;

U = unemployed; O = out of labour force; R = retired; l = low-skilled; m = middle-skilled; h = high-skilled; C = capi-

talists. List of industries: 1 = Agriculture, forestry and fishing; 2 = Mining and quarrying; 3 = Manufacturing; 4 = Coke

and refined petroleum products; 5 = Electricity, gas and steam; 6 = Water supply; 7 = Construction; 8 = Wholesale and

retail trade; 9 = Transportation and storage; 10 = Accommodation and food service activities; 11 = Information and

communication; 12 = Financial and insurance activities; 13 = Real estate activities; 14 = Professional, scientific, techni-

cal, administrative and support service activities; 15 = Public administration and defence; 16 = Education; 17 = Human

health and social work activities; 18 = Arts, entertainment and recreation; 19 = Other.

Industries adjust their desired investment on the basis of the difference between actual and

normal capacity utilisation, striving to produce at the normal rate of capacity utilisation. How-

ever, investment spending is constrained by profits after debt repayment and taxes, which deter-

mine the maximum investment that each industry is able to finance. Another novel feature of this

version of the model is that financing conditions are negatively affected by industry leverage.

8



Output is obtained by multiplying domestic final demand by the Leontief inverse matrix,

and is constrained by fixed capital and capital productivity. Input-output technical coefficients

change endogenously over time with technological progress. The innovation process can be

summarised as follows. In each period, one or more new technologies can be discovered with a

certain probability. Innovations may be labour-saving, intermediate-input-saving, or both. The

probability that a new technology is discovered depends on labour and intermediate input costs;

for example, if in a certain industry the unit cost of intermediate inputs increases relative to the

unit cost of labour, then firms become less likely to develop new labour-saving technologies

than new intermediate-input-saving technologies. Once a technology is discovered, the extent

of technological progress in each industry is randomly determined from normal distributions

calibrated to historical data. Finally, in each industry a choice is made (based on cost minimisa-

tion criteria) about whether to adopt a new technology and, if so, which one. This version of the

model allows for improvements in production efficiency even in the absence of new innovations,

due to the progressive diffusion of the newest available technology.

Technological progress also affects energy demand by increasing energy efficiency. Energy

flows are linked to real domestic monetary flows, with energy demand to output coefficients

specific to every industry-to-industry cell of the input-output matrix, and industry-specific co-

efficients for household consumption. Energy demand is met by five energy sources (solid,

liquid, gas, biomass and renewables) according to industry- and household-specific shares,

which change in time according to the projections of MISE-MATTM-MIT (2019). Green-

house gas emissions are then determined, once again, using industry- and household-specific

energy-source-to-emissions conversion coefficients. This approach allows energy demand and

emissions to respond to changes in both the amount and composition of inputs required for

production.

This new version also includes a climate damage function, defined as the fraction by which

production varies relative to what it would be in the absence of global warming. Temperature

projections are exogenous and based on Representative Concentration Pathways (RCPs). The

functional form of climate damage draws on Desmet and Rossi-Hansberg (2015), with modi-

fications to account for extreme climate events. In each period, industry-specific damages are

drawn from a beta distribution and deducted from output, which is equivalent to an increase in

intermediate input requirements.

The Government collects social security contributions, value added taxes, carbon taxes (if

levied), and taxes on labour, financial and corporate income. It also makes transfers to house-

holds and purchases goods and services. Prices are determined as a markup over unit production

costs. The population dynamic is exogenous and depends on demographic projections.
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Although this version of the model addresses several shortcomings of the original version

(such as the inclusion of a damage function, price elasticities of consumption demand, the intro-

duction of leverage as a determinant of financing capacity, and a direct correspondence between

inter-industry trade and energy demand), other limitations remain. The share of energy de-

mand met by renewable sources is driven by an exogenous trends based on the growth rates that

achieve national targets (MISE-MATTM-MIT 2019). Total energy demand depends directly on

output and, therefore, on the level overall level of economic activity and on changes in technical

coefficients; however, there is no direct feedback from the expansion of renewable sources to

other socio-economic variables in the model.

The results are also influenced by the level of aggregation of industries and individuals.

This is most relevant for income and carbon taxes. The lack of within-group variability in

income results in a very limited number of individuals whose income falls in the highest and

second-highest tax rate brackets. The homogeneity of emissions within industries also reduces

the capacity of a carbon tax capacity to incentive renewable energy adoption among the most

polluting plants in an industry. Moreover, homogeneous groups of income earners tend to reduce

inequality due to a lower dispersion of income on the top end of the distribution. Finally, the

model does not include non-energetic resources (such as water, land and raw materials) and

does not consider how the use of natural resources might impact the local ecological processes

(e.g. biodiversity loss, water pollution).

3.2 Simulation and data analysis approach

The use of scenarios in macrosimulation models provides an intuitive and appealing way to

envision plausible futures and evaluate policy alternatives in contexts of deep uncertainty. As

shown in Section 2, a common practice in the literature is to construct ex-ante a limited number

of alternative scenarios, each featuring a different combination of input parameters, and frame

them as possible states of the world. However, this approach is complicated by issues con-

cerning the choice of how scenarios are constructed, which strongly relies on the modellers’

prior knowledge about the phenomena being examined and the main causal relations among the

model variables.

An alternative strategy, which we adopt in this study, is to identify relevant scenarios that

emerge spontaneously from a database of simulations (Lempert et al. 2006; Groves and Lempert

2007; Gerst et al. 2013; Guivarch et al. 2016). This approach requires running the model a large

number of times, each time with a new set of inputs randomly drawn from the parameter space.

The database of simulation outcomes is then partitioned into regions according to a pre-defined

criterion, and statistical learning methods are used to determine which parameters best predict
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the simulations’ position in the partitioned outcome space.

The data used in our analysis were obtained by running the Eurogreen model 50,000 times.

In each simulation run, the value of 107 different parameters was selected at random from a

given distribution. The list of parameters and their respective distributions are given in Ap-

pendix C, while a detailed discussion of the role of each parameter is provided in the supple-

mentary material. Some parameters, named ‘structural parameters’, can take only integer values

corresponding to different economic or environmental assumptions. For instance, the Warming

scenarios parameter can take values ranging from 1 to 4, each corresponding to a different Rep-

resentative Concentration Pathway and temperature projection. The Carbon tax parameter takes

value 1 if emissions are taxed (starting in 2022), and 0 otherwise. The Output constraint param-

eter indicates whether production capacity is constrained by fixed capital (value 0) or not (value

1). The Investment constraint parameter takes a value of 0 if no restriction is placed on firms’

investment, a value of 1 if firms must internally finance a fixed proportion of their investment

expenditures, and a value of 2 if this proportion depends on leverage.

Other parameters, named ‘non-calibration parameters’, can vary over a wide range of values,

which generally spans from −50 to +50 percent of the parameter’s initial value. This group

includes, among others, the depreciation rate of fixed capital, the number of working hours

per year, the pension-to-wage and unemployment benefits-to-wage ratios, and several tax rates.

Each non-calibration parameter follows a linear trend, starting from a given initial value in 2022

and reaching the randomly selected value in the final simulation year (2050). For example, if

a value of 0.25 is drawn for the Value added tax (VAT) rate parameter, then the VAT rate will

remain constant from 2010 to 2022 and then progressively increase in a linear fashion, ultimately

exceeding its initial level by 25 percent by the end of the simulation run.

Finally, the ‘calibration parameters’ group mainly comprises the parameters for which the

model was calibrated. Since calibration was performed to fit observed data, these parameters

usually span a smaller range of values than non-calibration parameters. Moreover, their value

is randomly drawn in the first period and then remains constant throughout the simulation run.

Examples include the sensitivity of wages and consumption to price changes, and the percentage

of profits paid out as dividends.

Although most parameters can easily be understood in policy terms, there are also some

parameters which are beyond the direct control of policies. The latter usually reflect different,

alternative modelling assumptions. For example, changes in the output constraint parameter can

help understand the consequences of letting output be constrained by the capital stock. Thus,

our work speaks to both the policymaking and EM modelling literatures.

Out of the 50,000 simulations, only 16,023 were deemed suitable for analysis. We stress
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that this is not a cause for concern. Since the output of each run depends on the joint realisa-

tion of many random variables, it can well be the case that a combination of several high- or

low-valued parameters is drawn as input data, leading to economically implausible results. This

point is substantiated by the kernel density estimates presented in Appendix A, which show

that the share of simulations suitable for analysis and which featured extreme-valued parame-

ters is small. The most common reasons for dropping simulations were a negative or very high

(300 percent or more) debt-to-GDP ratio (about 24 and 9 percent of dropped simulations, re-

spectively) and a negative unemployment rate of male and female low, middle, or high-skilled

workers (37 percent, 7 percent and 22 percent, respectively).2

The simulations were grouped into mutually exclusive classes according to four different

criteria, each reflecting a policy objective: (1) reducing greenhouse gas emissions; (2) reducing

income inequality (measured by the Gini coefficient of net income); (3) reducing emissions and

inequality; (4) reducing emissions and inequality while increasing GDP. We refer to these as

the GHG, Gini, GHG-Gini, and GHG-Gini-GDP objectives, respectively. In the GHG case,

simulations were grouped into a ‘high GHG’ or ‘low GHG’ class depending on whether the

level of emissions in the final simulation period was above or below the last-period median

value. Similarly, in the Gini case, simulations were grouped into a ‘high Gini’ or ‘low Gini’

class. In the GHG-Gini case, the classification was based on two different thresholds resulting

in four classes: ‘high GHG, high Gini’, ‘high GHG, low Gini’, ‘low GHG, high Gini’, and

‘low GHG, low Gini’. Finally, in the GHG-Gini-GDP case, simulations were grouped into eight

different classes: ‘high GHG, high Gini, high GDP’, ‘high GHG, high Gini, low GDP’, . . ., ‘low

GHG, low Gini, low GDP’.

For each policy objective, we trained a random forest that predicts the outcome of simula-

tions. To do so, we first split the data into a training set (70 percent of simulations) and a test

set (30 percent) using stratified sampling. In the GHG-Gini and GHG-Gini-GDP cases, due

to moderate imbalances in the class distribution of simulations, we also used a combination of

majority class undersampling and synthetic minority class oversampling of the training data to

improve the sensitivity of under-represented classes. Appendix B provides a description of the

resampling procedure and shows that our results are robust to alternative resampling methods.

Random forests combine the results of many classification trees, each based on a boot-

strapped subset of the training data. A classification tree is grown by partitioning the space of

2This results from an incompatibility between the randomly drawn input values determining the gender and skill

distribution of labour demand (e.g. Investment sensitivity, Technologies probability sensitivity; see Appendix C), and

those contributing to variations in the labour force participation rate (Labour force participation sensitivity), the substi-

tution between male and female workers of the same skill level (Gender employment substitution sensitivity), and skill

transitions (Skill transition sensitivity).
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input parameters using a recursive binary splitting algorithm, so as to predict which outcome

class each simulation belongs to (Breiman et al. 1984). Initially, at the top of the tree, all simu-

lations belong to a single region. The algorithm then repeatedly splits the data into increasingly

homogeneous regions. Each split is made according to a specific cut-point value of a selected

input parameter. Simulations in a region are subdivided in two regions based on whether or not

their value of the selected parameter exceeds the parameter’s cut-point value. The parameter

and its cut-point value are chosen to minimise the classification error rate, i.e. the fraction of

observations in a region that do not belong to the region’s most common outcome class. At each

step of the splitting procedure, a different random subset of input parameters is drawn as split

candidates. Following standard practice, the number of split candidates was chosen to approxi-

mate the square root of the total number of parameters (James et al. 2021); that is, at each new

split in the tree a random sample of 10 parameters was drawn as split candidates from the full

set of 107 parameters.

The prediction of each random forest was obtained by averaging the predictions of 500 clas-

sification trees. In the GHG and Gini cases, the random forest correctly predicted the outcome

of more than 83 and 81 percent of simulations, respectively, whereas the GHG-Gini model had

a 65 percent accuracy rate. In the GHG-Gini-GDP case, prediction accuracy decreased to about

53 percent, which is modest but in line with other studies on multi-objective scenario discovery

(e.g. Gerst et al. 2013).

The predictive value of input parameters was evaluated based on their permutation feature

importance, which is a measure of the decrease in the performance of the random forest when

the values of a parameter are randomly shuffled (Breiman 2001; Strobl et al. 2008). The shuf-

fling procedure breaks the relation between the parameter and the outcome variable, and the

resulting variation in model performance is indicative of the extent to which predictions depend

on that parameter. A high permutation feature importance denotes an important predictor of the

simulation outcome.

4 Results

4.1 The emissions-inequality-GDP nexus

Before considering which parameter values are compatible with the simultaneous curtailment

of emissions and inequality, it is useful to assess the likelihood of achieving both goals simulta-

neously. Figure 3a plots greenhouse gas emissions and the Gini coefficient of net income for all

simulations in the final year 2050. Starting from the same position in 2010, different parameter
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combinations can drive the economy to a variety of outcomes. The Gini coefficient ranges from

0.13 to 0.30, starting from an initial value of 0.23; greenhouse gas emissions fall between 50 and

85 percent relative to their initial value of more than 500 Mtons CO2 eq./year; real GDP ranges

between 1.25 and 2.25 trillion euros, starting from an initial level of 1.46 trillion, meaning that

the GDP growth rate ranges from slightly negative to moderately positive values.3
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Figure 3: Simulation results. The left-hand panel shows the relation between greenhouse gas

emissions and inequality in the final simulation year 2050. Each point represents a different

simulation. The vertical and horizontal dashed thresholds are the median values calculated from

all simulations. The right-hand panel shows the percentages of simulations that meet median-

based (columns 1-3) and quartile-based (columns 4-6) policy objectives.

Figure 3a shows a negative correlation between inequality and emissions, suggesting that

decarbonisation efforts can have an adverse effect on income distribution. Furthermore, efforts

to counterbalance this effect through economic growth may jeopardise low-carbon goals, given

that GDP is positively correlated with emissions (see Figure A.1).

Figure 3b shows the percentages of simulations that meet one or multiple policy goals. Each

grey column represents the whole set of 16,023 simulations. The green and violet rectangles are

the subsets of simulations that meet the ‘low GHG’ and ‘low Gini’ objectives, respectively, while

the blue rectangles denote the simulations that meet the ‘low GHG, low Gini’ objective and the

red rectangles are the simulations that meet the ‘low GHG, low Gini, high GDP’ objective. In the

first three columns, policy goals are defined based on final-period median values of emissions,

inequality, and GDP; in the last three columns, objectives are instead based on top and bottom

3To see this note that a yearly growth rate of about 1.08 percent between 2010 and 2050 would result in a real GDP

of 2.25 trillion euros at the end of the simulation. Note also that demographic change cannot explain the differences in

GDP in the model, because population does not vary across simulations.
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quartile thresholds. Thus, for example, the observations that meet the ‘low (below-median)

GHG’ goal in the first column of Figure 3b (green rectangle) are those in quadrants 2, 3a and

3b of Figure 3a, whereas the observations that meet the ‘low Gini’ goal (violet rectangle) are

those in quadrants 1, 3a and 3b. The set of observations that meet the ‘low GHG, low Gini’ goal

in the second column of Figure 3b (blue rectangle) is the intersection of the green and violet

rectangles in the first column; these observations are those in quadrants 3a and 3b of Figure 3a.

Finally, the observations that meet the ‘low GHG, low Gini, high GDP’ goal in the third column

of Figure 3b (red rectangle) are those in quadrant 3b of Figure 3a.

Approximately 20 percent of simulations (n = 3, 203) exhibit below-median levels of Gini

and emissions. When we also consider above-median GDP, this figure drops to approximately

11.5 percent of simulations (n = 1, 842). Note that if the three indicators were uncorrelated,

then 25 percent of simulations would meet the ‘low GHG, low Gini’ objective, while 12.5 per-

cent would meet the ‘low GHG, low Gini, high GDP’ objective. Focusing on simulations with

emissions and inequality levels below the bottom quartile would make achieving policy objec-

tives even more challenging. Merely 3.1 percent of simulations (n = 496) meet bottom-quartile

inequality-and-emissions goals, which is half of what it would be if there was no correlation. If

we add the condition of above-top-quartile GDP, then only 1.1 percent of simulations (n = 175)

remain, in contrast 1.5 percent if the three indicators were orthogonal.

Empirical studies have yielded mixed results on the existence of a trade-off between emis-

sions and inequality, whereas the positive relation between growth and emissions has stronger

support in the literature. Ravallion et al. (2000) and Rojas-Vallejos and Lastuka (2020), exam-

ining different country samples, find evidence of a trade-off. However, the former study argues

that this relation is weak, while the latter suggests that it does not hold for high-income coun-

tries. Uddin et al. (2020), using a longer series of data (1870-2014) for G7 countries, provide

evidence of a non-linear relation, concluding that there was a trade-off only between the 1950s

and the end of the 1990s. Lastly, Jorgenson et al. (2017), examining US state data for the period

1997-2012, find no correlation between the Gini coefficient and emissions but do find a positive

correlation between emissions and the income share of the top decile. These findings are con-

sistent with our simulation results, which show that emissions and inequality reductions are not

complementary but can nevertheless be achieved jointly, although at a lower frequency than if

they were pursued individually.

The results also reveal that achieving a just transition becomes more challenging when

pursuing GDP growth. Considering growth as a necessary condition for a low-carbon, low-

inequality transition would result in discarding all parameter combinations that achieve emis-

sions and inequality objectives at lower GDP levels. This means that all simulations falling in
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region 3a of Figure 3a would be excluded. These findings suggest that the policies adopted to

achieve a certain objective may not be neutral with respect to other objectives, that is, pursuing

one goal may negatively impact the achievement of another goal. This highlights the need to

understand which policy parameters can serve either or both policy objectives, and what com-

binations of parameters can balance possibly contrasting forces towards a just transition.

4.2 Main policy parameters

The main results of the random forest analysis are presented in the left-hand panel of Figure 4,

which shows the permutation feature importance of the 10 most important predictors for each

policy objective (GHG, Gini, GHG-Gini and GHG-Gini-GDP), plotted on a logarithmic scale.

The right-hand panel gives information about the direction and magnitude of the effect of each

parameter, and shows the difference between the parameter’s mean value calculated from the

simulations that meet a certain policy goal (‘low GHG’, ‘low Gini’, ‘low GHG, low Gini’ and

‘low GHG, low Gini, high GDP’) and its mean value calculated from all 16,023 simulations.
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Figure 4: Main policy parameters. The two panels provide information on the 10 main parameters associated with

each policy goal or combination of goals: emissions (green circles); inequality (violet squares); emissions and inequality

(blue triangles); emissions, inequality and GDP (red pentagons). The left-hand panel shows the permutation feature

importance of each parameter, plotted on a log scale. Higher values indicate an important predictor of the simulation

outcome. The right-hand panel shows the difference between the mean value of each policy parameter calculated from

all the simulations that meet a policy objective and the mean value calculated from all simulations.
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The majority of key predictors can be directly related to policies. Moreover, importantly,

our analysis shows that most of the parameters that strongly predict GHG emissions (indicated

by green circles) do not play a major role in predicting income inequality (indicated by violet

squares), and vice versa. This finding supports the view that no single intervention can be a

game changer for achieving multidimensional objectives, and that a combination of measures is

needed. This is further evidenced by the results obtained for the GHG-Gini and GHG-Gini-GDP

cases (denoted by blue triangles and red pentagons, respectively).

In three out of four cases, the policy parameter with the highest permutation importance is

the increase in the share of renewable energy sources in industry energy consumption. The right-

hand panel of Figure 4 shows that if we aim for inequality reduction and GDP growth along with

decarbonisation, then achieving low emission levels becomes more challenging and requires

greater deployment of renewables. The increase in the share of renewable energy sources in

household energy consumption also plays a role, albeit less significant, mainly due to lower

household energy use and emissions compared to industry.

A critical leverage point towards a just transition is to support the lowest segments of the

income distribution. In the model, pensions play a key role in this respect.4 Although higher

pensions tend to increase aggregate demand and therefore emissions, their positive effect on

income distribution is much more significant, because a large proportion of pensioners are low-

skilled and concentrated in the lower end of the income distribution. This also applies to unem-

ployment benefits, which however are less effective in reducing inequality as they are directed

towards a smaller subset of the population.

Another group of parameters points to the potential of addressing the income distribution

from the opposite angle, that is by limiting top incomes. Here it is worth noting that, despite

mounting evidence of tax dodging by the very wealthy (Saez and Zucman 2019) and of their

disproportionate environmental impact (Oswald et al. 2021; IPCC 2022), policies directed at

high-income earners are somewhat neglected in the EM and climate mitigation literatures. To

our knowledge, there is currently no scenario-based study that explores the consequences of

redistributing income away from the rich. Our analysis identifies at least three relevant param-

eters directly related to limiting top incomes, including lower dividends, a higher labor income

tax rate in top brackets, and a higher tax rate on financial income, which can yield a double

dividend by reducing inequality and limiting consumption and emissions among high earners.5

4The parameter that we let vary is the pensions-to-wage ratio, which determines gross pensions as a percentage of

workers’ mean annual wage.
5In the model, due to the aggregation of individuals into groups, the majority of high income earners consists of

high-skill employed males and females falling into the third income tax bracket (28,000 to 55,000 euros per year). A

notable exception is that of capitalists, who make up one percent of the total population and are assumed to earn solely
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Similarly, higher employee social security contributions reduce inequality because they reduce

the net labor income of employed individuals, who tend to earn more than their unemployed,

retired, and out-of-the-labor-force counterparts of the same gender and skill level.

A third set of parameters suggests a negative relation between investment and inequality.

Reductions in employer social security contributions, value-added tax rates, and the percentage

of profits paid out as dividends tend to increase retained profits, enabling industries to finance

more investment. The resulting acceleration of fixed capital formation has two main effects:

on income distribution through reduced dividends, and on employment and aggregate demand

through increased investment.

The potential of addressing inequality by increasing aggregate demand is confirmed by the

inclusion of the output and investment constraints in the sets of strongest predictors. While these

parameters are not policy measures themselves, their significance sheds light on how limiting

output and investment could impact emissions and inequality. The findings in Figure 4 suggest

that excluding these constraints from a simulation model tends to lead to lower inequality, while

their inclusion restricts production and investment spending, resulting in lower emissions. Along

a related line, a decrease in individuals’ marginal propensity to consume reduces demand and

thus emissions.

Exports play a uniquely relevant role as the only variable identified as a strong predictor

in all four cases.6 Since exports provide a strong stimulus to economic growth, they tend to

have below-average values in simulations that meet the ‘low GHG’ objective, but above-average

values in simulations that meet the ‘low Gini’, ‘low GHG, low Gini’, and ‘low GHG, low Gini,

high GDP’ objectives. However, we note that relying on net exports to drive the growth and

distribution of national income is not a feasible option at the global level. The same holds for

the percentage of consumer goods that are imported (which is one of the strongest predictors in

the GHG and GHG-Gini cases), since in the model an increase in imports roughly corresponds

to exporting emissions.

Finally, the main policy parameters include working time reduction and carbon taxation,

which are both central to the current debate on achieving a just transition and are well repre-

sented in our literature review. Empirical findings suggest that, on average, a small decrease

in working hours results in lower emissions (Antal et al. 2020), which is consistent with our

results. However, we find no evidence of the double dividend (i.e. the joint improvement of

socioeconomic and environmental indicators) that is sometimes associated with working time

from financial income.
6The Exports growth parameter determines the magnitude of an exogenous trend in exports. In the model, exports

are also influenced by a price elasticity parameter, which however does not rank among the main predictors.
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reduction (Fitzgerald et al. 2018).

The carbon tax is unsurprisingly identified as an effective means to reduce emissions, but

its role is somewhat less significant than is generally credited in the environmental economics

literature (Metcalf 2019; Hájek et al. 2019). Although recent evidence suggests a small effect of

carbon taxation on low-carbon innovation (van den Bergh and Savin 2021), in our case the less-

than-stellar impact of the tax is likely related to the aggregation level of the model. Production

and energy demand are in fact modelled at the industry level, while the burden of a carbon

tax can actually vary considerably within industries, with heavy polluters facing higher costs7.

Moreover, the reason why the carbon tax does not appear among the 10 main policy parameters

in the GHG-Gini case is likely due to the fact that no automatic recycling mechanism of carbon

tax revenues is implemented in the model. Nonetheless, our analysis does accommodate the

fact that the distributional effects of carbon taxation crucially depend on whether the tax is

accompanied by compensatory measures (Callan et al. 2009; Fremstad and Paul 2019). In the

model, explicit revenue recycling schemes are proxied by an increase in public benefits which

is concomitant with the introduction of the carbon tax.

An interesting finding from our analysis is the absence of technological progress among the

strongest predictors, which may come as a surprise given its prevalence in the literature reviewed

in Section 2. This does not mean that the transition towards renewables is not influenced by new

technologies. Rather, it suggests that innovations modelled at the macro level — related to

labour productivity, intermediate input requirements, and energy efficiency — do not appear

to play a major role. The limited impact of energy efficiency is likely related to economy-

wide rebound effects (Brockway et al. 2021), which make efficiency gains lead to increased

consumption (through lower prices of energy-intensive goods) and investment (through a decline

in production costs and an increase in profit rates).

These findings emphasize that a low-carbon, low-inequality transition calls for a variety of

measures spanning several different policy domains, certainly more than is commonly seen in

the literature. They also indicate that targeted measures to address income inequality play an

essential role, whereas interventions aimed at raising national income (e.g. through government

expenditure or a proportional increase in wages) seem not to be as relevant. Finally, they show

that policies which boost aggregate demand, mostly directed at low-income groups, are crucial

to achieve a just transition, and that the adverse effects of these policies on emissions must be

compensated for by measures that decarbonise the additional demand and reduce the environ-

mental impact of the wealthy.

7For instance, in the electricity sector, although the industry as a whole may exhibit a relatively low emission

intensity, high polluters like coal plants would typically face high carbon costs.
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4.3 Low emissions, low inequality pathways

Some of the results discussed earlier can also be seen by considering the drivers of emissions and

inequality summarised in Figure 5. Panel 5a shows the dynamic of greenhouse gas emissions

(GHG), which are broken down into GDP , the energy intensity of production (NRG/GDP ),

and the emissions intensity of energy demand (GHG/NRG); panel 5b decomposes the Gini

coefficient of net income (N ) into the Gini coefficient of gross income before taxes and transfers

(G) and the ratio between the former and the latter:

GHG = GDP × NRG

GDP
× GHG

NRG
, N = G× N

G
.

The figure is based on a new set of 500 simulations, performed by letting the mean and standard

deviation of the distributions from which parameters are drawn be those of the simulations that

jointly reached below-median emissions and inequality levels in Figure 3a. Moreover, in order

to highlight the most relevant drivers of environmental and distributional outcomes, we selected

the subset of simulations (n = 55) that reach bottom quartile emissions (GHG ≤ 146 Mtons

CO2 eq./year.) and inequality (Gini ≤ 0.197) in the final simulation year8.

The dynamics further underline the importance of a fast expansion of renewables in all

industries, as suggested in Figure 4. Improvements in energy efficiency due to technological

progress slow down in 2025 and are less than enough to offset the (modest) growth of GDP.

Thus, a substantial curbing of greenhouse gas emissions depends heavily on the expansion of

renewable energy sources.

Panel 5b illustrates how variations in the Gini coefficient, calculated using disposable in-

come, are affected by the evolution of market income (from labour and capital) and by the

capacity of public taxes and transfers (including pensions and unemployment benefits) to redis-

tribute income. The figure confirms the role of overall economic activity in driving inequality

through changes in employment, wages and profits. However, it also underlines the importance

of a more progressive tax and transfer system. The redistribution of income induced by some

of the parameters listed in Figure 4 (such as dividends, labour and financial income taxes, pen-

sions and unemployment benefits) seems to be crucial in influencing the Gini coefficient of net

income, and contributes to its sharper decline after 2030.

5 Concluding remarks

The simulation exercise presented in this study focuses on the simultaneous reduction of emis-

sions and inequality, and identifies combinations of model parameters that promote a just low-
8These are the bottom quartile values calculated from all simulations shown in Figure 3a.
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Figure 5: Decomposition of emissions and inequality. The left-hand panel decomposes green-

house gas emissions into real GDP, net inland energy consumption divided by GDP (energy

intensity), and total emissions divided by net inland energy consumption (emissions intensity).

The right-hand panel decomposes the Gini coefficient of net income into the Gini coefficient

of gross income and the net-to-gross Gini ratio. Both panels plot the means and one standard

deviation confidence intervals.

carbon transition. The results discussed in Section 4.1 also indicate that the pursuit of continuous

economic growth narrows the path to achieving low-emissions-and-inequality goals.

The expansion of renewable energy sources is found to be an essential pre-condition for de-

carbonisation, and can be complemented by carbon taxes, measures that discourage consump-

tion, and working time reduction. Policies that affect the distribution of income are also crucial

and should be designed to work in synergy with one another: the increase in demand and emis-

sions caused by transfers and benefits targeted at low-income groups can in fact be partially

offset by policies that limit top incomes, which reduce the emissions of high earners while at

the same time improving the income distribution. Increases in aggregate demand components,

such as investment and exports, tend to impact positively on growth and income equality but

also result in a direct increase in emissions. Finally, a notable absence among the main policy

parameters are those directly related to energy efficiency. We interpret these results as sug-

gesting that a just transition will require a progressive tax and benefits system that redistributes

income without major increases in aggregate demand, coupled with a considerable increase in

renewable generation capacity.

21



Our simulations encompass the case of a carbon tax accompanied by progressive tax re-

ductions and transfers, the only difference being that in our model there is no earmarking of tax

revenues. However, the opposite is not true, that is, the policies discussed in this paper cannot be

subsumed into a carbon tax with progressive revenue recycling. Furthermore, although there is

convincing evidence that revenue recycling can more than offset the regressive impact of carbon

taxation (Williams et al. 2015; Budolfson et al. 2021), it is uncertain whether it can serve as a

one-size-fits-all solution that allows for a sufficient reduction in inequality alongside a decrease

in emissions.

The sets of policy parameters identified by random forests as the most important to reduce

emissions and inequality have only a few elements in common. Thus, in contrast to the majority

of studies reviewed in Section 2, the joint pursuit of these two goals is likely to require a number

of simultaneous measures. A related point is that studies which examine policies in isolation or

in very small groups risk under- or overestimating the necessary scale of these measures. For

instance, the yearly growth rate of renewable energy used in the baseline of our model replicates

the rates predicted by Italy’s Integrated National Energy and Climate Plan (MISE-MATTM-MIT

2019), according to which renewables will supply 55% of electricity demand, 22% of transport

energy demand and 30% of total energy demand by 2030 (starting from 34.1, 5.5 and 18.3%

in 2020, respectively). However, the mean growth rate of renewable energy sources in industry

calculated from the simulations that meet the ‘low GHG, low Gini ’ objective is some 40%

higher than the baseline, mainly due to the need to offset the increase in energy demand caused

by redistributive policies directed at low income groups. By 2030 this would result in a share

of renewables of about 64% in electricity consumption, 36% in transportation and 35% in total

energy consumption. Thus, commitment by governments to jointly achieve distributional and

low-carbon goals will make it necessary for them to increase renewables at a significantly faster

pace than if climate mitigation were pursued without regard to, or even at the expense of, equity

issues.

Data and code availability

The complete results of the literature review, the Vensim code for the model, the database of

simulations, and the Stata and R scripts to replicate the results are available for download at

Zenodo (DOI: 10.5281/zenodo.5711126). All files are open access and subject to a Creative

Commons Attribution 4.0 International Public License (CC BY 4.0).
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Appendix

This appendix presents additional results and details on data processing and analysis. Section

A complements Section 4 in presenting our findings. Section B provides a series of robustness

checks, showing that the random forest results hold under a variety of resampling methods to

deal with imbalanced data. The parameter value ranges used to generate the simulation dataset

are listed in Section C.

A Additional results

A.1 Emissions, inequality and GDP

Figure A.1 shows the relation between greenhouse gas emissions, inequality, and GDP in the

final simulation year. Each point represents a different simulation. The vertical and horizontal

dashed lines represent the median values calculated from all simulations.

90 115 140 165 190 215 240 265 290
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Greenhouse gas emissions (Mtons CO2 eq./year)

G
in

ic
oe

ffi
ci

en
t

of
ne

t
in

co
m

e

High GHG, low Gini (n = 4808)
Low GHG, high Gini (n = 4808)
Low GHG, low Gini, low GDP (n = 1352)
Low GHG, low Gini, high GDP (n = 1851)

(a) Inequality v. emissions

90 115 140 165 190 215 240 265 290
1

1.25

1.5

1.75

2

2.25

2.5

Greenhouse gas emissions (Mtons CO2 eq./year)

R
ea

lG
D

P
(t

ril
lio

n
eu

ro
s)

High GHG, high GDP (n = 4725)
Low GHG, low GDP (n = 4636)
Low GHG, high GDP, high Gini (n = 1524)
Low GHG, high GDP, low Gini (n = 1851)

(b) GDP v. emissions

1 1.25 1.5 1.75 2 2.25 2.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Real GDP (trillion euros)

G
in

ic
oe

ffi
ci

en
t

of
ne

t
in

co
m

e

High GDP, high Gini (n = 2987)
Low GDP, low Gini (n = 2898)
High GDP, low Gini, high GHG (n = 3262)
High GDP, low Gini, low GHG (n = 1851)

(c) Inequality v. GDP

Figure A.1: Inequality, emissions and GDP in the final simulation year
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A.2 Partial dependence plots

Figures A.2, A.3, A.4 and A.5 show the impact of policy parameters on Prob (low GHG),

Prob (low Gini), Prob (low GHG, low Gini) and Prob (low GHG, low Gini, high GDP), respec-

tively. The black curves (one for each observation in the training sample) are the individual

conditional expectations describing how the probability of the desired policy outcome changes

with the value of a certain parameter of interest, keeping all other parameters constant at their

respective last-period level (Goldstein et al. 2015). The green, purple, blue and red curves are

the partial dependence plots obtained by averaging over all observations. Each plot is anchored

at the lower end of the value range, and shows the difference in the prediction with respect to

that point. The blue ticks at the bottom of each panel represent the deciles of the parameter

distribution.

A.2.1 Policy objective: emissions

Figure A.2: ICEs and PDPs of the 10 main policy parameters (objective: GHG)
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A.2.2 Policy objective: inequality

Figure A.3: ICEs and PDPs of the 10 main policy parameters (objective: Gini)

A.2.3 Policy objectives: emissions and inequality

Figure A.4: ICEs and PDPs of the 10 main policy parameters (objective: GHG-Gini)
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A.2.4 Policy objectives: emissions, inequality and GDP

Figure A.5: ICEs and PDPs of the 10 main policy parameters (objective: GHG-Gini-GDP)

A.3 Kernel densities

Figure A.6 shows the kernel density distribution of the main continuous policy parameters. The

coloured lines describe the distribution of input parameters in the subset of simulations that

meet a certain policy goal: low emissions (green); low inequality (purple); low emissions and

low inequality (blue); low emissions, low inequality and high GDP (red). The black dashed

lines represent the parameters’ distribution across all simulations. In all panels the number

of observations decreases near the extremes of the range of possible values; this is because the

simulations dropped from the dataset (due to economically meaningless or unreasonable results)

are typically those featuring extreme values of policy parameters.

B Robustness checks

As discussed in Section 4, when simultaneously considering emissions and inequality, the four

classification categories — ‘high GHG, high Gini’, ‘high GHG, low Gini’, ‘low GHG, high

Gini’ and ‘low GHG, low Gini’ — are not equally represented in the data. In particular, the

observations in the ‘low GHG, low Gini’ region of Figure 3a are relatively fewer in number than

those in the ‘low GHG, high Gini’ and ‘high GHG, low Gini’ regions. A consequence of this

mild class imbalance is that the random forest model will tend to overlook, and therefore have
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Figure A.6: Kernel density distribution of the 10 main continuous policy parameters

poor prediction performance on, the ‘low GHG, low Gini’ class, which however is the class we

are most interested in.

A common method to deal with class imbalances is to resample the dataset, either by un-

dersampling the majority classes or by oversampling the minority classes. The undersampling

approach involves drawing observations at random from the majority classes and dropping them

from the training dataset, so as to balance the class distribution before training the model; con-

versely, the oversampling approach consists in randomly duplicating observations from the mi-

nority classes and adding them to the training dataset. Yet another method is to synthesize new

observations from the minority classes using the Synthetic Minority Oversampling Technique

(SMOTE). This method consists in randomly drawing a minority class observation, finding its

m nearest neighbours in terms of characteristics, and choosing one of these neighbours at ran-

dom; the synthetic observation is created as a convex combination of the two neighbours, that is

at a random point on the line connecting them.

Following common practice in the literature, we combined undersampling and synthetic

minority oversampling methods (Chawla et al. 2002), with the number nearest neighbours m
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equal to 5. For example, in the GHG-Gini case, we downsampled the majority classes — ‘high

GHG, low Gini’ and ‘low GHG, high Gini’ — by a factor of about 0.83 and then synthetically

oversampled the minority classes — ‘high GHG, high Gini’ and ‘low GHG, low Gini’ — by

a factor of 1.25. This reduced the number of observations in the training dataset from 11,214

to 11,198, i.e. about 2,800 observations per class. Table B.1 gives the numbers of observations

in the original training dataset, in the SMOTEd-and-undersampled dataset, and in the datasets

resulting from 3 alternative resampling methods: undersampling, oversampling, and SMOTE

without undersampling.

Table B.1: Training sample sizes under different resampling methods

No Majority Minority
SMOTE

SMOTE & majority

resampling undersampling oversampling undersampling

Objective: GHG

n high GHG 5,608 - - - -

n low GHG 5,608 - - - -

n (overall) 11,216 - - - -

Objective: Gini

n high Gini 5,608 - - - -

n low Gini 5,608 - - - -

n (overall) 11,216 - - - -

Objectives: GHG and Gini

n high GHG, high Gini 2,242 2,242 3,365 3,365 2,800

n high GHG, low Gini 3,365 2,242 3,365 3,365 2,799

n low GHG, high Gini 3,365 2,242 3,365 3,365 2,799

n low GHG, low Gini 2,242 2,242 3,365 3,365 2,800

n (overall) 11,214 8,968 13,460 13,460 11,198

Objectives: GHG, Gini and GDP

n high GHG, high Gini, high GDP 1,006 952 2,323 2,322 1,700

n high GHG, high Gini, low GDP 1,215 952 2,323 2,323 1,699

n high GHG, low Gini, high GDP 1,069 952 2,323 2,322 1,700

n low GHG, high Gini, high GDP 2,304 952 2,323 2,322 1,699

n high GHG, low Gini, low GDP 2,323 952 2,323 2,322 1,700

n low GHG, high Gini, low GDP 1,066 952 2,323 2,323 1,700

n low GHG, low Gini, high GDP 1,279 952 2,323 2,322 1,699

n low GHG, low Gini, low GDP 952 952 2,323 2,322 1,700

n (overall) 11,214 7,616 18,584 18,578 13,597

Table B.2 compares the prediction accuracy, sensitivity (true positive rate) and specificity

(true negative rate) of random forest models trained on the original and resampled datasets. All

random forests were based on 500 classification trees built on bootstrapped training samples.
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At each split in each tree, a random sample of 10 out of 107 parameters was chosen as split

candidates. The results of the GHG-Gini case indicate that all resampling methods improve the

sensitivity of the ‘low GHG, low Gini’ class at the cost of some decrease in specificity and over-

all accuracy. No technique clearly dominates the others; the SMOTE-and-undersamping method

was chosen as the preferred option because it represents a reasonable compromise between sen-

sitivity and accuracy. For consistency, this resampling method was also used in the GHG-Gini-

GDP case, although in this case the the oversampling approach approach yields slightly better

results in terms of both accuracy and sensitivity of the ‘low GHG, low Gini, high GDP’ class.

Figure B.1 shows that the random forest results are robust to whether and how training data

are resampled. The four panels report the permutation feature importance of the main policy

parameters in the imbalanced case and for each resampling method (the results obtained in the

SMOTE-and-undersampling case are shown in the left-hand panel of Figure 4). The set of 10

policy parameters with the greatest predictive power remains essentially unchanged (with some

minor exceptions in the imbalanced case with no resampling), and their ranking is similar for all

resampling methods. This indicates that our arguments do not hinge on specific data processing

choices.
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Table B.2: Prediction accuracy of the random forest models under different resampling methods

No Majority Minority
SMOTE

SMOTE & majority

resampling undersampling oversampling undersampling

Objective: GHG

Overall accuracy .830 - - - -

Sensitivity .826 - - - -

Specificity .834 - - - -

Objective: Gini

Overall accuracy .811 - - - -

Sensitivity .794 - - - -

Specificity .826 - - - -

Objectives: GHG and Gini

Overall accuracy .672 .647 .671 .658 .652

Sens. high GHG, high Gini .518 .704 .583 .634 .664

Sens. high GHG, low Gini .769 .618 .711 .667 .639

Sens. low GHG, high Gini .833 .559 .704 .642 .599

Sens. low GHG, low Gini .556 .765 .650 .692 .739

Spec. high GHG, high Gini .946 .880 .926 .904 .894

Spec. high GHG, low Gini .821 .885 .847 .866 .876

Spec. low GHG, high Gini .756 .913 .854 .875 .893

Spec. low GHG, low Gini .948 .856 .924 .895 .873

Objectives: GHG, Gini and GDP

Overall accuracy .552 .520 .563 .545 .532

Sens. high GHG, high Gini, high GDP .267 .512 .363 .484 .449

Sens. high GHG, high Gini, low GDP .485 .601 .589 .620 .595

Sens. high GHG, low Gini, high GDP .807 .442 .673 .484 .541

Sens. low GHG, high Gini, high GDP .358 .519 .413 .501 .505

Sens. high GHG, low Gini, low GDP .385 .558 .456 .529 .506

Sens. low GHG, high Gini, low GDP .800 .446 .700 .513 .570

Sens. low GHG, low Gini, high GDP .526 .568 .586 .552 .563

Sens. low GHG, low Gini, low GDP .223 .670 .430 .643 .608

Spec. high GHG, high Gini, high GDP .989 .938 .978 .946 .956

Spec. high GHG, high Gini, low GDP .956 .929 .944 .932 .934

Spec. high GHG, low Gini, high GDP .829 .940 .877 .931 .917

Spec. low GHG, high Gini, high GDP .973 .932 .959 .935 .944

Spec. high GHG, low Gini, low GDP .970 .918 .950 .930 .929

Spec. low GHG, high Gini, low GDP .803 .959 .872 .937 .928

Spec. low GHG, low Gini, high GDP .956 .933 .941 .927 .931

Spec. low GHG, low Gini, low GDP .986 .907 .965 .927 .938
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Figure B.1: Permutation feature importance of the 10 main policy parameters under different resampling meth-

ods
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C Simulation parameters

Table C.1 lists all parameters that vary across simulations. Based on their characteristics, they

were grouped into Structural parameters, Non-calibration parameters, and Calibration parame-

ters. References to the equations in the model documentation are given in the last column of the

table.

Non-calibration parameters follows a linear trend, starting from a fixed value in 2022 and

reaching a randomly selected value in the final simulation year. Conversely, Structural and

Calibration parameters are randomly drawn in the first period and then remain fixed throughout

the simulation run. The value range of Non-calibration parameters generally spans from −50 to

+50 percent of their initial level, except when a different value range was available from cross-

country comparisons. The Working hours, Marginal propensity to consume, and Carbon tax rate

parameters were drawn from a half-normal (rather than uniform) distribution in order to focus

on moderate, more plausible and politically feasible parameter values. Finally, as discussed in

Section 3.2, Calibration parameters span a smaller range of values because they are calibrated

to fit historical data.

The letter i within parentheses indicates that an independent random draw is made for each

of the 19 industries featured in the model. Thus, for example, the sensitivity of investment to

capacity utilisation is determined at the industry level by 19 independent draws. Similarly, the

letters c and s indicate that a draw is made for each of the 16 consumption categories and 3 skill

levels, respectively. The total number of random draws per period is 107.
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Table C.1: List of sensitivity parameters

Parameter Unit Min Max Distribution Baseline Equation

Structural parameters

Investment constraint {0,1,2} 0 2 vector 2 2.27,2.27’

Output constraint {0,1} 0 1 vector 1 2.4’

Carbon tax {0,1} 0 1 vector 0 2.20

Warming scenarios {1,2,3,4} 0 4 vector 1 2.159

Non-calibration parameters

Skill supply trends % -0.5 +0.5 continuous uniform 0 2.63

Depreciation rates % -0.5 +0.5 continuous uniform 0 2.30

Equity-to-liabilities ratio % -0.5 +0.5 continuous uniform 0 2.27

Import share of consumption % -0.5 +0.5 continuous uniform 0 2.7

Import share of government final demand % -0.5 +0.5 continuous uniform 0 2.9

Import share of investment spending % -0.5 +0.5 continuous uniform 0 2.8

Exports growth rate % -0.5 +0.5 continuous uniform 0 2.11

Households’ RES growth rate % -0.5 +0.5 continuous uniform 0 2.145,2.148

Industries’ RES growth rate % -0.5 +0.5 continuous uniform 0 2.145,2.147

Change in technical coefficients % -0.5 +0.5 continuous uniform 0

Change in labour productivity % -0.5 +0.5 continuous uniform 0

Tax rate on financial income9 % -1 +1 continuous uniform 0 2.85

Employee social security contrib.10 % -1 +1 continuous uniform 0 2.77

Employer social security contrib.11 % -1 +1 continuous uniform 0 2.78

9https://tinyurl.com/3k6nfjkd
10https://tinyurl.com/v9szn9kv
11https://tinyurl.com/334mc44v
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VAT rate12 % -0.5 +1.5 continuous uniform 0 2.87

Corporate income tax rate13 % -0.6 +0.6 continuous uniform 0 2.89

Government expenditure trend % -0.5 +0.5 continuous uniform 0 2.102

Unemployment benefits to wage ratio14 % -0.5 +0.5 continuous uniform 0 2.93

Pension to wage ratio15 % -0.5 +0.1 continuous uniform 0 2.96

Sickness and disability benefits % -0.5 +0.5 continuous uniform 0 2.117 – 2.120

Family and children benefits % -0.5 +0.5 continuous uniform 0 2.98

Other benefits % -0.5 +0.5 continuous uniform 0 2.120

Income tax rate [0.23] % -0.5 +0.5 continuous uniform 0 2.83

Income tax rate [0.27] % -0.5 +0.5 continuous uniform 0 2.83

Income tax rate [0.38] % -0.5 +0.5 continuous uniform 0 2.83

Income tax rate [0.41] % -0.5 +0.5 continuous uniform 0 2.83

Income tax rate [0.43] % -0.5 +0.5 continuous uniform 0 2.83

Working hours % -0.25 0 N(0, 0.05) 0 2.69

Marginal prop. to consume % -0.5 0 N(0, 0.1) 0 2.122

Carbon tax rate % 0 10 N(3, 2.5) 0 2.20

Calibration parameters

Technologies probability sens. 9 15 continuous uniform 11.93 2.13-14

Initial prob. labour-saving innov. % 0.35 0.75 continuous uniform 0.67 2.13

Initial prob. intermediate-input-saving innov. % 0.35 0.75 continuous uniform 0.47 2.14

Skill transition sens. (s) 0.65 0.85 continuous uniform [0.69,0.75] 2.63-65

Labour force participation sens. (s) % 0.65 0.85 continuous uniform 0.75 2.68

Gender employment subst. sens. (s) 0 0.1 continuous uniform [0.03,0.08] 2.72

12https://tinyurl.com/5k9j9cac
13https://tinyurl.com/ufvztxph
14https://tinyurl.com/ymyu3xu7
15https://tinyurl.com/mez7354w
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Wage sens. to employment 0.35 0.55 continuous uniform 0.45 2.73

Wage sens. to lab. productivity 0.7 1 continuous uniform 0.99 2.73

Wage sens. to price 0.7 1 continuous uniform 1 2.73

Investment sens. (i) 0 0.35 continuous uniform [0,0.225] 2.22

Dividends rate % 0 0.3 continuous uniform 0.3 2.40

Interest on loans sens. 0 0.25 continuous uniform 0.12 2.36

Price-elasticity of exports % 0 -1 continuous uniform -0.5 2.11

Price-elasticity of consumption (c) % 0 -1.5 continuous uniform 0 2.131

Mark-up sens. (i) 0 0.05 continuous uniform [0,0.067] 2.112

Seed 0 5,076 discrete uniform 1

Structural parameters can take the integer values listed in column 2. Policy parameters vary in percentage according to the outcome of a

random draw from a uniform or half-normal distribution. Calibration parameters are drawn from a uniform distribution. The extremes of

the support of the distributions are given in columns 3 and 4. The footnotes contain references to the sources used to define plausible value

ranges.
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