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Abstract

In this paper a two-stage multiperiod stochastic hierarchical workforce prob-
lem is studied from both a risk neutral and a risk averse approach. In the consid-
ered hierarchical models workforce units can be substituted by higher qualified
ones; external workforce can also be hired to cover unfulfilled jobs and to avoid
penalties. Demand for jobs is assumed to be stochastic. In the light of includ-
ing agent risk aversion, the CVaR measure has been used following the lines
of Rockafellar and Uryasev. The results of an extensive computational test are
provided in order to validate the models.
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1 Introduction

The classical fleet size problem can be summarized as follows: how many vehicles
should a firm have in its transport fleet to meet a fluctuating work load? And
which should be the optimal fleet mix in the case different kinds of vehicles can
be employed?

The study of this kind of problems is an important topic of management
science because of their practical applications (see [2, 9, 10, 20]). As an example,
emergency medical services involve decisions about the optimal fleet mix since
ambulance services can be divided into categories according to the urgency of
the requests, the need of a doctor on board, the equipment installed in the
vehicle. Obviously, fleet mix problems are not related to vehicles only, since
in general they involve units (that is to say single workforce elements such as
workers, machines, trucks, ambulances, and so on) which have to fulfill jobs
requests.

Such a kind of problems are inherently based on demand uncertainty. The
decisions on the optimal fleet mix have to be taken before the jobs requests are
revealed. From a firm point of view, a two stage process arises: first of all the
fleet mix has to be chosen on the basis of a forecasted demand, then it can be
adjusted taking into account of the actual requests. It is worth noticing that a
good first stage decision is crucial for the firm from both an economical and a
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managerial point of view, and that different approaches for managing demand
uncertainty may produce different first stage solutions.

Two different peculiarities can be considered. The first one is the possibility
to hire external units to cover demand peaks; this leads to the presence of both
internal and external units to be employed in order to satisfy the jobs requests,
which yields the need to determine the optimal number of internal units to own
and of external units to hire. A second critical market factor is the capability
to fulfill the jobs in a requested amount of time. In particular, contractual
constraints could fix penalties in the case the jobs are not fulfilled in time; this
leads to the need to manage the peaks at a reasonable cost (for combined fleet
size and vehicle routing problems see, for instance, Dullaert et al. [7]).

Furthermore, fleet mix problems are said to be hierarchical when the fleet
is heterogeneous and the relative units can be grouped in hierarchical sets ac-
cording to different capabilities or peculiarities (see for all [2, 10]); for example,
an equipped ambulance with a medicine doctor on board can fulfill any request,
an equipped ambulance with no doctor on board has a more limited use, an
unequipped ambulance with no doctor on board can be used only to move not
suffering patients. Hierarchical problems arise in scheduling of health care staff,
job shop, maintenance crew and so on. In the literature the main research
topic has been the shift scheduling of hierarchical workforce. In the paper by
Narasimhan [14], for example, a single shift scheduling of hierarchical workforce
has been considered in order to determine the best workforce composition which
guarantees the full demand satisfaction and two days off for each employee every
week. Burns and Koop [4] provide a modular approach for solving workforce
scheduling problems characterized by multiple shifts and single category of em-
ployees. In all these models daily requests have to be completely fulfilled. On
the contrary, in [5] Cambini and Riccardi propose a hierarchical fleet mix prob-
lem where demand violations are admitted and external units can be hired only
to fulfill less qualified jobs.

It is worth noticing that demand for services is usually assumed in the liter-
ature to be deterministic, that is to say that it is fixed on the basis of a suitable
demand estimation.

The aim of this paper is to present fleet mix models which consider in an uni-
fied framework all of the following crucial aspects: demand uncertainty, demand
violation, hierarchical fleet structure, external units for all the hierarchical lev-
els, risk aversion. The proposed models, thanks to the various considered fleet
mix peculiarities, can be a useful strategic management tool aimed to determine
an optimal long term strategy.

In particular, the service demand is assumed to be stochastic, depending
on a random factor θ. This means that in a first stage, when demand is un-
known, decisions on the optimal internal fleet have to be taken on the basis of
a suitable estimation of future demand. In a second stage, the possibility of
hiring external units for all the considered hierarchical levels can compensate
the units shortage in case of demand peaks. Considering an heterogeneous fleet
both in the case of internal and external units is a generalized version of the
model proposed by Cambini and Riccardi [5]. Also quality of service constraints
(QOS) are included: for each type of request k a minimum number of fulfilled
jobs can be required. In other words, the firm may want to guarantee a certain
service level in order to preserve an efficient corporate image. In this light,
demand violations are admitted and a penalty cost function is included when
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the total demand is not completely fulfilled. The objective of these models is
to minimize the expected total costs (including penalties) satisfying the quality
of service constraints. Two different model formulations are proposed in this
paper: a risk neutral approach, minimizing the expected total cost, and a risk
aversion approach using a CVaR measure in the sense of Rockafellar and Uryasev
[15, 16]. Both these formulations are two-stage multi-period stochastic program-
ming models and their deterministic equivalent formulations are deduced with a
scenarios approach. According to the features of the problem, the models belong
to nonlinear integer programming and suitable equivalent linearized versions are
provided in order to point out how they can be computationally managed.

In Section 2 a first model formulation, based on a risk neutral approach, is
introduced. In this model a risk neutral agent aims to minimize the expected
value of its cost function. The linearization of the model and its deterministic
equivalent formulation are provided in Section 3. Neverthless, operators are
usually risk averse in real applications, so that a more precise cost estimation,
even if higher, is preferred to the expected cost estimation. For this reason,
in Section 4 a Conditional Value-at-Risk (CVaR) approach is proposed and
a suitable linearized version of the model is obtained too. All these models
have been computationally tested by comparing them with two expected value
formulations (EV and EV0) and the results are presented in Section 5. The test
has been carried out by generating 24 different instances according to different
QOS levels, different internal, external and penalty costs, high and low demand
fluctuations.

2 Statement of the problem

The aim of the considered model is to determine an optimal hierarchical work-
force in which a higher qualified unit can substitute for a lower qualified one but
not vice versa. Both internal and external units can be hired to fulfill customers
demand. All internal units are full working units, while external units can be
employed for a single job. Internal and external units are classified into k levels
from the less to the most qualified one. The service demand is assumed to be
stochastic, depending on a random factor θ.

Also quality of service constraints are included: for each type of request k
a minimum number of fulfilled jobs can be required, in order to guarantee a
certain quality of service level and to preserve an efficient corporate image. The
objective is to minimize total costs (including penalties) satisfying the quality
of service constraints.

In order to provide a formal definition of the model, various notations have
to be introduced. In particular, as regards to the internal units, the following
parameters and variables will be used (recall that θ represents the stochastic
rumor):

• j = 1, . . . J , is the number of different specialization levels of internal
units;

• k = 1, . . . J , is the number of different jobs for each level;

• n = 1, . . . , N , is the number of working periods;
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• aL = (aLj ) ∈ ZJ , aL≥0, where aLj is the minimum number of internal units
of level j;

• aU = (aUj ) ∈ ZJ , aU≥aL≥0, where aUj is the maximum number of internal
units of level j;

• x = (xj) ∈ ZJ , aL≤x≤aU , where xj is the variable representing the
number of internal units of type j;

• b = (bj) ∈ ZJ , b > 0, where bj is the number of jobs that a single internal
unit of level j can fulfill in a working period.

• Y (θ) = [ynjk(θ)] ∈ ZN×J×J , where ynjk(θ) is the variable representing the
number of internal units of level j, employed to fulfill stochastic requests
of type k in period n;

In the light of the hierarchical structure of the model, level j units will be
employed to fulfill requests of type k ≤ j.

For the external units we need of the followings:

• G = (gnj ) ∈ ZN×J , G≥0, where hLnj is the minimum number of external
units of type j at the n-th working period;

• H = (hnj ) ∈ ZN×J , H≤G, where hUnj is the maximum number of external
units of type j at the n-th working period;

• Z(θ) = [znjk(θ)] ∈ ZN×J×J ,Z(θ)≥0, where znjk(θ) is the variable represent-
ing the number of external units of level j requested at the n-th working
period to execute the job of type k depending on the random factor θ.

The stochastic requests are described by the following parameters:

• M(θ) = [mn
k (θ)] ∈ ZN×J , M(θ)≥0, where mn

k (θ) is the maximum number
of jobs of type k at the n-th working period depending on the random
factor θ;

• D(θ) = [dnk (θ)] ∈ ZN×J , 0≤D(θ)≤M(θ), where dnk (θ) is the minimum
number of jobs of type k to be fulfilled at the n-th working period de-
pending on the random factor θ;

while the various costs are represented by:

• cx = (cxj
) ∈ RJ , cx > 0, where cxj

is the cost of a single internal unit of
type j in each period n;

• Cz = (czn
j

) ∈ RN×J , cz > 0, where czn
j

is the cost of a single job done by
an external unit of level j at the n-th working period;

• Cw = (cwn
k

) ∈ RN×J , cw≥0, where cwn
k

is the penalty cost of a single job
of type k at the n-th working period which has not been fulfilled.

According to the hierarchical structure of the model, it is reasonable to suppose
that higher qualified units have an higher marginal cost, that is cxJ

≥ cxJ−1
≥

· · · ≥ cx1
and czJ ≥ czJ−1

≥ · · · ≥ cz1 .
By means of the introduced notations, the following formal definition of the

problem is given.
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Definition 2.1 Let P be the following stochastic problem:

(P )

min
x,Y,Z

N

J∑
j=1

cxj
xj +

N∑
n=1

J∑
j=1

j∑
k=1

czn
j
znjk(θ) +

N∑
n=1

J∑
k=1

cwn
k
ωn
k (θ) (1)

s.t. aLj ≤ xj ≤ aUj j = 1, . . . , k (2)

bjxj =

j∑
k=1

ynjk(θ) n = 1, . . . , N, j = 1, . . . , J (3)

J∑
j=k

(
ynjk(θ) + znjk(θ)

)
≥ dnk n = 1, . . . , N, k = 1, . . . , J (4)

gnj ≤
j∑

k=1

znjk(θ) ≤ hnj n = 1, . . . , N, j = 1, . . . , J (5)

znjk(θ), ynjk(θ) ≥ 0 n = 1, . . . , N, j = 1, . . . , J, k = 1, . . . , J (6)

where ∀ n = 1, . . . , N, k = 1, . . . , J :

Rn
k (θ) = mn

k (θ)−
J∑

j=k

(
ynjk(θ) + znjk(θ)

)
(7)

ωn
k (θ) = max {0, Rn

k (θ)} (8)

The objective function of problem P is the sum of three cost factors: the
cost of internal units N

∑J
j=1 cxj

xj , employed for the whole considered period,

the expected cost for external units
∑N

n=1

∑J
j=1

∑j
k=1 czn

k
znjk(θ), proportional

to the number of temporary units employed each working period n for each kind
of requests j, and the expected penalty cost

∑N
n=1

∑J
k=1 cwn

k
ωn
k (θ). The penalty

cost function is the cost related to the unfulfilled requests. When the requests
are not easily predictable, for example in the case of maintenance units, some
requests can not be fulfilled in the contractual time window. This happens, for
instance, when it is too expensive to employ an additional internal unit to cover
demand peaks. Internal units, in facts, are hired for the whole period under
consideration so that there is a trade off between increasing units costs and
paying a penalty. In this model we suppose that the penalty cost is proportional
to the number of unfulfilled requests ωn

k (θ) (see constraints (8)). Notice that
variables Rn

k (θ) in constraints (7) is unrestricted in sign and represent the excess
of demand or supply in maintenance services for each working period n and each
kind of request j, depending on its positive or negative value.

As regards to the feasible region, constraints (3) determine the distribution
of internal units, for each working period n, among the different jobs they are
able to execute. These constraints express the hierarchical structure of the
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workforce: for each level of qualification j the total number of internal employees
are allocated to the different jobs of kind k ≤ j. Constraints (4) represent the
quality of service constraints: as higher is parameter dnk as more restrictive
is the firm policy on demand satisfaction. The case dnk = mn

k reduces to the
equilibrium condition in which demand has to be fully satisfied. Box constraints
(2) and (5) include the case of lower and upper bound on labour supply.

3 Discretization of the problem

The problem described in the previous section is an integer multi-period two-
stage stochastic model with fixed recourse. In facts, vector variable x represents
the first stage decision variables, taking into account that internal units have to
be determined at the beginning of the time period, while external units znjk(θ)
and internal units allocation between different jobs ynjk(θ) are determined after
the realizations of the random events θ. If we consider the case in which an
analytical representation of the density function is not available, but we have S
demand scenarios, sampled from the density p(θ), the deterministic equivalent
formulation of problem P can be rewritten in the following expanded model:

(P̃ )

min
x,Y s,Zs

f̃(x, Y s, Zs) (9)

s.t. aLj ≤ xj ≤ aUj j = 1, . . . , k (10)

bjxj =

j∑
k=1

ynsjk n = 1, . . . , N, j = 1, . . . , J s = 1, . . . , S (11)

J∑
j=k

(
ynsjk + znsjk

)
≥ dnsk n = 1, . . . , N, k = 1, . . . , J s = 1, . . . , S (12)

gnj ≤
j∑

k=1

znjk(θ) ≤ hnj n = 1, . . . , N, j = 1, . . . , J (13)

Rns
k = mns

k −
J∑

j=k

(
ynsjk + znsjk

)
n = 1, . . . , N, k = 1, . . . , J s = 1, . . . , S (14)

ωns
k = max{0, Rns

k } n = 1, . . . , N, k = 1, . . . J, s = 1, . . . , S (15)

znsjk , y
ns
jk ≥ 0 n = 1, . . . , N, j = 1, . . . , J, k = 1, . . . , J s = 1, . . . , S (16)

where

f̃(x, Y s, Zs) = N

J∑
j=1

cxj
xj +

N∑
n=1

J∑
j=1

j∑
k=1

czn
j

S∑
s=1

psznsjk +

N∑
n=1

J∑
k=1

cwn
k

S∑
s=1

psωns
k (17)
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and Y s = (ynsjk ), Zs = (znsjk ).
In addition constraints (15) are nonlinear, so that well known solution algo-

rithms for linear programming can not be directly used without an equivalent
linear formulation. In this light, since variables ωns

k are minimized in the objec-
tive function, constraints (15) can be linearized by substituting them with the
followings:

ωns
k ≥ Rns

k , ωns
k ≥ 0, n = 1, . . . , N, k = 1, . . . , J s = 1, . . . , S (18)

In this light, the linearized version P̃ of problem P is suitable for computa-
tional purpose and, in particular, it will be used for obtaining first stage optimal
solutions. Clearly, the discretized first stage problem is a large dimension linear
problem which needs of suitable softwares (like AMPL+CPLEX) in order to be
computationally solved.

4 Risk-Aversion: a CVaR approach

In the previous sections we referred to a risk neutral agent who aims to minimize
the expected value of its cost function. In real applications, usually, operators
are risk averse, so that they prefer a more precise cost estimation, even if higher,
than the expected cost estimation. In order to include risk aversion in our op-
timization model we consider a Conditional Value-at-Risk (CVaR) approach in
the sense of Rockafellar and Uryasev [15, 16]. CVaR represents the expected
value of loss, conditional on being on the bad tail of the distribution. In other
words it is the expected loss exceeding the corresponding Value-at-Risk (VaR).
This risk measure overcomes the limitations of VaR, since it is a coherent risk
measure (among others, it verifies the subadditivity property) and it is a con-
vex function. Following the lines of Rockafellar and Uryasev [15], the CVaR
optimization problem can be modeled as follows.

Definition 4.1 Let PCV aR be the following stochastic problem:

PCV aR :

{
min fCV aR (ξ, x, Y (θ), Z(θ))

(x, Y (θ), Z(θ)) verify (2)− (6), ξ ∈ <

where

fCV aR (ξ, x, Y (θ), Z(θ)) = ξ +
1

(1− α)

∫
max{0, f(x, Y (θ), Z(θ))− ξ}p(θ)dθ

and f(x, Y (θ), Z(θ)) is defined as in Problem P , p(θ) is the probability density
function of θ.

If we consider the case in which an analytical representation of the density
function is not available, but we have S demand scenarios, sampled from the
density p(θ), we can approximately calculate function fCV aR (ξ, x, Y (θ), Z(θ))
as follows:

f̃CV aR (ξ, x, Y s, Zs, vs) = ξ +
1

(1− α)

S∑
s=1

vsp(s) (19)
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where
vs = max{0, f̃(x, Y s, Zs)− ξ} s = 1, . . . , S (20)

and f̃(x, Y s, Zs) is defined in (17). Clearly, constraints (2)-(6) can be dis-
cretized by means of constraints (10)-(16).

In order to concretely solve the discretized version of problem PCV aR with
the use of standard linear programming tools, constraints (15) and (20) need
to be linearized. Since variables vs are minimized in the objective function,
constraints (20) can be linearized by substituting them with the followings:

vs ≥ f̃(x, Y s, Zs)− ξ, vs ≥ 0, s = 1, . . . , S (21)

On the other hand, constraints (15) can be linearized by introducing the
binary variables δnsk ∈ {0, 1}, n = 1, . . . , N, k = 1, . . . , J, s = 1 . . . S and a
value Big >> 0. The resulting linear discretized problem is:

P̃CV aR :

{
min f̃CV aR(ξ, x, Y s, Zs, vs)

(ξ, x, Y s, Zs, vs, δs) ∈ D̃CV aR

where:

D̃CV aR =



for all n = 1, . . . , N, j = 1, . . . , J, k = 1, . . . , J, s = 1 . . . S :

vs + ξ ≥ f̃(x, Y s, Zs)

−Big · δnsk ≤ Rns
k ≤ Big(1− δnsk )

ωns
k ≤ Rns

k + Big · δnsk

ωns
k ≤ Big(1− δnsk )

vs≥0, δnsk ∈ {0, 1}

constraints (10)-(14), (16), (18) of P̃ hold



5 Computational results

Models P̃ and P̃CV aR have been implemented in order to test the goodness
of the stochastic approach with respect to the Expected Value solution (EV).
Different demand distributions have been considered in both first and second
stages: uniform, normal and beta distribution. The body of the computational
test, and in particular the data generation and the solution procedures for the
second stage problems, has been implemented in MatLab 2010a. The first stage
decision variables are obtained by solving the linearized version of problem P
with AMPL+CPLEX v.12.
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In particular, the first step optimal solution has been tested generating
5000 out of sample scenarios. Different problem instances have been consid-
ered varying cost parameters, quality of service levels, in sample scenarios. For
the sake of convenience three hierarchical levels are assumed. The parameters
of the problem aL,aU , b, g, h, cx, Cz and Cw have been generated by using
the “rand()” MatLab function. Specifically speaking, the cost parameters have
been generated according to a hierarchical cost structure, that is to say that the
components of cx and cw are in increasing order, while the components of the
parameter b are in decreasing order. Stochastic matrix parameter M has been
generated according to three different distributions: uniform, normal and beta.
The distribution generation has been carried out using the Halton Sequences
MatLab Code and the components in the various rows of the matrix parameter
M are in decreasing order with respect to the column. The matrix parameter
D has been generated from M taking into account different levels of quality
of service. For the sake of clearness, the results of the computational test are
described and discussed in two different subsections. In the first one, the results
of a single instance test are given and described in details in order to clarify
their meanings. In the second subsection the overall results of the extensive
computational test are given and the validity of the proposed models is pointed
out.

5.1 A single instance computational results

In order to clarify the meanings of the various computational results, in this sub-
section a single instance test is described and discussed in details. In particular,
the case k = 3, n = 20 is considered and the model consistency is investi-
gated with respect to two deterministic case (expected value case and adjusted
expected value case). Some statistic measures have been calculated: average
errors, absolute average errors, errors standard deviation, Expected Value of
Perfect Information (EVPI), Value of Stochastic Solution (VSS) etc. As regards
to the generated values, for all j, k, n, we have cxj

∈ [20, 100], cwn
k
∈ [10, 100],

czn
j
∈ [50, 120], aLj ∈ [0, 10], aUj ∈ [1000, 3000], gnj = 0, hnj ∈ [1000, 2000] and

bj ∈ [1, 4]. Quality of service levels have been fixed equal to [0.7, 0.8, 0.9]. This
means that for the lower service demand the firm wants to fulfill at least the 70%
of the total requests for each time period, for the second level of requests the 80%
of requests has to be guaranteed and for the most qualified demand for services
the 90% of requests has to be covered. Demand for service stochastic parameter
M has been simulated starting from a mean, for each level, respectively equal
to µ = [1000, 500, 300] and a standard deviation equal to σ = [500, 250, 150]
respectively. Different numbers of in sample scenarios have been considered, in
the case shown below we referred to 500 in sample scenarios. A sort of peak ef-
fect has been considered varying mean values in some critical days (for example
peaks can be reached on Monday and Friday). For this reasons the Two-Stage
stochastic model (TS) and CVaR model have been compared with two different
deterministic models: pure expected model (EV0) and an adjusted expected
model (EV) taking into account the peak effect. Some statistic measures have
been calculated: VSS, average errors, absolute average errors, errors standard
deviation, VaR etc. The main results are presented in the following Tables 1
and 2 and in Figures 1-4.
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Statistics/Models EV0 EV TS CVaR− 95%

FValStage1 2′079′960 2′522′124 3′044′600 3′298′400
Mean FValStage2 3′337′700 3′115′200 3′045′000 3′099′400
MinFVal Stage2 2′286′252 2′528′096 2′602′911 2′863′080
MaxFVal Stage2 4′921′256 4′239′431 4′101′478 3′879′064
Standard Error 362′350 238′930 210′240 136′970
VaR− 95% 3′972′045 3′504′502 3′426′968 3′372′445
EVPI - - 30′748 -
VSS−EV0 - - 293′380 -
VSS−EV - - 37′705 -

Table 1: Models optimal values comparison: normal distribution

Table 1 collects the results related to the considered instance in the case
of normal distrubution. The same instance has been solved with EV0, EV,
Two-Stage stochastic model and CVaR model finding the first stage optimal
solution, then 5000 out of sample scenarios have been generated and the second
stage optimal solutions are calculated. It can be easily observed that the optimal
first stage value for problems EV0 and EV significantly differs from the second
stage one while in the stochastic models the two solutions are almost the same.
Also the Value at Risk comparison at level α = 0.05 shows that the stochastic
model is more stable around the first stage optimal solution and the expected
total cost is lower. CVaR model with α = 0.95 ensures the lowest VaR value. In
order to clarify this behaviour, in Figure 1, 2, 3 and 4 the distribution of second
stage optimal solutions for the four models are presented in the case of normal
demand distribution. It can be easily verified that the EV0 distribution is more
flat and variable, moreover the right tail is heavy. This means that the risk of
higher cost is greater in EV0 and EV models than in the stochastic one. The
CVaR distribution shows a different behaviour. The distribution is very tight
with high peakedness and the right tail is flat with low volatility.

Similar results are obtained in the case of uniform and beta distributions.
In Table 2 the results concerning errors measures are presented. Model EV

and EV0 can not be efficiently used to determine first stage optimal solutions
since the errors in cost prevision are respectively higher than 20% and 60% as
average values. The two stage stochastic model (TS) can forecast quite well
the exact second stage solution, while the CVaR model slightly overestimates
the second stage optimal solution. This is the price of risk aversion in the
sense that a more prudential perspective is able to face demand fluctuations
by reducing forecast errors. Notice also that both stochastic models (TS and
CVaR) significantly reduce the maximum errors oscillations with respect to the
deterministic ones, in particular CVaR model seems to be the better response
for a risk averse agent who wants to minimize the probability to incur in higher
cost levels than the ones predicted in the first stage solution.
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Errors/Models EV0 EV TS CVaR− 95%

Min Errors 0.09918 0.002367 −0.14508 −0.13198
Max Errors 1.366 0.6809 0.34713 0.15283
Mean Errors 0.60469 0.21979 0.00012 −0.0603
Standard Error 0.1742 0.09474 0.06905 0.03574
Min AbsErrors 0.0992 0.0024 0 0
Max AbsErrors 1.366 0.6809 0.34713 0.15283
Mean AbsErrors 0.60469 0.21979 0.05478 0.0527
Standard AbsError 0.17421 0.0947 0.04203 0.03304

Table 2: Model EV, EV0, Two-Stage, CVaR: second stage errors measures

5.2 Results of the extensive computational tests

The extensive computational test includes 24 different instances generated vary-
ing internal unit costs, penalty costs, quality of service constraints and demand
variability. For each instance, three different demand distributions have been
used (Uniform, Normal and Beta). Internal units costs and penalty costs have
been tested low and high, three different quality of service levels have been
considered (low, medium, high) and scenarios have been generated with high
and low volatility for each distribution and with (Stag 1) or without (Stag 0)
seasonality effects. Different values of in sample scenarios have been considered
from 200 to 500 scenarios. In the CVaR model different α values have been
also tested. For each instance 5000 out of sample scenarios have been generated
and the optimal first stage solution has been compared with the out of sample
results. Let us describe more in detail the data used in the simulation tests.

Quality of Service Levels (QoS):

- low (L): [0.3; 0.4; 0.6]

- medium (M): [0.5; 0.6; 0.8]

- high (H): [0.7; 0.8; 0.9]

Internal units daily costs: random values with hierarchical structure in
the following intervals

- low: [20; 100]

- high: [120; 240]

Penalty costs: random values in the following intervals (min and max
values for each level)

- low: [10 30; 30 50; 50 100]

- high: [100 150; 150 200; 200 250]

All these possible combinations have been investigated (see Table 3). For
each instance 10 different test problems have been generated in order to avoid
outliers values and the means of the outcomes are given in Tables 4, 5 and 6 as
the results of the computational test.
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Instances InternalCosts ExternalCosts PenaltyCosts
Prob 1 High Low Low
Prob 2 Low High Low
Prob 3 Low High High
Prob 4 High Low High

Table 3: Instances description

The obtained outcomes seem to confirm the goodness of the stochastic mod-
els. In particular both the stochastic models show a better behaviour with
respect to the deterministic ones in correspondence to high penalty costs and
high quality of service levels. This can be easily explained taking into account
that the shortage of internal units to cover the peaks (first stage optimal so-
lutions) leads to employ more external units at higher costs in order to avoid
penalties (see for instance the case of P3 where the cost structure produces high
errors in the case of deterministic models). The high accuracy of the first stage
solution in the Two-Stage (TS) model is stable also in presence of different sec-
ond stage demand realizations. On one hand, the CVaR models (both for the
two different α values) overestimate the total cost of the second stage, on the
other hand the maximum error (that is a total cost higher than the estimated
one in the fist stage) is always the lowest. This means that a risk averse agent
can predict with more accuracy the effective cost he will face in the second stage
and it will occur in an higher total cost in very few situations. Moreover, in case
of high demand volatility (seasonality effects, demand peaks denoted as Stag 1)
and with asymmetric distributions the CVaR model performs better than the
TS one. As more the firm is risk averse as bigger the value α has to be taken in
order to reduce cost variability. In the case of low penalties, low external costs,
low quality of service constraints and low demand variability the error interval
is tighter and it seems reasonable to use a deterministic model saving compu-
tational effort. The cases of high volatility tend to enlarge the second stage
interval of variation for the optimal value in each considered instance except
for the CVaR models. Finally, the use of a high number of in sample scenarios
reduces second stage mean errors, specially in the case of high volatility, but
has a small effect on the optimal solution when exceeding 500 scenarios. As a
consequence, there is no incentive in furthermore increasing in sample scenarios
taking into account the corresponding rise in computational times.
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Figure 1: FVAL EV0 model out of sample distribution
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Figure 2: FVAL EV model out of sample distribution
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Figure 3: FVAL Two-Stage stochastic model out of sample distribution
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Figure 4: FVAL CVaR model out of sample distribution
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6 Conclusion

A large class of two-stage multi-period stochastic hierarchical fleet mix problems,
with various concrete applications, has been introduced and fully studied from
a theoretical and a computational point of view. A risk aversion perspective
has been also proposed by adopting a CVaR optimization model in the sense of
Rockafellar and Uryasev [16]. The computational test proves the goodness of
the stochastic models compared with two alternative deterministic versions. The
risk aversion approach is able to reduce cost increase facing demand variability.
Further developments could be in the direction of a more sophisticated scenarios
representation (including demand correlation or scenario reduction techniques)
and of a multi-stage stochastic model.

References

[1] Azmat, C.S., Hürliman, T. and M. Widmer (2004), “Mixed integer program-
ming to schedule a single-shift workforce under annualized hours”, Annals
of Operations Research, vol.128, pp.199-215.

[2] Billionet A. (1999), “Integer programming to schedule a hierarchical work-
force with variable demands”, European Journal of Operational Research,
vol.114, pp.105-114.

[3] Birge, J.R. and F. Louveaux (1997), “Introduction to stochastic program-
ming”, Heidelberg: Springer-Verlag.

[4] Burns and R.N. and G.J. Koop (1987), “A modular approach to optimal
multiple-shift manpower scheduling”, Operations Research, vol.35, pp.100-
110.

[5] Cambini R. and R. Riccardi (2009), “Theoretical and algorithmic results for
a class of hierarchical fleet mix problems”, European Journal of Operational
Research, vol.198, pp.741-747.
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