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Intertemporal Preferences, Distributive Shares,
and Local Dynamics∗

Marco Guerrazzi†

Department of Economics

University of Pisa

Abstract

This paper provides a simplified version of the perfectly flexible
wages OLG model proposed by Hahn and Solow (1995). Using a
Cobb-Douglas specification for the utility and the production func-
tions, we demonstrate that the local stability of the steady-state equi-
librium depends only on intertemporal preferences and distributive
shares. Furthermore, we show that local stability might be related to
consumption smoothing considerations.

JEL Classification: D11, D24
Keywords: Overlapping Generations, Market Clearing, and Local Stabil-

ity

1 Introduction

One way to deal with intertemporal issues is to study, simultaneously and
explicitly, the entire time span or time horizon that is relevant for the question
at hand1. Whenever the time horizon is infinite there are two useful schemes
to describe an economy: models in which agents live forever and overlapping
generations (OLG) models.

∗I would like to thank all the participants to the “Young Researcher Seminar Series of
the Faculty of Economics” held in Pisa, October, 28, 2004, for comments and suggestions.
Particular thanks go to Lorenzo Corsini for the accurate discussion. The usual disclaimers
apply.

†PhD student at the Department of Economics, University of Pisa, Via C. Ridolfi,10,
56124 Pisa Italy +39 050 2216372 e-mail guerrazzi@ec.unipi.it

1This is the perspective proposed by Irving Fisher.
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If taken too seriously, an infinite-lifetime model leads to look at the econ-
omy as if it were guided by a Ramsey optimiser. When there are no dis-
continuities, this means that the economy, starting from historically given
conditions, will follow a unique perfect-foresight path to the appropriate
steady-state2. This normative model, helpful to working out what an omni-
scient planner should do, is not meant to capture undesired macroeconomic
behaviours, because it simply assumes that they do not occur.

In an OLG model new generations of people appear before all of the
people from the earlier period die off. There are many well-founded reasons
to describe an infinite-horizon economy using an OLG model. First, it forces
the researcher to model agents which think about the future because they
may be engaged in transactions concerning goods produced by individuals
who are not yet alive. Second, keeping a simple algebra, it preserves the
possibility to conclude that the economy may display a (relatively) wide
range of macroeconomic patterns. Third, even if it is more controversial, it
provides the option to include fiat money as a valuable asset3.

Following a popular contribution by Hahn and Solow (1995), we build
a two-periods perfect foresight OLG model in which we allow wages and
prices to be perfectly flexible. By “perfect flexibility” we mean that at every
instant wages and prices are at values that equate demand and supply in all
the markets. Our immediate goal is to show that this model can display a
wide range of local dynamic patterns in which stability is not the likeliest
outcome.

Resorting to a version of the Clower constraint, which capture the role of
money as a medium of exchange, we model an OLG economy where young
households can allocate their saving in two different assets: money and bonds.
Once intertemporal preferences and distributive shares are given, the analysis
of a steady-state equilibrium in which the return earned by bonds is higher
than the return on money shows that there are specific bounds for the eligible
demand for cash balances. Furthermore, we provide an explanation of local
stability in terms of consumption smoothing.

The paper is organised as follow. Section 2 illustrates the model. Section
3 concludes.

2More interesting possibilities are analysed - inter alia - by Benhabib and Farmer
(1994).

3With perfect foresight or rational expectations, this is not possible in a finite economy.
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2 The Model

We consider a two-periods OLG model with price (and wage) flexibility and
perfect foresight. In a given period t, young households born at the very
beginning of t, and old households born at the very beginning of t − 1,
live together. Only young households are allowed to work: they provide
a fixed amount of labour services lt (normalised to unity), which is always
fully employed by firms. For sake of simplicity, old households do not leave
bequests.

A remarkable feature of this model is that young households can allocate
their savings to either or both of two assets, that is, money balances and
bonds issued by the firms. The former give no nominal return, but they
may earn a real return which depends on the change in the nominal prices of
consumption goods between the two periods of households’ life. The latter
grants a proportional share of the firms profits which is equal to the difference
between the nominal output and the wage bill. Assuming perfect foresight,
there is no difference in the two assets riskiness.

Such an economy will be in one of two possible phases4. In one phase the
real return of investment on bonds is higher than the real return on money
balances. In this case, because of the lack of uncertainty, young households
would prefer to invest all of their saved resources on bonds, vanishing the
demand for money. In order to avoid this possibility, we follow the contri-
bution by Hahn and Solow (1995) and we impose a partial cash-in-advance
constraint known as Clower constraint. According to the Clower constraint,
a young household planning to spend a certain nominal amount in its old
period, has to demand an amount of money that is at least equal to a fixed
fraction of its planned expenditure5. Whenever the real return on bonds is
higher than the real return on money balances young households are liquidity
constrained, that is, they will not wish to hold money more than the Clower
constraint obliges them to hold.

In the other phase, the real return on the two assets is the same, so young
households are indifferent between them. We may refer to this situations as
portfolio indifference.

The productive sector of the model is quite traditional. Firms behave
competitively, taking prices and wages as given. A typical firm produces
a perishable homogeneous good employing the labour supplied by young
households and the capital raised issuing the bonds. The capital entering

4Assuming that capital is an indispensable factor, we do not consider the situation in
which the real return on money is higher than the real return on bonds.

5Clower (1975) imposed the rule that “only money buys goods”. Hahn (1982) proposed
a weaker axiom, that is, “money buys goods more cheaply than do other assets”.
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in the production function is of the circulating type, therefore, it disappears
completely after one period of use.

The model is closed deriving the (unique) steady-state characterising a sit-
uation of continuos market-clearing in which agents are liquidity constrained,
and discussing its local stability conditions.

2.1 The Households Side

Taking the current real wage wt as given, the typical household choose
presents (ct) and future (ct+1) consumption in real terms maximising its
utility function (u) under the relevant budget constraints:

max
ct,ct+1

u = cδ
tc

(1−δ)
t+1 0 < δ < 1 (1)

s.to

ct + st = wtlt (2)

ct+1 = Rt [st − mt] +
1

xt
mt (3)

where st are total savings, Rt is the real gross return on resources lent to the
productive sector, mt is the demand for real cash balances, and xt ≡ pt+1

pt
is

the inverse of the real return on money6. As stated above, young household
can allocate savings to money and/or bonds. However, the nominal demand
for money balances has to satisfy the Clower constraint:

ptmt � 1

ξ
pt+1ct+1 (4)

where ξ � 17. Whenever the Clower constraint holds as equality, equation
(3) reduces to:

ct+1 =
ξ

ξ + xtRt − 1
Rtst ≡ θtRtst (5)

As a consequence, we may refer to θtRt as the “effective” rate of return
on savings. Obviously, when money and bonds grant the same real return θt

is equal to one. On the other hand, when equities are more profitable then

6Money earns a positive real return only in the case of deflation.
7In details, ξ = 1 means “cash in advance”, while ξ → ∞ means that the Clower

contraint can be ignored.
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money balances, the real return on the former has to be reduced by a factor
that is a increasing function of ξ8.

Deriving st from equation (5), and substituting in equation (2), we derive
an intertemporal budget constraint:

ct +
ct+1

θtRt
= wtlt (6)

Imposing full employment, that is lt = 1, the maximization of (1) subject
to (6) leads to the following solutions:

c∗t = δwt c∗t+1 = θtRt(1 − δ)wt (7)

Necessarily, it also follows that s∗t = (1 − δ)wt. For a graphical exposition
see figure 1.
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Figure 1: The households consumption choices

Note that in the simple Cobb-Douglas case, the marginal propensities
to consume and to save are not affected by the real returns on savings9.
Furthermore, notice that when young households are liquidity constrained,
that is when xtRt > 1, a lower demand for money - i.e. a higher ξ - leads to
a higher consumption in the old age.

8Notice that vt ≡ xtRt represents the ratio between the real return on equities and the
real return on money.

9This is no longer true with a C.E.S. utility function.
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2.2 The Productive Sector

Current production (yt) is obtained through the utilisation of circulating
capital (kt) and labour supplied by young households (ht). The production
function is a traditional constant-return to scale Cobb-Douglas:

yt = kβ
t h1−β

t 0 < β < 1 (8)

Normalising the total labour force to unity, the labour market-clearing
hypothesis implies that ht = 1 for all t.
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Figure 2: The labour market

In a competitive environment, the remunerations of each factor are given
by the respective marginal productivities. As a consequence, the quantity
signal given by the labour market-clearing hypothesis (see figure 2) allows to
derive the following expressions:

wt =
∂yt

∂ht
= (1 − β)kβ

t Rt =
∂yt

∂kt
= βkβ−1

t (9)

Considering the expression for Rt, we can easily derive the employed
capital as a function of the real rate of return at time t:

k∗
t =

(
Rt

β

) 1
β−1

(10)

From the previous equation, it follows immediately that:
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w∗
t = (1 − β)

(
Rt

β

) β
β−1

= (1 − β)y∗
t (11)

Knowing the real wage, we can finally determine the households consump-
tion choices as a function of the real gross return on bonds:

c∗t = δ(1 − β)

(
Rt

β

) β
β−1

c∗t+1 = θtRt(1 − δ)(1 − β)

(
Rt

β

) β
β−1

Before going on, it may be worth to note that our model entails a small
inconsistency. Since wages and profits are shares of the same output, one
may ask the reason why young households have to wait for the old age to
obtain the earnings deriving from capital investments. See equation (3). The
reason is trivial. Production takes time, all the time underlying the single
period considered in our analysis. At the very beginning of that, when young
households plan their consumption, firms have to decide how much capital to
employ10. In a market-clearing equilibrium, given the real interest rate, the
investment level maximising profits coincides with the amount of resources
lent to the productive sector.

In order to allow households to subscribe the debt issued by the firms, it is
necessary to provide them the required resources. In other words, firms must
to pay the overall wage bill before starting the production. The simplest way
to overwhelm this inconsistency is to assume that in the background there is
a bank which loan to the productive sector - without charging any interest
- the corresponding amount of resources. Therefore, at very beginning of
a given period, firms use the capital raised issuing the bonds, and hire the
labour supplied by young households. At the end of the period, when the
output is available, firms pays the resulting profits to the households which
subscribed bonds11, and repay their loans to the bank. At the beginning of
the next period this financial cycle starts again and again.

2.3 The Walras’s Law

Now we consider the aggregate situation at a given period t. At this time
two generations coexist: young households born at the very beginning of t
and old households born at the very beginning of t − 1 (see figure 3). The
former consume a share δ of the current real wage wt. The latter consume

10We already know that the employed labour is fixed.
11The households that at the biginning of the period subcribed bonds are crossing the

line of the old age.
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the “effective” return on the saving they planned which, on turn, is equal to
the share (1 − δ) of the real wage prevailing in the previous period wt−1.
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Figure 3: Generations overlap

Exploiting the results derived above, young households consumption
(
cY
t

)
may be expressed as:

cY
t = δwt = δ(1 − β)

(
Rt

β

) β
β−1

(12)

On the other hand, old households consumption
(
cO
t

)
is:

cO
t = θt−1Rt−1st−1 = (1 − δ)(1 − β)θt−1Rt−1

(
Rt−1

β

) β
β−1

(13)

Deriving the expression for capital demand at time t from equation (10),
we may write the real excess demand for goods as:

χG ≡ cY
t + cO

t + kd
t − yt (14)

Using equations (10), (11), (12) and (13), we can derive the real excess
demand for goods per unit of output:

χ̂G ≡ (1 − δ)(1 − β)θt−1Rt−1

(
Rt−1

Rt

) β
β−1

+ δ(1 − β) +
β

Rt

− 1 (15)

where χ̂G ≡ χG

yt
.

Let us turn to the real excess demand for debt. In that market, equation
(10) defines the supply in real terms. To derive the demand we have to go
back to the households side of the model. At the very beginning of time t,
the demand for real debt comes from young households deciding to save a
share of their current income. Assuming that the Clower constraint holds as
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equality, we can easily derive the optimal real cash balances as a fraction of
planned savings:

m∗
t =

θtRtxt

ξ
s∗t (16)

Now we can write the expression for the real demand of debt:

ks
t = s∗t − m∗

t =
ξ − 1

ξ + Rtxt − 1
s∗t ≡ Ψts

∗
t

Therefore, the real excess of demand for real debt per unit of output is
the following:

χ̂B ≡ χB

yt
=

ks
t − kd

t

yt
= (1 − δ)(1 − β)Ψt − β

Rt
(17)

Finally, let us turn to the real excess of demand for cash balances. In
this model, the supply of money at time t comes from the cash balances
demanded in the previous period by the old households augmented by its
real return. As a consequence:

χM ≡ mt − mt−1
1

xt−1

(18)

Assuming that the nominal stock of money is constant and equal to M ,
the model implies a regular circular flow of cash. In this particular case, the
equality χM = 0 is always verified.

The Walras’s law states that:

χG + χB + χM ≡ 0 (19)

The equality holds necessarily. It could be easy verified following the
traditional way in which the Walras’s law is usually derived, that is, adding
the budget constraints that at a given time period are binding for old and
young households12.

2.4 Steady State Equilibria

The first step toward studying the local dynamics of the model is the analy-
sis of configurations of variables that are capable of reproducing themselves

12The Walras’s law derived above does not contain a term for the excess demand for
labour because we assumed from the beginning that the corresponding market always
clears.
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through time. A perfect foresight equilibrium such that, for all t, Rt = R∗

and xt = x∗ = 1 is said to be a steady-state equilibrium.
In our construction, there are two possible types of such an equilibrium:

a portfolio indifference steady-state (PIS) and a liquidity constrained steady-
state (LCS). The steady-state equations are the following:

χ̂∗
G ≡ (1 − δ) (1 − β) θ∗R∗ + δ (1 − β) +

β

R∗ − 1 = 0 (20)

χ̂∗
B ≡ (1 − δ) (1 − β) Ψ∗ − β

R∗ = 0 (21)

χ∗
M ≡ mt − mt−1 = 0 (22)

In studying steady-state equilibria we will concentrate on the market for
goods and the market for debt. With a constant nominal stock of money,
equation (22) is automatically resolved.

Consider the case of a PIS, that is, the case in which x∗ = R∗ = 1:

χ̂G (PIS) = (1 − δ) (1 − β) + δ (1 − β) + β − 1 = 0 (23)

χ̂B (PIS) = (1 − δ) (1 − β)
ξ − 1

ξ
− β = 0 (24)

The first equality is always verified. The second is verified whenever

ξ − 1

ξ
=

β

(1 − δ) (1 − β)
(25)

Equation (25) suggests that a PIS is a quite particular case13. The very
Hahn and Solow (1995) state that the portfolio indifference story is almost
unbelievable when we deal with perfect prices and wages flexibility. In the
light of these observations, we will concentrate our attention only to the case
in which households are liquidity constrained.

A situation of LCS implies that

x∗ = 1 and Rt = R∗ > 1

In term of real excesses of demand, this leads to

13As we shall see, solving equation (25) for ξ provides the upper bound for this parameter
whenever δ and β impose a lower bound different from zero to the steady-state demand
for money.
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χ̂G (LCS) = ξ
(1 − δ) (1 − β)

ξ + R∗ − 1
R∗ + δ (1 − β) +

β

R∗ − 1 = 0 (26)

χ̂B (LCS) =
(1 − δ) (1 − β) (ξ − 1)

ξ + R∗ − 1
− β

R∗ = 0 (27)

Equality (26) holds in two cases which may be distinct, that is

R∗ = 1 and R∗ = β
ξ − 1

(1 − β) [δ + ξ (1 − δ)] − 1

Equality (27) holds only in the second case14. To rule out the non para-
metric solution R∗ = 1 from χ̂G (LCS) = 0, it is sufficient to observe that
whenever agents are liquidity constrained (see the appendix) old households
consumption as a fraction of current income is given by

ξ

ξ − 1
β

(
Rt−1

Rt

) β
β−1

(28)

Thanks to the previous expression, equations (26) and (27) now share the
same parametric solution.

At this stage of analysis, we have to give a closer look at the unique
expression for the steady-state level of the real gross return on bonds:

R∗ =
β (ξ − 1)

(1 − β) [δ + ξ (1 − δ)] − 1
≡ β (ξ − 1)

A
(29)

In the plan (ξ, R), equation (29) represents a parametric hyperbola family
with the following properties:

• R∗ = 0 ⇔ ξ = 1

• R∗ = 1 ⇔ ξ = (1−β)(δ−1)
2β−1+δ(1−β)

≡ ξmax

• if ξ = 0, then R∗ = β
1−δ(1−β)

< 1

• lim
ξ→+∞

R∗ = β
(1−β)(1−δ)

horizontal asymptote

• ξmin ≡ 1−δ(1−β)
(1−β)(1−δ)

> 1 vertical asymptote

• ∂R∗
∂δ

> 0, ∂R∗
∂β

> 0, and ∂R∗
∂ξ

< 0

14χ̂B (LCS) = 0 does not necessarily show the solution R∗ = 1 because it is suited from
the the beginning for the LCS case.
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Since in a LCS R∗ has to be higher than one, the listed points allow
to derive some interesting conclusions. First, a situation of cash-in-advance
(ξ = 1) is not consistent with a LCS. Second, the vertical asymptote (ξmin)
constitutes the lower bound for the eligible values of ξ. Third, depending
on the values of δ and β, there are situations in which there exist an upper
bound (ξmax) for the eligible values of ξ, and situations in which such values
are unbounded15. Simple algebra allows to state that the eligible values of ξ
are not bounded from above whenever

β � 1 − δ

2 − δ

The previous inequality is very important because it allows to distinguish
situations in which there is an open limited interval for the admissible steady-
state demand for money (bounded cases), from situations in which such a
demand might be vanished (unbounded cases)16. For a graphical exposition
see figures (4) and (5).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*R

1 ξ

( )( )δβ
β

−− 11

( )βδ
β
−− 11

1

( )
( )( )δβ

βδξ
−−
−−=
11

11

min

( )( )
( )βδβ
δβξ
−−−
−−=
121

11

max

Figure 4: The bounded case

15The former are the situations in which the horizontal asymptote for R∗ is lower than
one. The latter are the cases in which such an asymptote is higher or equal to one.

16The algebraic analysis of R∗ allows also to clarify the nature of the portfolio indiffer-
ence steady-state. In details, a PIS in the asymptotic outcome toward which the economy
tends when demand for money falls to its minimum admissible level.
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Figure 5: The unbounded case

A noteworthy attribute of figures (4) and (5) is the (positive) unexpected
relationship between R∗ and the demand for money. However, keeping in
mind the model transaction technology, it is straightforward to verify that
it is due to the positive relationship between the consumption in the old age
and R∗. In fact,

∂
(

cO∗
y∗

)
∂R∗ =

ξ (1 − δ) (1 − β) (ξ − 1)

(ξ + R∗ − 1)2 > 0

Summing up, the fundamental conclusion that should be drawn from the
study of the hyperbola family representing the steady-state gross rate of
return on bonds is that, once δ and β are given, it is also given the eligible
interval for ξ. For short17,

17If we consider the extreme bounds for the parameter δ, the inequality defining the
eligible interval for ξ is easily explained in economic terms. When δ equals to 0, a LCS
in which the demand for money can be vanished is possible when β is higher or equal to
1
2 , that is, when capital share is higher or equal to labour share. In this case, households
do not care to consume in young age. Therefore, they will be willing to transfer all their
labour income to old age. In such a transfer, households will avoid money only if bonds
provide a return that in relative terms is higher than labour income. On the other hand,
when δ is equal to 1, a LCS in which the Clower constraint can be ignored is possible for
all the eligible values of β. In this case, households do not care to consume in old age.
Therefore, whatever is the relative return on capital investment, they will avoid to transfer
resources.
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∀ (δ, β) ∈ {(0, 1) × (0, 1)} ,

ξ ∈ (ξmin, ξmax) whenever β <
1 − δ

2 − δ

ξ ∈ (ξmin, +∞) whenever β � 1 − δ

2 − δ

2.5 Local Dynamics

In order to study the local dynamics around a generic LCS, it is necessary to
make some assumptions about the consumption prices dynamics. Imposing
χ∗

m = 0, it is straightforward to derive that

xt−1 =
mt−1

mt

Therefore, if we assume that real money balances are constant over time
we have:

xt−1 = xt = 1 ∀t (30)

In other words, this means to assume that the nominal amount of money
and the consumption prices are following a dynamics which is consistent with
the quantity theory of money.

The previous arguments lead to the following simplified steady-state equa-
tions:

χ̂∗
G =

ξ

ξ − 1
β + δ (1 − β) +

β

R∗ − 1 = 0 (31)

χ̂∗
B = (1 − δ) (1 − β)

ξ − 1

ξ + R∗ − 1
− β

R∗ = 0 (32)

The linearization around a generic LCS is given by the following expres-
sion18:

dRt =
ξβ2B (ξ − 1)2

B (ξ − 1)2 [ξβ2 + A (β − 1)] + (B − β)
dRt−1 (33)

where B ≡ (ξ − 1) (1 − δ) (1 − β).
The differential equation (33) states that the local dynamic properties of

our system depend on the values of the parameters δ, β, and ξ. However, we

18The complete derivation is given in appendix.
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have already shown that the eligible values of ξ depends exclusively on δ and
β. Therefore, we conclude that the local dynamic properties of the system
are conditioned solely by intertemporal preferences for consumption (δ) and
the capital share (β). In other words, given an eligible value of ξ

dRt ≡ ϕ (β, δ) dRt−1

In spite of its apparent simplicity, it is well know from the elementary
theory on first-order differential equations that our model might display a
quite large variety of local dynamic patterns, each of them depending on the
actual value of ϕ (β, δ). Those local patterns are resumed in table 1.

ϕ (δ, β) Steady-State Local Dynamics

(−∞,−1) unstable oscillations
−1 “flip” unstable oscillations

(−1, 0) stable oscillations
(0, 1) stable monotone

1 indeterminate indeterminate
(1, +∞) unstable monotone

Table 1: Local dynamic patterns

The occurrence of a “flip” instability, that is, the possibility of a closed
two-periods cycle for admissible parameters values, is the case stressed by
Hahn and Solow (1995).

2.6 Numerical Simulations

The expression for ϕ (β, δ) is not so manageable to be studied in an analytical
way. Therefore, in order to establish how the local dynamic behaviour of the
model is conditioned by δ and β, we proceeded performing some numerical
simulations.

Before showing the simulation procedure and its results, a closer look at
the expression for ϕ (β, δ) allows to state the following proposition:

Proposition 1 In correspondence to the vertical asymptote for R∗, that is
when ξ = ξmin, the model displays a locally indeterminate steady-state.

Proof. In correspondence to the vertical asymptote for R∗, ξ is such that
A = 0, therefore:

15



dRt =
ξβ2B (ξ − 1)

ξβ2B (ξ − 1) + (B − β)
dRt−1

Whenever ξ = ξmin, (B − β) = 0, hence

dRt = dRt−1 Q.E.D.

Quite intuitively, proposition 1 suggests that when the steady-state level
of the real interest rate approaches infinity, the local dynamics of the model
is indeterminate.

Let us turn to the results of the numerical simulations. For given values
of δ and β, in table 2 we find: (a) the interval for eligible ξs, (b) the interval
in which the steady-state is stable or unstable, and (c) the interval in which
the dynamics is monotone or oscillatory. Reasons of extension suggest to
relegate table 2 in appendix. Such computations were obtained using specific
MATLAB programs suited for the bounded and the unbounded case (see
again the appendix). The most important conclusions that we drawn from
them are the following:

• The simple OLG model we proposed might display all the variety of
local dynamic patterns for parameter values that are not extreme;

• For a given value of δ, the higher is the value of β, the smaller is the
interval of eligible ξ values such that the steady-state is locally stable;

• When β and δ approach their maximum level, there is a small interval
of eligible values of ξ such that the steady-state is locally indeterminate;

The listed points deserve a wider argumentation. For example, consider
the case in which δ = 0.6 and β = 0.3. Obviously, this is an unbounded
case: eligible ξs vary in the interval (2.0714, +∞). A plot of the steady-state
level consumption by old

(
cO∗) and young

(
cY ∗) households against ξ is given

figure 6.
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Figure 6: An example

From the results enclosed in table 2, we know that the steady-state is
locally stable in the intervals (2.0714, 2.7214) and (25.471, +∞). In the
former the adjustment is monotone. In the latter the adjustment occurs
through convergent oscillations. Clearly, 25.471 is the value of ξ such that
the steady-state displays a “flip” instability. Furthermore, we realise that
the steady-state is locally unstable in the interval (2.7214, 25.471). However,
until 4.3814 the adjustment is monotone (explosive or implosive). Beyond
this value, the adjustment occurs through divergent oscillations.

Given the negative steady-state relationship between R∗ and ξ, the con-
sumption pattern can be easily rationalised. At the beginning, the steady-
state real return on bonds is high, and this leads households to postpone
consumption. Therefore, the difference

(
cO∗ − cY ∗) is positive. However,

leading to lower levels of R∗, higher values of ξ are related to negative values
in the difference between the consumption by old and the consumption by
young households.19.

In spite of their intriguing characteristics, an overall outlook to the numer-
ical simulations suggests that the cases in which it occurs a “flip” instability
are not very frequent. If we pass over them, we observe that the demand for

19This result, obviously, depends on the value of δ. More detailed computations (not
enclosed in the paper) show that whenever δ < 0.6, LCSs (R∗ > 1) are characterised by
a consumption in old age that is higher than the counterpart in young age. On the other
hand, when δ � 0.6, LCSs start to display negative values for the difference (cO∗ − cY ∗).
However, the rising of β - leading to a rise in R∗ - contributes to restore positive values.
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real cash balances seems to play a stability role: the steady-state becomes
locally unstable when demand for money falls down a certain threshold. This
statement should provide some good insights to explain the way in which in-
tertemporal preferences and distributive shares interact in determining the
local dynamic properties of the model.

Our thesis is that local stability could be related to consumption smooth-
ing considerations. To this purpose, consider the difference between the
consumption by old and young households per unit of output20:

Ht ≡ cO
t − cY

t

yt
=

ξ

ξ − 1
β

(
Rt−1

Rt

) β
β−1

− δ (1 − β) (34)

Since β ∈ (0, 1), Ht is a decreasing curve if plotted against Rt−1

Rt
. For a

graphical exposition see figure 7.
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Figure 7: The consumption by old and young households

The slope of Ht in a steady state equilibrium has the following expression:

∂ (Ht)

∂
(

Rt−1

Rt

)
∣∣∣∣∣∣
Rt−1=Rt=R∗

=
ξβ2

(ξ − 1) (β − 1)
< 0

An increase in β leads to an increase in the level of H∗, and in the slope
that Ht has in a steady-state equilibrium. This means that when β is high,
small deviations from 1 - that is, the steady-state ratio between the gross
return on bonds in two successive periods - leads to big differences between Ht

and its steady-state level. The simulations results suggest that the continuos

20The difference Ht should be thought as a measure of consumption smoothing.
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market-clearing hypothesis involves some problems in the occurrence of local
stability when these differences become too high. On the other hand, the
parameter δ has no influence on the shape of Ht. This should explain why
an increase in δ, even if it reduces H∗, makes for a more difficult local stability.

It possible to extend a similar argument even to the market for real debt.
The equilibrium condition in that market is given by

(1 − δ) (1 − β)Ψt =
β

Rt
(35)

If plotted against Rt, the left-hand side of equation (35) (the amount of
resources lent to the productive sector per unit of output) has always a lower
slope than the right and side (the investment per unit of output). See figure
8.
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Figure 8: The market for real debt

An increase in β acts reducing the slope of the left-hand side and increas-
ing the slope of the right-hand side. An increase in δ produces the same
effect on the share of savings offered to the productive sector. Therefore, it
is straightforward that high levels of δ and β leads small deviations from R∗

to be associated with large disequilibria in the market for real debt. Even
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in this case, the simulations results suggests that wider disequilibria create
some problems in the occurrence of local stability.

The role of the demand for money is more intricate. Transferring re-
sources from young to old age, it contributes to rise H∗. Furthermore,
an higher demand for money leads to a steeper Ht curve which, on turn,
makes for large variations in the consumption smoothing measure outside
the steady-state equilibrium. On the other hand, the effects on the slope
of (1 − δ)(1 − β)Ψt are not univocal. Whenever ξ + R∗ < (>) 3, a lower
(higher) demand for money makes for a flatter (steeper) (1 − δ) (1 − β) Ψt.
These relationships - together with the simulation results - suggest that the
way in which we introduce money in the model is quite ad hoc. Therefore, a
precise role in determining local stability is hard to configure21.

3 Conclusions

In this paper we analysed a two-periods OLG with perfect prices and wages
flexibility following the lines of the framework proposed by Hahn and Solow
(1995). As in the original contribution, our model encloses four markets
which always clear: the labour market, the market for goods, the market for
bonds, and the market for money.

The model was developed treating the labour market a little asymmet-
rically with respect to other markets. The real wage equals the marginal
product of labour in each instant ensuring the continuos full employment.
Given the real wage, we showed that the market for goods, the market for
bonds, and the market for money are linked by a particular version of the
Walras’s law. This link allowed to ignore the market for money and to con-
centrate our attention on the equilibrium condition concerning the markets
for goods and bonds.

Assuming a prices dynamics that is consistent with the quantity theory
of money, we showed that in a situation in which households are liquidity
constrained the parametric expression for the steady-state level of real inter-
est rate is unique. The linearisation around the unique steady-state revealed
that the local dynamic properties of the model depend only on households
intertemporal preferences and distributive shares. Furthermore, the results
of some numerical simulations suggested that is possible to establish a link
between the steady-state local stability and the consumption smoothing op-
erated by households. Whenever deviations from the steady-state are asso-
ciated to large differences between the consumption by the old and by the

21Probably, more interesting insights could be obtained inserting money in the utility
function or in the production function.
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young, the hypothesis of continuos market-clearing seems to fail to pin down
a locally stable equilibrium.

Our simple model could be developed in different directions. As suggested
by Geanakoplos and Polemarchakis (1986), it could be interesting to analyse
a “Keynesian” equilibrium in which labour market is permitted not to clear.
This would lead to build a model with rationing in which unemployment is
involuntary (Malinvaud, 1977).

Another development could be the analysis of a situation in which there
are increasing returns in the production technology. As in the work of Ben-
habib and Farmer (1994), this should make the indeterminacy of the steady-
state more likely to occur.
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A Appendix

Whenever agents are liquidity constrained Rtxt > 1, that is, Rt > 1
xt

. Fur-
thermore, the equilibrium condition in the market for bonds requires that

ks∗
t = s∗t

[
ξ − 1

ξ + Rtxt − 1

]
= s∗t Ψt = I∗

t

We know that θt = ξ
ξ+Rtxt−1

, therefore Ψt = ξ−1
ξ

θt. Hence:

ks∗
t = s∗t

ξ − 1

ξ
θt = I∗

t ⇒ θts
∗
t =

ξ

ξ − 1
I∗
t

Multiply each member by Rt

Rtθts
∗
t =

ξ

ξ − 1
RtI

∗
t

Note that s∗tRtθt = c∗t+1, therefore:

cO
t =

ξ

ξ − 1
Rt−1I

∗
t−1

Finally, in terms of unit of output:

cO
t

yt

=
ξ

ξ − 1
Rt−1

I∗
t−1

yt

=
ξ

ξ − 1
β

(
Rt−1

Rt

) β
β−1

Q.E.D.

B Appendix

Now we derive the expression for the linearisation around the (unique) steady-
state. Assuming xt−1 = xt = 1, the expressions for the excess demand for
goods and the excess demand for real debt per unit of output are given by

χ̂G ≡ ξ

ξ − 1
β

(
Rt−1

Rt

) β
β−1

+ δ (1 − β) +
β

Rt
− 1

χ̂B ≡ (1 − δ) (1 − β)
ξ − 1

ξ + Rt − 1
− β

Rt

Since R∗ = β(ξ−1)
A

, it is straightforward to derive

∂χ̂G

∂Rt−1

∣∣∣∣
Rt−1=Rt=R∗

=
ξβ

(β − 1) (ξ − 1)2
A
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∂χ̂G

∂Rt

∣∣∣∣
Rt−1=Rt=R∗

= −
[

ξβ2 + (β − 1)A

β (β − 1) (ξ − 1)2

]
A

∂χ̂B

∂Rt

∣∣∣∣
Rt−1=Rt=R∗

= −β − (1 − β) (ξ − 1) (1 − δ)

β (1 − β) (ξ − 1)3 (1 − δ)
A2

where A ≡ (1 − β) [δ + ξ (1 − δ)] − 1.
Total differentiation leads to

ξβdRt−1 − ξβ2 + (β − 1)A

β
dRt = 0

− β − B

βB (ξ − 1)2 dRt = 0

where B ≡ (1 − β) (ξ − 1) (1 − δ).
Equalising

ξβdRt−1 − ξβ2 + (β − 1)A

β
dRt = − β − B

βB (ξ − 1)2
dRt

Finally, solving for dRt

dRt =
β2ξB (ξ − 1)2

B [ξβ2 + (β − 1)A] (ξ − 1)2 + B − β
dRt−1 Q.E.D.
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C Appendix

% MATLAB Program for bounded cases 
clear all 
format short g 
sw=0; 
delta=0.5 
beta=0.3 
disc=(1-delta)/(2-delta) % in bounded cases beta has to be lower than disc 
vertasy=(1-(delta*(1-beta)))/((1-beta)*(1-delta)) % vertical asymptote for R* 
(minimum value of xi) 
ximax=((1-beta)*(delta-1))/(2*beta-1+delta*(1-beta))  % maximum value of xi 
whenever the horizontal asymptote is lower than 1 
for xi=vertasy:0.001:ximax 
   sw=sw+1; 
   A(sw)=((1-beta)*(delta+(xi*(1-delta)))-1); 
   R(sw)=((beta*(xi-1))/A(sw)); 
   invest(sw)=((R(sw)/beta)^(1/(beta-1))); 
   cons_old(sw)=((xi/(xi-1))*R(sw)*invest(sw)); 
   output(sw)=((R(sw)/beta)^(beta/(beta-1))); 
   cons_young(sw)=(delta*(1-beta)*output(sw)); 
   real_wage(sw)=((1-beta)*output(sw)); 
   money(sw)=((1/xi)*cons_old(sw)); 
   saving(sw)=real_wage(sw)-cons_young(sw); 
   conf(sw)=(cons_old(sw)-cons_young(sw)); 
   conf_asso(sw)=abs(conf(sw)); 
   conf_rel(sw)=conf(sw)/output(sw); 
   conf_rel_asso(sw)=conf_asso(sw)/output(sw); 
   phinum(sw)=((beta^2)*xi*(1-beta)*((xi-1)^3)*(1-delta)); 
   phidenB(sw)=((xi-1)*(1-delta)*(1-beta)); 
   phidenC(sw)=(((xi*((beta)^2)+((beta-1)*A(sw)))*((xi-1)^2))+1); 
   phi(sw)=(phinum(sw)/((phidenB(sw)*phidenC(sw))-beta)); 
   XI(sw)=xi; 
end 
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D Appendix

% MATLAB Program for unbounded cases 
clear all 
format short g 
sw=0; 
delta=0.6 
beta=0.3 
disc=(1-delta)/(2-delta) % in unbounded cases beta is higher or equal to disc 
vertasy=(1-(delta*(1-beta)))/((1-beta)*(1-delta)) % vertical asymptote for R* 
(minimum value of xi) 
% In this case there is no upper bound for xi 
for xi=vertasy:0.001:6 
   sw=sw+1; 
   A(sw)=((1-beta)*(delta+(xi*(1-delta)))-1); 
   R(sw)=((beta*(xi-1))/A(sw)); 
   invest(sw)=((R(sw)/beta)^(1/(beta-1))); 
   cons_old(sw)=((xi/(xi-1))*R(sw)*invest(sw)); 
   output(sw)=((R(sw)/beta)^(beta/(beta-1))); 
   cons_young(sw)=(delta*(1-beta)*output(sw)); 
   real_wage(sw)=((1-beta)*output(sw)); 
   money(sw)=((1/xi)*cons_old(sw)); 
   saving(sw)=real_wage(sw)-cons_young(sw); 
   conf(sw)=(cons_old(sw)-cons_young(sw)); 
   conf_asso(sw)=abs(conf(sw)); 
   conf_rel(sw)=(conf(sw)/output(sw)); 
   conf_rel_asso(sw)=conf_asso(sw)/output(sw); 
   phinum(sw)=((beta^2)*xi*(1-beta)*((xi-1)^3)*(1-delta)); 
   phidenB(sw)=((xi-1)*(1-delta)*(1-beta)); 
   phidenC(sw)=(((xi*((beta)^2)+((beta-1)*A(sw)))*((xi-1)^2))+1); 
   phi(sw)=(phinum(sw)/((phidenB(sw)*phidenC(sw))-beta)); 
   XI(sw)=xi; 
end 
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E    Appendix 
 

Table 2: Simulations results 

 

ξ values 
δ β 

eligible stability monotonic oscillations 
0.1 0.1 1.1408, 1.235 all all ∅ 
0.1 0.2 1.2778, 1.3846 all all ∅ 
0.1 0.3 1.4762, 1.9091 all all ∅ 
0.1 0.4 1.7407, 3.8571 1.7407, 2.45 all ∅ 
0.1 0.5 2.111, +∞ 2.111,2.65 all ∅ 
0.1 0.6 2.6667,+∞ 2.6667, 2.9 all ∅ 
0.1 0.7 3.5926, +∞ ∅ all ∅ 
0.1 0.8 5.4444, +∞ ∅ all ∅ 
0.1 0.9 11, +∞ ∅ all ∅ 
0.2 0.1 1.1389, 1.1613 all all ∅ 
0.2 0.2 1.3125, 1.4545 all all ∅ 
0.2 0.3 1.5357, 2.1538 all all ∅ 
0.2 0.4 1.8333, 6 1.8333, 2.51 1.8333, 4.6 4.6, 6 
0.2 0.5 2.25, +∞ 2.25, 2.7 all ∅ 
0.2 0.6 2.875, +∞ 2.875, 2.985 all ∅ 
0.2 0.7 3.9167, +∞ ∅ all ∅ 
0.2 0.8 6, +∞ ∅ all ∅ 

0.2 0.9 12.25, +∞ ∅ 12.31, +∞ 
(indeterminacy) 
12.25, 12.31 

0.3 0.1 1.1587, 1.1887 all all ∅ 
0.3 0.2 1.3571, 1.5556 all all ∅ 
0.3 0.3 1.6122, 2.5789 1.6122, 2.428 all ∅ 
0.3 0.4 1.9524, 21 1.9524, 2.6 1.952, 5.737 5.737, 6 
0.3 0.5 2.4286, +∞ ∅ all ∅ 
0.3 0.6 3.1429, +∞ ∅ all ∅ 
0.3 0.7 4.333, +∞ ∅ all ∅ 
0.3 0.8 6.7143, +∞ ∅ all ∅ 
0.3 0.9 13.857, +∞ ∅ all ∅ 
0.4 0.1 1.1852, 1.2273 all all ∅ 
0.4 0.2 1.4167, 1.7143 all all ∅ 
0.4 0.3 1.7143, 3.5 1.7143, 2.5037 1.714, 3.1687 3.1687, 3.5 
0.4 0.4 2.111, +∞ 2.111, 2.6611 2.111, 8.4111 8.4111, +∞ 
0.4 0.5 2.667,+∞ 2.667,2.8767 all ∅ 
0.4 0.6 3.5, +∞ ∅ all ∅ 
0.4 0.7 4.889, +∞ ∅ all ∅ 
0.4 0.8 7.6667, +∞ ∅ all ∅ 
0.4 0.9 16, +∞ ∅ all (small region of 

indeterminacy) 



∅ 
0.5 0.1 1.222, 1.2857 all all ∅ 
0.5 0.2 1.5, 2 all all ∅ 
0.5 0.3 1.8571, 7 1.8571, 2.5971 1.857, 3.5811 3.5811, 7 
0.5 0.4 2.333, +∞ 2.333,2.7633 2.333,21.113 21.113,+∞ 
0.5 0.5 3, +∞ ∅ all ∅ 
0.5 0.6 4, +∞ ∅ all ∅ 
0.5 0.7 5.6667, +∞ ∅ all ∅ 
0.5 0.8 9, +∞ ∅ all ∅ 
0.5 0.9 19, +∞ ∅ all ∅ 
0.6 0.1 1.2778, 1.3846 all all ∅ 
0.6 0.2 1.625, 2.6667 1.625, 2.5745 all ∅ 
0.6 

 
0.3 

 2.0714, +∞ 2.0714, 2.7214 
(25.471, +∞) 2.071,4.3814 4.3814, +∞ 

(ξ=25.471 “flip”) 
0.6 0.4 2.6667, +∞ 2.6667, 2.9067 all ∅ 
0.6 0.5 3.5, +∞ ∅ all ∅ 
0.6 0.6 4.75, +∞ ∅ all ∅ 
0.6 0.7 6.833, +∞ ∅ all ∅ 
0.6 0.8 11, +∞ ∅ all ∅ 

0.6 0.9 23.5, +∞ ∅ all 
(small region of 
indeterminacy) 

∅ 
0.7 0.1 1.3703, 1.5882 all all ∅ 
0.7 

 
0.2 

 1.8333, 6 1.8333, 2.7333 
(3.8993, 6) 1.833, 3.1743 3.1743, 6 

(ξ=3.8993 “flip”) 
0.7 0.3 2.4286, +∞ 2.4286, 2.8886 2.428, 6.6686 6.6686, +∞ 
0.7 0.4 3.2222, +∞ ∅ all ∅ 
0.7 0.5 4.3333, +∞ ∅ all ∅ 
0.7 0.6 6, +∞ ∅ all ∅ 
0.7 0.7 8.7778, +∞ ∅ all ∅ 
0.7 0.8 14.333, +∞ ∅ all ∅ 
0.7 0.9 31, +∞ ∅ all small region of 

indeterminacy 
0.8 0.1 1.555, 2.25 all all ∅ 
0.8 

 
0.2 

 
2.25, +∞ 

 
2.25, 2.98 
(6.52, +∞) 2.25, 4 4, +∞ 

(ξ=6.52 “flip”) 
0.8 0.3 3.1429, +∞ 3.1429, 3.1629 3.142, 38.583 38.583 ,+∞ 
0.8 0.4 4.333,+∞ ∅ all ∅ 
0.8 0.5 6, +∞ ∅ all ∅ 
0.8 0.6 8.5, +∞ ∅ all ∅ 
0.8 0.7 12.6667, +∞ ∅ all ∅ 

0.8 0.8 21, +∞ ∅ all 
(small region of 
indeterminacy) 

∅ 
0.8 0.9 46, +∞ ∅ 46.95, +∞ 

(indeterminacy) 
46, 46.95 

0.9 
 

0.1 
 2.1111, +∞ 2.1111, 3.3111 

(3.9611, +∞) 2.1111, 3.591 3.591,+∞ 
(ξ=3.9611 “flip”) 



0.9 0.2 3.5,+∞ ∅ 3.5, 9.72 9.72, +∞ 
0.9 0.3 5.2857, +∞ ∅ all ∅ 
0.9 0.4 7.6667, +∞ ∅ all ∅ 
0.9 0.5 11, +∞ ∅ all ∅ 
0.9 0.6 16, +∞ ∅ all ∅ 

0.9 0.7 24.333, +∞ ∅ all 
(small region of 
indeterminacy) 

∅ 

0.9 0.8 41, +∞ ∅ all 
(small region of 
indeterminacy) 

∅ 

0.9 0.9 91, +∞ ∅ all 
(small region of 
indeterminacy) 

∅ 
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