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Abstract

We analyze an overlapping generations model where agent’s welfare
depends on three goods: leisure, environmental quality and consumption
of a private good.
We assume that the production process of the private good depletes the
natural resource and that the consumption of the private good alleviates
the damages due to environmental deterioration. In such context, we
show that individuals’ reactions to environmental deterioration may lead
to complex dynamics, in particular to the rise of periodic orbits and chaos.
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1 Introduction

The literature on overlapping generations models with environmental goods is
centered on the study of the context in which economic agents belonging to
the same generation maximize their welfare by taking into account the negative
impact of economic activity on environmental dynamics. Consequently, they
allocate their resources between consumption, saving and environmental defen-
sive expenditures that improve environmental quality by reducing the negative
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effects of production processes. See, for example, the seminal paper of John and
Pecchenino (1994); on the same research line we can find Jhon et al. (1995),
Zhang (1999), Seegmuller and Verchère (2005) and many others. In these works,
the authors obtain a long run positive correlation between wellbeing and eco-
nomic growth; that is, the increase of the production of consumption goods is
always a desirable outcome.

The main difference between the above cited literature and our model is
that we obtain a negative correlation between economic growth and individuals’
wellbeing. This result is due to the fact that we analyze an economy where indi-
viduals defend themselves from environmental degradation by increasing their
consumption of produced goods. Since the production process of these goods
has a negative impact on the environment, these self-protection choices generate
further environmental degradation. In such context, a self-enforcing mechanism
may be observed according to which environmental degradation leads to an
increase of consumption of private goods, which in turn generates further envi-
ronmental degradation and so on. This self-enforcing economic growth process is
driven by the continuous increase of individuals’ needs for private consumption
generated by the progressive reduction of the free consumption of environmental
goods.

The idea that environmental deterioration may lead individuals to become
more dependent on consumption of private goods rather than on consumption
of free access environmental resources is shared by several works on the subject
of environmental defensive expenditures (see e.g. Hueting 1980; Shibata and
Winrich 1983; Leipert and Simonis 1988; Leipert 1989; Shogren and Crocker
1993; Antoci and Bartolini 1999, 2004; Bartolini and Bonatti 2002, 2003; López
2003; Antoci et al. 2005, 2007; Escofet and Bravo-Peña 2007; Antoci et al.
2008). According to this literature, several produced goods can be used to al-
leviate the damages due to environmental degradation. For example, mineral
water may substitute spring water or tap water. Medicines may mitigate the
effects of respiratory diseases caused by air pollution. Individuals may react to
the deterioration of the seaside near home by going to a less deteriorated seaside
area by car or by boat, they may build a swimming pool in their gardens, they
may purchase houses in exclusive areas at the seaside or buy holiday-packages
in tropical paradises. Individuals may defend themselves from external sources
of noise by installing sound-proofing devices, and so on. However, the general
insight provided by said literature is that individual reactions to environmental
deterioration can be diverse and are likely to deeply influence consumption pat-
terns, increasing the consumption of private and expensive goods as opposed to
free access environmental resources. Urban life offers a paradigmatic example
of this substitution mechanism. Cities are often characterized by the scarcity
of free access environmental resources and, at the same time, they are able to
supply a considerable variety of private and expensive consumption opportu-
nities (see e.g. Hueting 1980; Antoci and Bartolini 1999, 2004; Bartolini and
Bonatti 2002, 2003; Antoci et al. 2008). The scarcity of areas where individuals
can meet away from the dangers of city traffic brings on additional expenses for
childcare (baby-sitters, playgrounds, etc.), as well as for the leisure of adults.
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One reason for the constant increase in the consumption of “home entertain-
ment” in the industrialized countries can indeed be found in the substitution
mechanism as previously defined.

The context where self-protection choices generate a further deterioration
of environmental goods has been examined by Shogren and Croker (1991), who
demonstrate that if self-protection choices of economic agents generate envi-
ronmental damage on other economic agents, and if economic agents do not
coordinate themselves, then self-protection choices are enforced beyond the so-
cially optimal level1 . However, Shogren and Croker analyze a static model and
do not develop their model in order to further examine the consequences that an
“excess” of self-protecting choices may determine on economic growth dynam-
ics. In our model we expand Shogren and Croker’s work in this direction. In
particular, our study points out that self-protection consumption choices may
create a large set of parameters for which the dynamics of the economy is inde-
terminate; that is, given the initial value of the state variable, the economy may
follow a continuum of economic growth orbits. Furthermore, periodic orbits and
chaotic behavior may emerge. These are quite new results because the wide-
spread view in literature on overlapping generations models is that the rise of
periodic orbits and of indeterminacy is due to distortions in the production side
of the economy: non perfect competition, positive externalities and so on (see
e.g. Reichlin 1986; Grandmont et al. 1998; Cazzavillan et al. 1998; Cazzavillan
2001), while in our model these dynamic regimes can be observed assuming a
very simple production technology (i.e. a Cobb-Douglas one) and perfect com-
petition among firms. From this point of view, our paper is similar to the work
of Seegmuller and Verchère (2005), which obtain analogous results but, as said
above, in a different context.

The paper is structured as follows. Section 2 introduces the model. Section
3 analyzes local stability of fixed points. Section 4 shows some results obtained
by numerical simulations. Section 5 concludes.

2 The overlapping generations model

Let us consider a perfectly competitive economy populated by a continuum of
identical infinitely-lived firms, which produce a consumption good, and by a
constant size population of identical individuals; so, we can consider the choices
of a representative firm and of a representative individual. Time is discrete,
t = 1, 2, 3, ...,∞; each individual lives for two periods. In each period t, two
generations coexist in the economy: the “young” and the “old”. As usual in
overlapping generations models, for the sake of analytical simplicity, we assume
that individuals works only when they are young and consumes only when they
are old (see e.g. Duranton 2001; Seegmuller and Verchère 2005)2 .

1The distinction between self-protecting devices that “transfer” negative externalities on
to other economic agents and devices that instead “filter” them has been introduced by Bird
(1987).

2See De la Croix and Michel (2002) for an introduction to overlaping generations models.
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The representative individual is “young” in period t and “old” in t+1. In t,
he is endowed with L∗ > 1 units of time (L∗ is a fixed parameter of the model)
and supplies the labour input Lt (0 ≤ Lt ≤ L

∗) to the representative firm, which
employes it to produce a consumption good. Labour effort Lt is remunerated at
the wage rateWt and the sum received Wt ·Lt is invested through the purchase
of productive capital Kt+1 (i.e. Kt+1 = Wt · Lt) which the individual will rent
to the representative firm, when old, earning the interest factor Rt+1. The
sum obtained, Wt · Lt · Rt+1, allows him to buy and consume the quantity
Ct+1 =Wt ·Lt ·Rt+1 of the good produced by the firm (Wt ·Lt andWt ·Lt ·Rt+1
are expressed as unities of the consumption good).

For simplicity, we assume that the life-time welfare of the representative
individual is measured by the following logarithmic function

U(Lt, Ct+1, Et+1) = ln(L
∗ − Lt) +

1

1 + θ
· ln(P · Ct+1 +Et+1) (1)

where Et represents the value of a given environmental quality index at time
t; P , γ and θ are positive parameters; 1

1+θ is the discount factor3 . Notice that

∂2U

∂Et+1∂Ct+1
= −

γ · P

(P ·Ct+1 +Et+1)
2 < 0

So the increase of U due to an increase of Ct+1 in negatively correlated with
the value of Et+1. More precisely, Ct+1 and Et+1 are substitutes with marginal
rate of substitution equal to

∂U
∂Ct+1

∂U
∂Et+1

= P

The representative firm produces the private good using a very simple Cobb-
Douglas technology

Y = A · F (Kt, Lt) = A · L
1−α
t ·Kα

t =

= A · Lt · k
α
t = A · Lt · f(kt)

where Kt is physical capital, A is a positive parameter representing techno-
logical progress and kt := Kt/Lt. The economy is assumed perfectly competitive
and so, in each period t, the representative firm maximizes the profit function

A · F (Kt, Lt)−Wt · Lt −Rt ·Kt (2)

taking the wage rate Wt and the interest factor Rt as exogenously given. As
usual, this assumption gives rise to the following first order conditions

3 It is easy to check that by assuming the alternative utility funcion

U(Lt, Ct+1, Et+1) = ln(L
∗
− Lt) + ln(Et) +

1

1 + θ
· ln(P · Ct+1 +Et+1),

the same dynamics are obtained.
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Wt = A · (1− α) · kαt (3)

Rt = A · α · kα−1t (4)

The maximization problem of the representative individual is

maxU(Lt, Ct+1, Et+1)

subject to

Ct+1 = Rt+1 ·Wt · Lt (5)

Lt ∈ [0, L∗] (6)

According to (5), the representative individual, by working Lt, obtains the
remuneration Wt ·Lt which can be invested at the interest rate Rt+1 obtaining
Rt+1 ·Wt · Lt when old; Rt+1 ·Wt · Lt is entirely used to consume the good
produced by the representative firm. In our perfectly competitive economy, Wt

and Rt+1 are considered as exogenously given by the representative individual.
Furthermore, we assume that the representative individual, at time t, is able to
perfectly foresee the value of Et+1. However, Et+1 is considered as exogenously
given; that is, the representative individual considers as negligible the impact
of his choices on the environmental quality.

Under these assumptions, the first order condition for an interior solution
(that is, with 0 < Lt < L

∗) of the representative individual’s choice problem is

−
1 + θ

L∗ − Lt
+

α · (1− α) · P ·A2 · kαt · k
α−1
t+1

α · (1− α) · P ·A2 · kαt · k
α−1
t+1 · Lt +Et+1

= 0 (7)

where Wt and Rt have been replaced by the values given in (3) and (4),
respectively.

To complete the model, we assume the dynamics of Et+1 defined by the
equation

Et+1 = E − η ·
[
F (Kt, Lt)

]β
= E − η · (Ltk

α

t )
β (8)

where E is a positive parameter representing the value assumed by the envi-
ronmental quality index without the negative impact due to economic activity; β
and η are positive parameters measuring the negative impact of the production
activity on environmental quality (the index Et+1 can assume negative values);
Kt, Lt and kt represent the average values of Kt, Lt and kt, respectively. The
representative individual takes as given average values when maximizing his
utility function; however, being individuals identical, ex post we have Kt = Kt,
Lt = Lt and kt = kt. This assumption implies that the representative agent
considers the negative impact of his choices on the environment as negligible;
that is, with no effect on Kt, Lt and kt . Therefore, in this model, the choices
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of the representative individual are not optimal and generate negative external-
ities. However, the orbits followed by the economy are Nash equilibria, in that
no single individual has interest to modify his choices if also the others don’t
revise theirs.

Since it holds

Kt+1 = kt+1 · Lt+1 =Wt · Lt

that is, labour remuneration Wt · Lt of representative agent in period t is
entirely saved and becomes the capital Kt+1 used by the representative firm in
period t+ 1, we obtain the following dynamical system

−
1 + θ

L∗ − Lt
+

α · (1− α) · P ·A2 · kαt · k
α−1
t+1

α · (1− α) · P ·A2 · kαt · k
α−1
t+1 · Lt + (E − η · (k

α
t Lt)

β)γ
= 0 (9)

kt+1 · Lt+1 = A · (1− α) · k
α
t · Lt (10)

3 Stability of the normalized fixed point

The system (9)-(10) defines kt+1 and Lt+1 as functions of kt and Lt. In this
section, we study the stability of fixed points of such discrete dynamical system.
Since our model contains a large number of parameters, to make clear the study
we use the geometrical-graphical method developed by Grandmont and DeVilder
(1999) that allows us to characterize the stability properties of this dynamical
system. We impose some conditions on parameters under which a fixed point
with coordinates

k = L = E = 1

exists. This allows us to analyze the effects on stability due to changes in
parameters’ values being sure that the fixed point doesn’t disappear.

Requiring that k = L = E = 1, from (10) we obtain

A =
1

1− α
(11)

Furthermore, from (8), we obtain

E = 1 + η (12)

and, from (7), we obtain

−
1 + θ

L∗ − 1
+

αP

αP + 1− α
= 0

which is satisfied if L∗ > 2 + θ and
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P =
(1− α)(1 + θ)

α(L∗ − θ − 2))
(13)

Finally, the point with k = L = E = 1must be a Nash equilibrium; that is, it
must be a solution of the maximization problem of the representative individual.
This amounts to require that L = 1, and not L = 0, represents the best reply
of the representative agent if k = L = 1 and E = 1. Therefore, it must hold

U |L=k=E=1 = ln(L
∗−1)+

1

1 + θ
ln

(
1 + θ

L∗ − θ − 2
+ 1

)
> ln(L∗) = U |L=0, k=E=1

Under the conditions (11)-(13), the dynamical system (9)-(10) can be writ-
ten as follows

kt+1 =



 kαt · (L
∗ − Lt · (2 + θ))

(L∗ − θ − 2) ·
(
1 + η − η (Ltkαt )

β
)





1
1−α

(14)

Lt+1 = Lt · k
α
t ·




(L∗ − θ − 2) ·

(
1 + η − η (Ltkαt )

β
)

kαt (L
∗ − Lt · (2 + θ))





1
1−α

Notice that Lt+1 · kt+1 = Lt · kαt .
The Jacobian matrix, evaluated at the normalized fixed point, is

J =

(
α(1+βη)
1−α

βη
1−α −

2+θ
(1−α)(L∗−θ−2))

−α(α+βη)
1−α

L∗

(1−α)(L∗−θ−2) −
α+βη
1−α

)

with

Det(J) =
α · L∗

(1− α) · (L∗ − θ − 2)
(15)

Tr(J) =
L∗

(1− α) · (L∗ − θ − 2)
− βη (16)

Figure 1 indicates, for each subset of the plane (Tr(J), Det(J)), the corre-
sponding stability regime. Let us consider, in the plane (Tr(J), Det(J)), the
half-line ∆ ≡ (Tr(J)|β=0,Det(J)|β=0) parametrized by L∗

(L∗−θ−2) ∈ (1,+∞)

having positive slope lower than 1. For L∗

(L∗−θ−2) → 1, ∆ approaches the seg-

ment AC at the point ( 1
1−α ,

α
1−α), in the positive orthant of the plane (Tr(J),

Det(J)). Starting from any point (Tr∗,Det∗) belonging to ∆, and increasing
the parameter β, we move along the horizontal line Ω, where Det(J) = Det∗,
towards the left. So, for β high enough, Tr(J) becomes negative.
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F ig u re 1 .

Notice that, when Ω intersects AC, that is Det(J)− Tr(j) + 1 = 0, then a
transcritical bifurcation occurs. It is easy to check that the bifurcation value of
β is

β = βtr ≡
2 + θ

η · (L∗ − θ − 2)

When Ω intersects AB, that is Det(J)+Tr(J)+1 = 0, then a flip bifurcation

occurs and the bifurcation value of β is given by

β = βfl ≡
2L∗ + (2 + θ)(α− 1)

η · (1− α) · (L∗ − 2− θ)

Furthermore, note that when 1−α
α

> 1, the fixed point is a sink for β ∈
(βtr, βfl) and a saddle for β ∈ (0, βtr) ∪ (βfl,+∞); while, when

1−α
α
< 1, the

fixed point is a source for β ∈ (βtr, βfl) and a saddle for β ∈ (0, βtr)∪(βfl,+∞).
Finally, a Hopf bifurcation occurs when Ω intersects the segment BC, that

is, when Det(J) = 1 and Tr(J) ∈ (−2, 2).
In our model, productive capital kt represents a state variable; the economy

starts from a given initial value of kt, k0, and then kt evolves according to
equations (14). Differently from kt, the variable Lt is a “jumping” variable in
that it is the representative individual’s labor input, which is chosen taking into
account of the average labour input in the economy, the expected environmental
quality and the accumulated productive capital. So, when the normalized fixed
point is a saddle under dynamics (14), if k0 is near enough to 1, then there
exists an unique initial value of Lt, L0, such that the orbit passing through
(k0, L0) approaches the fixed point. When the fixed point is a sink, given the
initial value k0, then there exists a continuum of initial values L0 such that
the orbit passing through (k0, L0) approaches the fixed point; consequently, the
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orbit the economy will follow is “indeterminate” in that it depends on the choice
of the initial value L0. The above results show how indeterminacy depends on
the negative impact on environment generated by the production process of the
consumption good. In particular, we have seen that indeterminacy occurs only
when the relevance of labour input Lt (with respect to productive capital kt) in
the production function is high enough (i.e. if 1−α

α
> 1) and if the environmental

impact is not “too low” or “too high”, that is if β ∈ (βtr, βfl).
In Figure 2 the results of a numerical exercise are represented according to

which a negative correlation exists between the level of production (economic
activity) and individuals’ wellbeing (measured by the utility function evaluated
at an attracting fixed point). Parameters are chosen as follows: E = 3, L∗ = 5,
β = 2, θ = 0.1, P = 1

α(1−α)A2 . The exercise shows that if η (the parame-

ter measuring the negative impact of production on the environmental good)
increases (in the interval (0.1, 0.4)), the production and consumption levels in-
crease too; however, the increase in consumption of the produced good is not
associated with an increase of wellbeing. This result implies that environmental
degradation can be an engine of undesirable economic growth.

Figure 3 shows the evolution of the aggregated production y along a growth
orbit starting near a repulsive fixed point where L = 0.173 and approaching
the normalized fixed point (where L = 1), which is a sink; Figure 4 represents
the evolution of wellbeing along such orbit. Parameters are chosen as follows:
E = 7, L∗ = 7, α = 0.21, β = 2.46, η = 0.41, θ = 0.3, P = 1.04. Observe that
individuals’ wellbeing would be higher at the fixed point where the labour input
is lower; however, such fixed point is repulsive under our dynamics.

F ig u r e 2 . F ig u r e 3 . F ig u r e 4 .

These results are conform to analogous results obtained in the literature on
undesirable economic growth by Bartolini and Bonatti (2002, 2003) and Antoci
et al. (2005, 2007) in continuous time models. According to such results, en-
vironmental degradation may be an engine of economic growth in that it leads
individuals to work more to have the possibility to increase their consumption
of private goods. However, the increase in consumption doesn’t compensate the
reduction of wellbeing due to environmental degradation. Individuals’ wellbe-
ing would be higher by reducing labour input and consumption; however, no
individual is incentivated to work and consume less if also the others don’t do
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the same. Therefore, in this context, the increase of the production level is a
consequence of a coordination failure.

4 Bifurcations and chaos

The dynamical system (14) may exhibit complex dynamics as the following
numerical simulations show. We set α = 0.1, η = 0.41, L∗ = 7, θ = 0.2.
and use β as bifurcation parameter; when β increases, the normalized fixed
point (1, 1) loses its stability becoming a saddle and a period 2_cycle appears
via a supercritical flip bifurcation (period doubling bifurcation). Subsequent
increases of β lead to further flip bifurcations according to which cycles of periods
4, 8, ..., 2n arise until the rise of a strange attractor (period-doubling route to

chaos).
Figure 5 shows a period 2_cycle obtained (ceteris paribus) for β = 6.79 and

Figure 6 represents a period 4_cycle obtained for β = 8.

F ig u r e 5 . F ig u r e 6 .

Finally, by assuming β = 8.22 and β = 9.13, the chaotic attractors showed
in Figures 7 and 8 arise, respectively. Figure 9 shows an enlargement of the
region in the rectangle of Figure 8. Figure 10 shows the evolution of Lyapunov
exponents obtained varying the value of β.

F ig u re 7 . F ig u r e 8 .
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F ig u r e 9 . F ig u re 1 0 .

Figures 11 and 12 represent the bifurcation diagrams, with respect to the
variables L and k, obtained assuming α = 0.13, η = 0.341, L∗ = 9, θ = 0.012,
showing a sequence of supercritical flip bifurcations followed by chaotic behavior.

F ig u re 1 1 .

F ig u re 1 2 .

In this model, complex dynamics can also occur via Hopf bifurcations. In
fact, letting α = 0.41, η = 0.41, L∗ = 7, θ = 0.2 and varying β in the interval
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[1, 2.5] we first obtain an attracting limit cycle (Figures 13) which breaks in
several attracting islands giving rise to complex dynamics (Figures 14-15).

F ig u re 1 3 .

F ig u re 1 4 .

F ig u re 1 5 .

Figure 16 shows the bifurcation diagram, with respect to the variable L,

12



related to these cases.

F ig u re 1 6 .

5 Conclusions

Our work has highlighted a mechanism according to which environmental degra-
dation may lead to complex dynamic behavior in an overlapping generation
model described by a two-dimensional discrete dynamical system. We have
shown that, ceteris paribus, an increase in the environmental impact of eco-
nomic activity may lead to chaotic behavior. Differently from the mainstream
literature concerning overlapping generation models, indeterminacy and chaotic
dynamics don’t occur in a context in which there are positive externalities in
the production process but in a context where there are negative externalities
generated by the production process.

Furthermore, we have shown that an increase of environmental degradation
may rise economic activity via individuals’ self-protection choices, which gener-
ate an increase of labour input and of consumption level. However, this rise in
economic activity is undesirable in that a negative correlation may be observed
between individuals’ wellbeing and economic activity level.

The general prediction of the model is that the higher the environmental
impact of the production process in the economy, the higher the economy’s
consumption level will be. An exogenous increase of η may generate an increase
of the aggregate product and consumption in the economy; economic growth
is fueled by the increase of “work motivation” of the economic agents, as a
consequence of the gradual deterioration of the environmental resource, which
induces agents to alter their consumption patterns, concentrating more and
more on the consumption of private and expensive goods, rather than on the
consumption of free access environmental goods.
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