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Abstract

In this paper we propose a novel approach to identify the impact
of growth determinants on the distribution dynamics of productivity.
Our approach integrates counterfactual analysis with the estimation of
stochastic kernels. The counterfactuals are constructed from a semi-
parametric growth regression, in which the cross-section heterogeneity
in the growth determinants is removed. The methodology also allows
us to test for potential distributional effects in the residuals. We il-
lustrate the usefulness of the proposed methodology by an application
to a cross-section of countries, which highlights the significant impact
on inequality and polarization in the world productivity distribution
of growth determinants from an augmented Solow model.

Classificazione JEL: C14; C21; O40; O50
Keywords: Convergence, inequality, polarization, distribution dy-
namics, counterfactual analysis.
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I. Introduction

The world income distribution has been the subject of many
studies over the last two decades, leading to the identification of

a stylized fact: the distribution of per capita income underwent
a substantial change from a unimodal shape in the 1960s to a

twin-peaked shape in the 1990s (see, e. g., Quah, 1996a, and
Durlauf et al., 2005). The same twin-peaked distribution also char-
acterizes the regional distribution of productivity in Europe (see, e.

g., Fiaschi and Lavezzi, 2007). However, it is still unclear whether
the observed twin-peaks are a persistent phenomenon (see Galor,

2007), and which factors drive the formation of the two peaks (Quah,
1996b, 1997, Beaudry et al., 2005).

In this paper we address the latter issue, and propose a new

methodology to measure the distributional effect of individual growth
determinants, that is their role in favoring convergence or divergence

in the distribution dynamics. Our approach combines semiparamet-
ric growth regressions (see, e. g. Liu and Stengos, 1999) with the

estimation of stochastic kernels, i. e. of the operators mapping
current distributions into future distributions of income or produc-
tivity.1 Specifically, to evaluate the distributional impact of a given

variable, we provide a generalized method of counterfactual anal-
ysis, based on the comparison between actual and counterfactual

distributions to estimate short-run effects, and between actual and
counterfactual ergodic distributions to identify long-run tendencies.

The counterfactuals are based on the cross-sectional heterogene-

ity of growth determinants, i. e. on how the distribution would
have looked like if there were no heterogeneity in a specified variable

across countries. In particular, we are able to identify for different
ranges of per capita (or per worker) income the direction of the ef-

fect of a variable, i. e. whether the variable favors convergence or
divergence in the distribution, an aspect which cannot be captured
by the estimation of a single parameter as in standard growth re-

gressions. In addition, the proposed methodology suggests a test

1See, e.g., Quah (1997) for details.
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for the presence of distributional effects in the residuals of a growth

regression, which provides a goodness-of-fit test of the specification
of the semiparametric model we utilize in the analysis.

To illustrate the usefulness of our methodology, we apply our
techniques to a sample of countries similar to the one used by

Beaudry et al. (2005). Differently from Beaudry et al. (2005) we
find that the cross-country distribution of investment ratios, labor

force growth and human capital plays a role in the observed ten-
dency to polarization of the distribution.

The paper is organized as follows: Section II. describes the method-
ology for the empirical analysis and clarifies the relation with ex-

isting approaches; Section III. presents the empirical application to
the sample of Beaudry et al. (2005); Section IV. concludes. The

appendices contain details on data and on the methodology.

II. Methodology

In this section we present the method for the empirical anal-

ysis and clarify the aspects of its novelty with respect to other
approaches. Our method can be summarized as follows: we first

estimate a semiparametric growth regression. Then we utilize the
results to estimate counterfactual distributions with respect to in-
dividual variables of interest, in order to identify their contribution

to convergence or divergence. The latter effect is denoted marginal
growth effect.

II.A. Related Literature

Two main approaches to study convergence exist in the liter-
ature: the “growth regression approach” (GRA) and the “distri-

bution dynamics approach” (DDA). By applying the GRA, it is
possible to analyze whether economies are, on average, converging

towards their steady-state level of per capita income or productiv-
ity, and to identify the average effect of growth determinants. The
DDA, instead, aims at understanding how the whole cross-section
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distribution evolves over time.2

The most representative examples of the GRA are the so-called
“Barro regressions” (see, e.g., Barro, 1991, and Barro and Sala-i Martin,

2004). Many applications of this method showed evidence of condi-
tional convergence across different economies, that is of a negative

relation between the growth rate and initial income levels, after
controlling for other growth determinants.3 De La Fluente (2003),

in the spirit of the present paper, extends the GRA approach by de-
composing the measures of σ and β-convergence (Barro and Sala-i Martin,

2004) into sums of partial σ and β-convergence measures, in order to
assess the individual contribution to convergence of the explanatory
variables included in a growth regression. De La Fluente (2003) de-

fines such methodology “convergence accounting”.

The alternative DDA, proposed by Danny Quah in a number of
papers (see, e. g., Quah, 1993, 1996a,b, 1997) stems from criticism

to the GRA for its inability to capture phenomena such as mobil-
ity, stratification and polarization in the world income distribution.
On the contrary, operators such as stochastic kernels (or transition

matrices) may reveal information on such aspects of the growth
process.4 Quah (1996b, 1997) takes a further step, with the aim of

investigating the caues of the observed polarization in the distribu-
tion dynamics, introducing to this purpose conditioned stochastic

kernels. In particular, in Quah (1996b) conditioned stochastic ker-
nels are based on residuals from two-sided regressions of labor pro-
ductivity on human capital, physical capital, and country dummies.

Differently, Quah (1997) defines conditioned stochastic kernels as
operators mapping unconditioned income levels into conditioned in-

come levels, that is incomes normalized: “on the basis of incomes
relative to one’s neighbours appropriately weighted” (Quah, 1997,

2See Quah (1997) for a more detailed discussion, and Durlauf et al. (2005) for an exhaustive
survey of the different methodologies adopted in the empirical analysis of economic growth.

3Uncertainty in the choice of explanatory variables in the “Barro regressions” is one of the
main difficulties of the GRA. See Durlauf et al. (2005) for a thorough analysis of this issue.

4In addition to these types of criticisms, Bernard and Durlauf (1996) show that a negative
sign of the coefficient of initial income in a growth regression does not imply absolute or con-
ditional convergence, as the data-generating process may be characterized by multiple, locally
stable, equilibria.



On the Determinants of Distribution Dynamics 7

p. 47), where weights are calculated with respect to one of the vari-

ables affecting the income dynamics. The assessment of the effect
of explanatory variables on the income dynamics is based on the

comparison of actual and conditioned stochastic kernels.5

Another strand of literature proposes counterfactual analysis as
an alternative methodology to identify the impact of individual ex-

planatory variables on distributions (see e. g. DiNardo et al., 1996
and Machado and Mata, 2005). Beaudry et al. (2005) apply this
analysis in a study of economic growth. In particular, they an-

alyze in a cross-country setting the distributional effects of some
growth determinants in the comparison of two periods, 1960-1978

and 1978-1998, as the second period is characterized by a tendency
to polarization. By estimating linear growth regressions as a first

step, they build counterfactual distributions for the second period
assuming that a factor of interest (a coefficient of the estimated

growth regression, or the distribution of a variable, e. g., invest-
ment ratios) maintains in the second period the same value taken
in the first.

Finally, our methodology shares similarities with Cheshire and Magrini
(2005), who combine the GRA with the DDA in the analysis of fac-
tors driving convergence in a large cross-section of European urban

regions in the period 1978-1994. In particular, they estimate a lin-
ear growth regression model, compute counterfactual distributions

under different assumptions on explanatory variables, and compare
a “predicted” stochastic kernel (computed on the basis of fitted val-

ues of growth regression) with a “simulated” stochastic kernel (com-
puted on the basis of alternative values of the explanatory variables

in the growth regression).

Our method represents a generalization of existing methods in
different aspects. i) With respect to the estimation of “conditioned”

stochastic kernels of Quah (1997), our method is based on a multi-

5Another approach to study the causes of polarization is taken by Johnson (2005) and Feyrer
(2008), who compare the observed per capita income dynamics to the dynamics of explanatory
variables such as human capital, physical capital and TFP. By this approach, however, it is not
possible to directly evaluate the effects of the variables on the income distribution dynamics, in
particular the possible presence of divergence or convergence effects in different income ranges.
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variate analysis to identify the effect of a specific variable, and not

on the consideration of one variable at time. We are therefore able
to control more precisely for the effects on growth of other variables,

different from the “conditioning” ones, avoiding the omitted vari-
able bias. Quah (1996b) performs a multivariate analysis, but only
considers the residuals from this analysis to condition the stochas-

tic kernel, and therefore may only obtain an estimate of the joint
effect of the variables included in the regression. In addition, we

not only estimate actual and counterfactual stochastic kernels, but
also the implied ergodic distributions, an aspect so far neglected in

the literature. ii) With respect to Cheshire and Magrini (2005), we
use a more general semiparametric specification, instead of a linear
regression, for the baseline estimation. iii) The same remark applies

to Beaudry et al. (2005), who perform a counterfactual analysis in a
linear regression framework. The advantage of using a nonparamet-

ric analysis with respect to Beaudry et al. (2005) is first of all that
we can avoid the possible misleading evidence of instability in time

of coefficients of linear regressions, which can instead depend on
nonlinarities of the underlying model. In addition, to focus on the

effect of the distribution of a variable, Beaudry et al. (2005) build
a counterfactual in which the distribution of the first period affects
income in the second period through the coefficients estimated in

the latter. This procedure is valid only if the underlying models
are linear or, if nonlinear, if they are stable across periods. Our

approach to study the effect of the distribution of a variable, in-
stead, is based on simply assuming away (see below) heterogeneity

in a variable to build the counterfactual, and does not require extra
hypotheses on the linearity or the stability of the growth model.

In the following we detail our methodology, which is based on six
steps: i) estimation of a semiparametric growth regression model

(Section II.B.); ii) computation of counterfactual productivity (Sec-
tion II.C.i.); iv) estimation of counterfactual stochastic kernels (Sec-

tion II.C.i.); v) estimation of counterfactual ergodic distributions
(Section II.C.i.); vi) evaluation of the distributional effects of a vari-
able and estimation of its marginal growth effect (Section II.C.ii.);
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ii) test on the distributional effects of growth residuals (Section

II.D.).

II.B. Modeling Productivity Growth

Define yi(t) labour productivity of country i (i = 1, ..., N) at time
t. Labour productivity of country i at time T > 0, therefore, can

be expressed as:

yi(T ) = yi(0)e
giT , (1)

where gi is the annual rate of growth of productivity in country i,
between periods 0 and T .

Assume that gi is a function of K explanatory variables, col-
lected in vector Xi = (Xi,1, ..., Xi,K), and of a residual component

υi accounting for unobservable factors, that is:

gi = ϕ(Xi, υi). (2)

Differently from other approaches to counterfactual analysis, we

model the determinants of the growth rate by a semiparametric
specification, that is:6

gi = m(Xi) + υi = α +
K∑

j=1

µj(Xi,j) + υi (3)

where α is a constant term, µj(·) are one-dimensional nonparametric
functions operating on each of the K elements of Xi, and υi is an
error term with the properties: E(υi|Xi) = 0, var(υi|Xi) = σ2(Xi)

(i.e. the model allows for heteroskedasticity).7

6Notation refers to Härdle et al. (2004).
7Durlauf et al. (2001) consider a growth regression framework in which the impact of the

explanatory variables is nonlinear. Specifically, they condition the marginal impact of a variable
to the initial level of per capita income (as we do in the following), and find significant nonlin-
earities. However, the main difference with respect to the present analysis is that Durlauf et al.
(2001) do not embed this exercise into a counterfactual analysis of the distribution dynamics
of labour productivity.



10 D. Fiaschi, A. M. Lavezzi, and A. Parentii

II.C. Distributional Effects of Individual Variables

Denote by Xi,k the vector of all explanatory variables but Xi,k

for country i, i. e.:

Xi,k = (Xi,1, ..., Xi,(k−1), Xi,(k+1), ..., Xi,K).

Eq. (3) can be rewritten as:

gi = α + µk(Xi,k) +
∑

j 6=k

µj(Xi,j) + υi. (4)

Substituting Eq. (4) into Eq. (1) leads to the following expression

for productivity at time T :

yi(T ) = yi(0)e
[α+µk(Xi,k)+

∑

j 6=k µj(Xi,j)+υi]T =

= yi(0)e
[α+

∑

j 6=k µj(Xi,j)]T

︸ ︷︷ ︸

yi,k(T )

eµk(Xi,k)T
︸ ︷︷ ︸

e
gM
i,k

T

eυiT︸︷︷︸

eg
R
i
T

, (5)

where yi,k(T ) = yi(0)e
[α+

∑

j 6=k µj(Xi,j)]T is the level of productivity

in period T obtained by “factoring out” the effect of Xi,k; g
M
i,k =

µk(Xi,k) is the part of the annual growth rate of yi explained by Xi,k,
capturing the “marginal” effect of Xi,k on gi and, finally, g

R
i = υi

is the annual “residual growth”, not explained by the variables in
Xi. The modelling of growth in Eq. (5) will be the basis for the

identification of the distributional effects of the k-th variable.

II.C.i. Counterfactual Stochastic Kernels and Ergodic Distribu-

tions

We define the counterfactual productivity yCF
i,k (T ), the produc-

tivity level that a region would attain at time T if there were no
differences within the sample in terms of the k-th variable (whose

values are collected in the N-dimensional vector Xk). That is, the
computation of the values of yCF

i,k (T ) aims at capturing the effect
on the productivity distribution of the cross-sectional distribution
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of the k-th variable. To isolate this effect, we will impose to each

country the cross-section average value of the variable.8

Hence, the counterfactual growth rate of country i with respect

to the k-th variable, gCF
i,k , is defined as:

gCF
i,k ≡ α̂ +

∑

j 6=k

µ̂j(Xi,j) + µ̂k(X̄k), (6)

where X̄k = N−1
∑N

j=1Xk,j, and µ̂k(·) is the estimated smoothed
function relative to the k-th variable, obtained from the estimation

of Eq. (3). The counterfactual productivity of country i in period
T , relative to variable k, is therefore defined as:

yCF
i,k (T ) ≡ yi(0)e

gCF
i,k T = yi(0)e

[α̂+
∑

j 6=k µ̂j(Xi,j)+µ̂k(X̄k)]T . (7)

Counterfactual productivities are the bases to compute counter-
factual stochastic kernels. Specifically, the actual and counterfac-

tual stochastic kernels are respectively defined as φ(y(T )|y(0)) and
φCF (yCF

k (T )|y(0)), where y(0), y(T ) and yCF
k (T ) are the vectors

collecting productivity levels at times 0 and T .9

The actual stochastic kernel φ(·) maps the distribution of (rela-
tive) productivity in period 0 into the distribution of (relative) pro-

ductivity in period T . The counterfactual stochastic kernel φCF (·),
instead, maps the distribution of (relative) productivity in period

0, into the distribution of counterfactual relative productivities in
period T . Therefore, the counterfactual stochastic kernel shows,

8We use the average value because we are interested in considering the possible differences
from the average impact of the variable (usually measured by the OLS coefficients). Alterna-
tively, if the variable of interest were characterized by the presence of outliers, the median of
the distribution could be preferable. Other counterfactuals could be built using quantiles of the
distribution.

9In general, a stochastic kernel is an operator mapping the density of a variable at time t
into its density at time t+ τ , τ > 0, and indicates for each level of the variable in period t its
the probability distribution in period t+ τ over the possible values of the variable. The relation
between the densities and the stochastic kernel is: ft+τ (z) =

∫∞

0
gτ (z|x) ft (x) dx, where z and

x are values of the variable, and gτ (z|x) is the stochastic kernel. To estimate the stochastic
kernel gτ (z|x) = g (z, x) /f (x) we estimated the joint density of z and x, g (z, x), and the
marginal density of x, f (x). In the estimation of g (z, x) we followed Johnson (2005), who
used the adaptive kernel estimator discussed by Silverman (1986, p. 100), in which the window
of the kernel (Gaussian in our case) decreases when the density of observations increases (see
Appendix F for more details).
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for every initial productivity level, the probability distribution over

productivity levels at time T had the cross-country heterogeneity
in the variable k been absent. This implies that the possible dif-

ferences with respect to the probability distribution based on the
actual stochastic kernel depends on the k-th variable, in particular
on its distribution across countries.

For actual and counterfactual stochastic kernels we estimate the

corresponding ergodic distributions, i.e. the actual and the coun-
terfactual ergodic distribution, following the procedure proposed by

Johnson (2005) modified to take into account that we are deal-
ing with normalized variables.10 The ergodic distribution highlights
whether the estimated distribution dynamics over the period of in-

terest has completely exhausted its effects or, otherwise, significant
distributional changes are expected in the future.

II.C.ii. The Distributional Effect of Individual Variables and the

Marginal Growth Effect

To evaluate the distributional effect of individual variables: i)
we assess the capacity of an individual variable to make actual
and counterfactual stochastic kernels differ; and, ii) we highlight

its marginal growth effect with respect to initial productivity. This
will allow us to identify whether a variable is a source of conver-

gence or divergence, in particular by identifying which ranges of the
productivity distribution are affected.

To identify differences between actual and counterfactual kernels,
we express the value of (log) actual productivity in period T , yi(T ),

in terms of the counterfactual productivity, yCF
i,k (T ):

log (yi(T )) = log
(
yCF
i,k (T )

)
+ αT +

∑

j 6=k

µj(Xi,j)T + µk(Xi,k)T +

− α̂T −
∑

j 6=k

µ̂j(Xi,j)T − µ̂k(X̄k)T + υiT. (8)

10See Appendix H.
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The expected value of (the log of) actual productivity of coun-

try i in period T conditional to actual productivity in period 0,
E[log(yi(T ))|yi(0)], is obtained from the actual stochastic kernel

setting τ = T . In particular, its relation with the expected value
from the counterfactual kernel can be expressed as:

E [log (yi(T )) |yi(0)] = E
[
log
(
yCF
i,k (T )

)
|yi(0)

]
+ E [α− α̂|yi(0)]T +

+
∑

j 6=k

E [µj(Xi,j)− µ̂j(Xi,j)|yi(0)]T +

+ E [µk(Xi,k)|yi(0)]T − E
[
µ̂k(X̄k)|yi(0)

]
T + E [υi|yi(0)]T.(9)

If α̂ and µ̂j (j = 1, ..., K), are conditional unbiased estimators of α
and µ, and E [υi|yi(0)] = 0, Eq. (9) reduces to:11

E [log (yi(T )) |yi(0)]− E
[
log
(
yCF
i,k (T )

)
|yi(0)

]
=
(
E [µk(Xi,k)|yi(0)]T − µk(X̄k)

)
T.(10)

From Eq. (10), we can derive a condition for the equality of the

expected values of productivity based on actual and counterfactual
kernels. Specifically, these values are equal, i. e.:

E [log (yi(T )) |yi(0)] = E[log(yCF
i,k (T ))|yi(0)] (11)

if:

E[µk(Xi,k)|yi(0)] = µk(X̄k). (12)

The result in Eq. (12) depends on the fulfilment of the following
two conditions:

1. E[µk(Xi,k)|yi(0)] = E[µk(Xi,k)], i. e. µk(Xi,k) and yi(0) are

independent, that is the impact of the k-th variable on produc-
tivity in region i is independent from the initial productivity
level.

2. E[µk(Xi,k)] = µk(E[Xi,k]) = µk(X̄), i. e. µk(·) = βkXi,k, that

is the marginal impact of the k-th variable is constant, i.e. the
term Xi,k has a linear effect on growth.

11Notice that E
[
µ̂k(X̄k)|yi(0)

]
= E

[
µ̂k(X̄k)

]
.
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Therefore, if Conditions 1 and 2 hold, we obtain the condition in

Eq. (12), i. e.:

E[µk(Xi,k)|yi(0)] = E[µk(Xi,k)] = µk(E[Xi,k]) = µk(X̄k). (13)

Eq. (13) represents a necessary condition for the equality of the

actual and counterfactual stochastic kernels and, therefore, for the
absence of distributional effects of the k-th variable.

In growth empirics violations of Conditions 1. and 2. are com-
mon; for example (Liu and Stengos, 1999) find violations of Condi-
tion 2., while (Durlauf et al., 2001) find violations of Condition 1.

In Section III. below we find a confirm of these violations.
As a second step to evaluate the impact of an individual variable

on distribution dynamics, in particular whether it is a source of
convergence or divergence, we need to identify the specific relation

between the contribution of that variable to productivity growth and
initial productivity levels. To this purpose, we define gMi,k = µk(Xi,k)
the marginal growth effect of the k-th variable in Eqq. (3)-(5). It

may be observed that the estimation of Eq. (3) must include all the
explanatory variables in order to avoid omitted-variable problems

and obtain unbiased estimates.
The marginal effect of the k-th variable on the distribution dy-

namics is identified by estimating marginal growth conditioned on
the initial level of productivity, i. e. by estimating φM(gM

k |y(0)),
where gM

k is the vector collecting the gMi,k’s. If the estimate of the
marginal effect does not result statistically different from its un-
conditional mean, i. e. if φM(gM

k |y(0)) = E[gM
k ] ∀y(0), then

the k-th variable has no distributional effects. On the contrary,
if φM(gM

k |y(0)) is statistically different from its unconditional mean

and, in particular, it is an increasing (decreasing) function of y(0),
then the k-th variable is a source of divergence (convergence).

Since the estimation of the marginal effect in semiparametric
models is performed through the backfitting technique, it requires as

identification assumption that: EXk
[µk(Xk)] = 0 (see Härdle et al.,

2004, pp. 212-222). Therefore, the unconditional mean of marginal
growth will always be equal to zero in the estimation of the semi-
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parametric terms in the growth regression.

II.D. Misspecification Test of Distributional Effects of Resid-
ual Growth

As a final step, we propose a test for the presence of possible
misspecifications of the model for different levels of initial produc-

tivity. In particular, Eq. (5) suggests to consider ĝR, defined as

ĝR ≡ log
(
y(T )
ŷ(T )

)

, to test that:

E[ĝR|y(0)] = E[ĝR] = 0 , ∀ y(0). (14)

If y(0) is included in the set of regressors, the condition in Eq. (14)
ensures that there is no omitted variable inconsistency related to

y(0) (see Wooldridge, 2002, pp. 61-63). Eq. (14) suggests to test
the null hypothesis that E[ĝR|y(0)] = 0 for each y(0). We will
use a bootstrap procedure to compute the confidence interval of ĝR

conditioned to y(0).

III. An Empirical Application to a Cross-Section of Coun-

tries

12 To illustrate the practical use of our methodology, we provide
an empirical application on the distribution dynamics of labour pro-

ductivity, comparing our results to those of Beaudry et al. (2005).
The main result of the counterfactual analysis of Beaudry et al.
(2005) is that the recent tendency to polarization is mainly ex-

plained by a change in the effects on growth of the accumulation fac-
tors, i.e. the investment ratio and the rate of growth of population.

This claim is supported by evidence of instability of the estimated
parameters for these variables in linear regressions on two subpe-

riods: 1960-1978 and 1978-1998. In a different framework (based
on data envelopment analysis), Henderson and Russell (2005) find

that polarization is brought about by technological catch-up.
12Dataset and codes are available at author’s website

http://dse.ec.unipi.it/~fiaschi/WorkingPapers.html.

http://dse.ec.unipi.it/~fiaschi/WorkingPapers.html
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In our application, we do not exactly replicate the sample and

time period of Beaudry et al. (2005). In particular, we consider
data from PWT 7.1, while Beaudry et al. (2005) utilize PWT 6.0.

This allows us to extend the analysis to the period 1960-2008. More-
over, while Beaudry et al. (2005) utilize data on human capital from
Barro and Lee (1993), we choose the dataset on education from

Cohen and Soto (2007).13 Overall, we consider 73 (61 with data
on education) out of 75 (68 with data on education) countries of

the sample of Beaudry et al. (2005).14

Specifically, in Section III.A. we estimate the growth model of Eq.

(3); in Section III.B. we test for the presence of distribution effects
in residual growth; in Section III.C. we study the unconditional
distribution dynamics of labour productivity that we will use as

benchmark; finally, in Section III.D. we present the distributional
impact of regressors.

III.A. The Estimation of a Growth Model for Countries

Following Mankiw et al. (1992) and Beaudry et al. (2005), in the
estimation of Eq. (3) the annual average growth rate of per worker

GDP (g) of a country is regressed on: i) the (log) initial level (y0);
ii) the (log) average annual employment growth rate (n); iii) the

(log) average annual investment ratio at constant price (i/y); and,
iv) its (log) average years of schooling (Edu).15 Results of the
estimated models are reported in Table 1. All regressors initially

enter the specification as nonparametric terms. However, they are
substituted by linear terms if their effect results to be linear.16

13Cohen and Soto (2007) present compelling evidence that the accuracy of their database is
superior to that of Barro and Lee (1993).

14See Appendix A for details on the sample and for the list of countries.
15Appendix B contains the definitions and the descriptive statistics of the variables. As in

Mankiw et al. (1992) we augment the employment growth rate assuming a depreciation rate
δ = 0.03 and a rate of growth of technical progress g = 0.02.

16The semiparametric estimation is carried out following the approach describe in Wood
(2006) based on penalized regression splines. In particular, we use mgcv packages in
R Development Core Team (2012), with the option ”REML” discussed in Wood (2011). Ap-
pendix C contains a brief description of the method.
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Model I Model II Model III Model IV
Dep. Var: g GAM GAM GAM GAM

1960-1978 1978-1998 1960-1998 1960-2008 1960-2008

Parametric coefficients: Estimate Estimate Estimate Estimate
const 0.0325*** 0.0105 0.0210*** 0.0209*** 0.0796***

Non parametric coefficients: EDF EDF EDF EDF
y0 2.343*** 1.000** 2.016*** 1.409*** (-0.0083***)
n 2.139*** 2.307*** 2.511*** 3.235*** 2.565***
i/y 1.000*** 1.630** 3.000*** 3.220*** 4.016***
Edu - - - - (0.0091**)
AICc -409.24 -393.86 -449.85 -479.46 -416.51
Dev. expl. 0.49 0.34 0.58 0.66 0.73
REML score -187.75 -180.85 -206.48 -220.00 -184.76
Scale est.(*10−5) 18.72 27.09 10.30 6.81 4.90
Obs. 73 73 73 73 61

Table 1: Estimates of semiparametric Model (3) for different time periods. Significance codes:
0.01”***” 0.05”**” 0.1”*”. Terms in parenthesis enter linearly in the preferred specification
(i.e. the estimated degrees of freedom (EDF) are equal to one )

Following Beaudry et al. (2005), in Model I we check the stability

of the growth regression in the period 1960-1978 versus 1978-1998,17

by focusing on the model with only y0, n and i/y, which corre-
spond to the “Solovian” growth determinants. The model displays

significant nonlinearities in both periods. The estimates of the two
subperiods, however, turn to be not statistically different at 95%

significance level for each variable, according to a bootstrap test
reported in Appendix D. Therefore, in contrast with Beaudry et al.

(2005) the growth model appears stable over the two subperiods.
Given that we do not find evidence of instability of the model, in
Model II we consider the whole period 1960-1998.

In Models III and IV we extend the analysis to the period 1960-
2008. In particular, the comparison of the estimate of the Models II

and III shows that we can actually extend the period of the analysis.
In Model IV we add education to the explanatory variables.18 In the

17Beaudry et al. (2005, fig. 2) show that polarization increases after 1978.
18Beaudry et al. (2005) consider human capital, institutions and possible nonlinear effects of

initial income as robustness checks. They find that their main results are not affected.
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preferred specification the initial level of productivity and education

enter linearly. In particular, y0 has a negative and significant effect,
while Edu has a positive and significant effect.19 The estimates of

additive components related to n and i/y are shown as reported
in Figures 1 and 2. In Appendix E we check that these results are
robust to endogeneity.
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Figure 1: Estimate of additive component re-
lated to n. Thick line: estimates; dotted lines:
95% confidence bands.
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Figure 2: Estimate of additive component re-
lated to i/y. Thick line: estimates; dotted
lines: 95% confidence bands.

Overall, from this initial part of the analysis, we do not find

corroboration of the main result of Beaudry et al. (2005), that is a
significant instability in the coefficients of the investment ratio and

the population growth rate, that Beaudry et al. (2005) claim to be
the main factors explaining the increase in polarization after 1978.

III.B. Misspecification Test of Residual Growth

Figure 3 reports the estimated distribution of the annual resid-
ual growth ĝR conditioned on the initial level of productivity y(0).

19Beaudry et al. (2005) generally also find a negative and significant coefficient for y0 in
both subperiods, but no evidence of instability in the estimated coefficient. The effect of Edu,
instead, is generally nonsignificant in the second superiod and no evidence of instability in this
coefficient is found.
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We also report the conditional mean (thick line) with the corre-

sponding confidence bands obtained by a bootstrap procedure, and
a vertical line representing the unconditional mean, which is ap-

proximately zero as expected. Figure 3 shows that for any initial
level of productivity most of the mass of the conditional distribution
of residual growth is concentrated around the unconditional mean,

and that the conditional mean is never statistically different from
the unconditional mean. We then conclude that the residual growth

of Model (3) has not significant distributional effects, i.e. the es-
timated model appears correctly specified, at least conditioning on

the initial level of productivity (see Eq. 14).
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Figure 3: Conditional distribution of residual
growth, the conditional mean (thick line), its
confidence bands (dotted lines) and the uncon-
ditional mean (thin vertical line).
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Figure 4: Conditional distribution of residual
growth with bias, the conditional mean (thick
line), its confidence bands (dotted lines) and
the unconditional mean (thin vertical line).

In Figure 4 we report the result of the test for the model where

regressors include only a constant, which represents the extreme
omitted-variable case; as expected the test highlights the presence
of omitted variables.
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III.C. The Unconditional Distribution Dynamics

In this section we study the unconditional distribution dynamics
of labour productivity. All stochastic kernels are estimated consid-

ering a time lag of τ =49 years, i. e. the whole period. In each
figure displaying the estimate of the stochastic kernel we report: a

solid line representing the estimated median value of productivity
at t + τ conditioned on the productivity level at time t; the cor-
responding confidence band at 95% significance level (indicated by

dotted lines) obtained by a bootstrap procedure,20 and the 45◦ line.
Figure 5 reports the actual stochastic kernel of productivity,

while Figure 6 the actual distributions (AD) of productivity in 1960
and 2008, along with the actual ergodic distribution (AED).
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Figure 5: Actual stochastic kernel of produc-
tivity (lag=49). Thick line: median of the
stochastic kernel; dotted lines: 95% confidence
bands.
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Figure 6: AD 1960 (dotted line), AD 2008
(solid line) and AED (dashed line) distribu-
tions of productivity.

Figure 5 shows that most of the mass is concentrated around the

45◦ line and, in particular, the median value crosses the 45◦ line
from below in two points. This is reflected in the 2008 distribution,

20The procedure is illustrated in Appendix I.
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showing two peaks in the proximity of the values of 0.5 and 2.21 The

ergodic distribution reflects this tendency (see Figure 6). This sam-
ple, therefore, confirms the presence of a tendency to polarization

in the cross-country income distribution.

III.D. Conditional Distribution Dynamics

Given the results of the estimation of the growth model in Eq.
(3), reported in Table 1, and once controlled for the potential pres-

ence of distributional effects in residual growth, the analysis pro-
ceeds by calculating and discussing the distributional impact of the

variables present in the preferred specification of Table 1.

III.D.i. Initial Productivity

In Figure 7 we present the MGE for initial productivity. The
identified pattern is consistent with conditional convergence, as the

result in Table 1: the conditional mean of MGE is above the uncon-
ditional mean for countries with an initial productivity below the

average, while the opposite holds for countries with above-average
initial productivity.

The overall distributional impact seems sizeable, as highlighted

by the comparison between the AD and CD in 2008 (see Figure 8)
and the AED and CED (see Figure 9). If each country had had
the same level of productivity in 1960 the distribution would have

been more dispersed. This is already evident in the CD in 2008,
but it is much more evident in the CED. Gini indexes reported in

Table 2 quantify the reduction of inequality from the AD in 2008
to the CD in 2008 in about 10 base points (about the same holds

21Silvermans bootstrap tests for multimodality (see Appendix G for details) show that the
null hypothesis of unimodality cannot be rejected for the 1960 distribution while it can be
rejected at 1% of significance level for the 2008 distribution. Henderson et al. (2008) find the
same results but with a lager sample of countries (see their Table III). Hall and York (2001)
discuss as Silverman’s ”test tends towards conservatism, even in large samples, in the sense
that the actual level tends to be less than the nominal one”. Their Table 1 shows that that in
the case of test of multimodality a nominal level of 5% corresponds to an actual level of 1%, a
nominal level of 10% to 3.2 %, a nominal level of 20% to 10.2 %, etc.. In our tables we follow
the common (in literature) conservative choice of reporting nominal levels.
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Figure 7: MGE conditioned on the initial level
of productivity, estimated mean of MGE con-
ditioned on initial level of productivity (thick
solid line), its confidence bands (dashed lines),
and unconditional mean (thin solid vertical
line). Counterfactual variable: Initial Produc-
tivity.
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Figure 8: AD in 1960 (dotted line), AD in
2008 (solid line), and CD in 2008 (dashed line).
Counterfactual variable: Initial Productivity.
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Figure 9: AED (thick line) and CED (thin line).
Counterfactual variable: Initial Productivity.

AD 1960 AD 2008 CD 2008
Gini 0.42 0.42 0.52
s.e. (0.029) (0.026) (0.030)

BIPOLNI NA 0.69 0.62
s.e. (-) (0.087) (0.329)

Unimodality Test
p-value 0.271 0.009 0.092

AED CED
Gini 0.46 0.57
s.e. (0.335) (0.457)

BIPOLNI 0.70 0.69
s.e. (0.102) (0.560)

Unimodality Test
p-value 0.006 0.092

Table 2: Gini and BIPOLNI indexes, their
standard errors, and tests of unimodality of AD,
CD, AED and CED. Counterfactual variable:
Initial Productivity.
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for EAD versus CED).22 On the contrary polarization, as measured

by the BIPOLNI index proposed by Anderson et al. (2012), would
have been lower, even though this difference is not statistically sig-

nificant according to the reported standard errors (higher values
of BIPOLNI index means higher polarization). The decreasing
level of polarization is the result of a lower density at the modes

(the higher within-cluster dispersion implies less polarization), con-
trasted by the higher distance between the two modes (the higher

between-cluster distance implies more polarization).23 Polarization
in AED and CED is about of the same magnitude, but as the result

of an increased within-cluster dispersion contrasted by an increased
between-cluster distance.

Overall, although initial productivity contributes to a reduction

in inequality, a tendency towards polarization still remains from
AD 1960 to CD 2008. In fact, the inverse relationship between

initial productivity and the growth rate holds on average, as shown
also by the negative and significant coefficient of y0 in Table 1;

but, as Figure 7 shows, this effect is not constant across different
initial productivity ranges. This result is in line with the remark

of Bernard and Durlauf (1996) on the misleading implications of a
negative coefficient of initial productivity in growth regressions, and
is consistent with the presence of multiple equilibria.

III.D.ii. Employment Growth and Investment Ratio

Beaudry et al. (2005) find that changes in the patterns of accu-

mulation of factors of production, labour and capital, play a very
important role in the formation of two peaks in the distribution
of productivity. In particular, they find that the change in their

22The difference between indexes of the AD and CD is statistically significant.
23Heuristically, the BIPOLNI index measures the degree of polarization of a bimodal distri-

bution as the product of two components: i) the sum of the density of two modes (which should
measure the so-called degree of ”identification” within each of two clusters inversely related
to the within-cluster dispersion); and ii) the distance between the two modes (which should
measure the so called degree of ”alienation” between the two clusters directly related to the
between-cluster distance). When the estimated distribution appears to be unimodal, as e. g.
in the AD in 2008, BIPOLNI index is not calculable and we report NA in the table. We refer
to Appendix J for more technical details on the BIPOLNI index.
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marginal effect is important, while the change in the distribution of

the variable is not. In this paper we have shown that the employ-
ment growth and investment ratio have, respectively, a nonlinear

negative effect and a nonlinear positive effect on productivity growth
(see Table 1 and Figures 1-2), rejecting the hypothesis that there is
a change in the marginal effect of two different linear specifications.

In this section we analyze the distributional effect of these vari-

ables on the observed polarization. The conditional mean of MGE of
employment growth is statistically different from the unconditional

mean for countries with an initial productivity higher than approx-
imately 1.8 (see Figure 10). This is reflected in the CD in 2008 (see

Figure 11): if all countries had had the same level of employment
growth, the distribution in 2008 would have been unimodal and
there would have been less inequality. This tendency also appears

in the CED, shown in Figure 12 and Table 3. Hence, the employ-
ment growth acts as a force favouring divergence and polarization,

in particular by pushing some high-productivity countries further
above the mean, a result in contrast with Beaudry et al. (2005) .

As regards the investment ratio Figure 13 shows that its MGE is

never statistically significant. However, its estimated partial effect
is strongly nonlinear (see Figure 2). As discussed in Section II.C.ii.

even when the marginal effect of the k-th variable is independent
of the initial productivity level (i.e. when the condition in Eq. (1)
is fulfilled) the nonlinear impact of the variable implies possible

differences between the actual and counterfactual stochastic kernels.
Indeed, the distribution in 2008 has been remarkably affected by

the investment ratio: if all the countries had had the same level of
investment ratio in 2008 there would have been less mass in the high-

productivity peak (see Figure 14). This tendency also characterizes
the long run (see Figure 15). However, the polarization measured by

the BIPOLNI index would have been about the same, as the result
of lower mass around the two modes, but higher distance between
them.
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Figure 10: MGE conditioned on the ini-
tial level of productivity, estimated mean
of MGE conditioned on initial level of pro-
ductivity (thick solid line), its confidence
bands (dashed lines), and unconditional
mean (thin solid vertical line). Counter-
factual variable: Employment Growth.
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Figure 11: AD in 1960 (dotted line),
AD in 2008 (solid line), and CD in 2008
(dashed line). Counterfactual variable:
Employment Growth.
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Figure 12: AED (thick line) and CED (thin
line). Counterfactual variable: Employment
Growth.

AD 1960 AD 2008 CD 2008
Gini 0.42 0.42 0.38
s.e. (0.029) (0.026) (0.028)

BIPOLNI NA 0.69 NA
s.e. (-) (0.087) (-)

Unimodality Test
p-value 0.271 0.009 0.310

AED CED
Gini 0.46 0.39
s.e. (0.335) (0.255)

BIPOLNI 0.70 NA
s.e. (0.102) (-)

Unimodality Test
p-value 0.006 0.56

Table 3: Gini and BIPOLNI indexes, their
standard errors, and tests of unimodality of AD,
CD, AED and CED. Counterfactual variable:
Employment Growth.
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Figure 13: MGE conditioned on the ini-
tial level of productivity, estimated mean
of MGE conditioned on initial level of pro-
ductivity (thick solid line), its confidence
bands (dashed lines), and unconditional
mean (thin solid vertical line). Counter-
factual variable: Investment Ratio.
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Figure 14: AD in 1960 (dotted line),
AD in 2008 (solid line), and CD in 2008
(dashed line). Counterfactual variable: In-
vestment Ratio.
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Figure 15: AED (thick line) and CED (thin
line). Counterfactual variable: Investment
Ratio.

AD 1960 AD 2008 CD 2008
Gini 0.42 0.42 0.42
s.e. (0.029) (0.026) (0.024)

BIPOLNI NA 0.69 0.69
s.e. (-) (0.087) (0.192)

Unimodality Test
p-value 0.271 0.009 0.029

AED CED
Gini 0.46 0.46
s.e. (0.335) (0.374)

BIPOLNI 0.69 0.66
s.e. (0.102) (0.369)

Unimodality Test
p-value 0.006 0.054

Table 4: Gini and BIPOLNI indexes, their
standard errors, and tests of unimodality of AD,
CD, AED and CED. Counterfactual variable: In-
vestment Ratio.
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III.D.iii. Education

The conditional mean of MGE of education is statistically differ-
ent from the unconditional mean (see Figure 16) and, in particular,

it is above the unconditional mean for countries with initial produc-
tivity above the average, while the opposite holds for countries with

below-average initial productivity. Thus, education acts like a force
of divergence. This is reflected in the CD in 2008 (see Figure 17): if

all countries had had the same level of education, the distribution in
2008 would have been less dispersed and there would have been less
inequality (about 6 base points in the Gini index). Moreover, the

polarization would have been lower (although the difference does
not appear statistically different). The polarization-enhancing role

of education also emerges in the comparison between the AED and
the CED shown in Figure 18 and Table 5.

These results are in stark contrast with Beaudry et al. (2005)

who find that education does not explain the observed polarization.

IV. Concluding Remarks

In this paper we proposed a new method to analyze the factors
driving convergence and divergence in the growth dynamics. The

proposed methodology combines the growth regression approach,
albeit allowing for a semiparametric specification, with the distribu-
tion dynamics approach. We applied our methodology to a sample

of countries, and showed its potential to shed light on the identi-
fied tendency for polarization, by the analysis of the distributional

effect of initial conditions, the accumulation of factors, labor and
capital and education. In all cases it was possible to obtain in-

formation otherwise missed by existing methods of investigation of
the determinants of distribution dynamics. The methodology can

be further generalized by considering alternative growth models,
which include, e.g., endogeneity, thresholds, and interactions terms,
as well as panel growth models (see Durlauf et al., 2005).
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Figure 16: MGE conditioned on the ini-
tial level of productivity, estimated mean
of MGE conditioned on initial level of pro-
ductivity (thick solid line), its confidence
bands (dashed lines), and unconditional
mean (thin solid vertical line). Counter-
factual variable: Education.
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Figure 17: AD in 1960 (dotted line),
AD in 2008 (solid line), and CD in 2008
(dashed line). Counterfactual variable:
Education.
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Figure 18: AED (thick line) and CED (thin
line). Counterfactual variable: Education.

AD 1960 AD 2008 CD 2008
Gini 0.42 0.42 0.36
s.e. (0.029) (0.026) (0.023)

BIPOLNI NA 0.69 0.61
s.e. (-) (0.087) (0.078)

Unimodality Test
p-value 0.271 0.009 0.043

AED CED
Gini 0.46 0.38
s.e. (0.335) (0.235)

BIPOLNI 0.69 0.57
s.e. (0.102) (0.139)

Unimodality Test
p-value 0.006 0.016

Table 5: Gini and BIPOLNI indexes, their
standard errors, and tests of unimodality of AD,
CD, AED and CED. Counterfactual variable:
Education.
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A List of Countries in the Sample

Our sample of 73 countries consists of:24

Argentina, Australia, Austria, Belgium, Bangladesh, Bolivia, Brazil,

Barbados*, Botswana*, Canada, Switzerland, Chile, China, Colom-
bia, Costa Rica, Cyprus, Denmark, Dominican Republic, Ecuador,

Egypt, Spain, Finland, Fiji, France, United Kingdom, Greece, Guatemala,
Hong Kong*, Honduras, Indonesia, India, Ireland, Iran, Iceland*, Is-
rael*, Italy, Jamaica, Jordan, Japan, Republic of Korea, Sri Lanka*,

Lesotho*, Luxembourg*, Morocco, Mexico, Mozambique, Malaysia,
Namibia*, Nicaragua, Netherlands, Norway, Nepal, New Zealand,

Pakistan*, Panama, Peru, Philippines, Papua New Guinea*, Portu-
gal, Paraguay, Romania, Singapore, El Salvador, Sweden, Syria,

24With respect to the Beaudry et al. (2005)’s sample, we have no data for Guyana and
Tunisia. For countries marked with * we have no data on education.
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Thailand, Trinidad&Tobago, Turkey, Taiwan*, Uruguay, United

States, Venezuela, South Africa.

B Description of the Variables and Descriptive Statis-

tics

The variables used in the estimation of the growth model in Eq.

(3) are the following:25

• y0 is the (log) of the real GDP chain per worker (rgdpwok in
PWT 7.1).

• g is the corresponding annualized average growth rate of y0.

• n is the (log) growth rate of employment, where workers are

computed as the population from 15 to 64 obtained from:

workers = rgdpch/rgdpwok ∗ pop;

where rgdpch is the real GDP chain per capita and pop is the

population in PWT 7.1.

• i/y is the (log) investment ratio at constant price and corre-
sponds to the variable ki in PWT 7.1 divided by 100.

• Edu is the (log) average years of schooling and corresponds

to the TY15 in Cohen and Soto (2007) (“Years of schooling of
population 15 and over, whether studying or not”).

g y0 n i/y Edu
Mean 0.02 9.17 -2.66 -1.48 1.82
Stand. Dev. 0.01 1.01 0.15 0.27 0.47

Table 6: Mean and Standard Deviation of variables used in the growth regressions

25The choice follows Beaudry et al. (2005, p. 21)
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g y0 n i/y Edu
g 1.00
y0 -0.33 1.00
n -0.38 0.28 1.00
i/y 0.45 0.16 -0.08 1.00
Edu 0.07 0.76 -0.44 0.35 1.00

Table 7: Correlations among the variables used in the growth regressions

It can be observed that there is a high correlation between the
education variable and initial income.

C GAM estimation

The estimation of Eq. (3) is obtained by penalized likelihood

maximization (see Wood, 2011, for details). The model is fitted by
minimizing:

||y −Xβ||2 +
K∑

k=1

λk

∫ 1

0

[µ′′k(x)]
2
dx, (15)

where y is the vector of observations (gi in our case), X is the
matrix of explanatory variables, β is a vector of parameters to be

estimated, λk, k = (1, ..., K), are smoothing parameters, and the
penalty, which controls the smoothness of the estimate, is repre-
sented by the integrated square of second derivatives of the smooth

terms. The vector of parameters β originates from expressing every
smooth term in Eq. (3), µj(.), as:

µj(Xi,j) =

q
∑

l=1

bl (Xi,j)βl (16)

where bl (x) are basis functions and q is their number.

Parameters βl are chosen to minimize the function in Eq. (15)

for given values of the smoothing parameters λk (it is possible to
show that the penalty can also be expressed as a function of β).
Smoothing parameters are in turn chosen by the minimization of the
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restricted maximum likelihood (REML) score. Estimation proceeds

by penalized iteratively re-weighted least squares (P-IRLS), until
convergence in the estimates is reached.

For each estimation we report: 1) the estimated degrees of free-

dom for each term (EDF). The EDFs reflect the flexibility of the
model: when the EDFs of a term are equal to one, the smooth

term can be substituted by a linear function; 2) the value of AICc,
that is the corrected Akaike information criterion; 3) the proportion

of deviance explained, a generalization of R2; 4) the REML score,
which provides the fundamental information on the specification of

the model; 5) the scale parameter, corresponding to the residual
variance of the estimation; and, 6) the number of observations.

D Bootstrap Procedure to Test the Stability of Semipara-

metric Regressions

The bootstrap procedure is as follows:

1. Pool the sample of the two subperiods.

2. Extract from this pooled sample two samples of the same size

of the two original samples.

3. Run a semiparametric regression for each sample and take the
differences in the estimated partial effect of each variable.

4. Repeat B=1000 times points 1-3.

5. Report for each variable the confidence band at 95% confidence
level of the calculated differences and check that the observed
differences belong to these confidence bands.

Figures 19-21 report the results of this procedure.
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Figure 19: Stability test for y0. Thick line:
observed difference; dotted lines: 95% confi-
dence bands.
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Figure 20: Stability test for n. Thick line: ob-
served difference; dotted lines: 95% confidence
bands.
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Figure 21: Stability test for i/y. Thick line:
observed difference; dotted lines: 95% confi-
dence bands.
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E Endogeneity Test

The Control Function method (CFM) is used to perform the en-
dogeneity test (see, e.g. Ng and Pinkse, 1995; Blundell and Powell,

2003). The CFM treats endogeneity as an omitted variable prob-
lem, where the inclusion of estimated first-stage residuals as a co-

variate corrects the inconsistency of the regression of the dependent
variable on the endogenous explanatory variable. This method pro-

vides consistent estimation of the underlying regression coefficients.
Therefore, according to CFM we use a two-stage procedure: i) first

we run a semiparametric regression of each endogenous variable on
the exogenous variables and the instruments; then, ii) we insert the
first-stage residuals in the original semiparametric regression.

Since the second-stage regression contains generated regressors
(i.e. the first-stage residuals), to obtain the appropriate standard

errors we use the following bootstrap procedure. Given a sample
of observations (y,X,Z), where y is the vector of dimension N of

dependent variable, X is the N×K matrix of explanatory variables
(including the endogenous variables), and Z is the N ×K matrix of
instruments:

1. Select a bootstrap sample (y∗
b,X

∗
b,Z

∗
b) drawn with replacement

from (y,X,Z).

2. Run a semiparametric regression of each endogenous variable
on the exogenous variables and the instruments.

3. Insert the first-stage residuals in the original semiparametric
regression.

4. Repeat B = 1000 times points 1-3.

5. For each estimated parametric coefficients compute the corre-
sponding equal-tail bootstrap p-value (see Davidson and MacKinnon

(2007)):

P ∗(β̂) = 2 ∗min

(

1

B

B∑

b=1

#{β̂∗
b ≤ 0}, 1

B

B∑

b=1

#{β̂∗
b > 0}

)

(17)
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6. For each estimated non-parametric coefficients compute the av-

erage partial effect ad the 95% confidence bands.

We use the following instruments:

• for n: the augmented growth rate of employment in 1960 (n.1960);

• for i/y: the investment ratio in 1960 (i/y.1960);

• for Edu: the number of years of schooling in 1960 (Edu.1960).

Results of the first-stage regressions reported in Table 8 show

that almost all the instruments are significant. In the second-stage
regression (Model “Including v” in Table 9) all the coefficients of the

first-stage residuals are not statistically significant. Figures 22-23
graph the estimated additive component functions derived from the

semiparametric estimation with (Including v) and without (Exclud-
ing v) controlling for endogeneity. We conclude that all variables

are exogenous because no significant effect emerges from correcting
for endogeneity.

Dep. Var: n i/y Edu
GAM GAM GAM

1978-2008 1960-2008 1960-2008

Parametric coefficients: Estimate Estimate Estimate
const -2.9706*** -1.4808*** 1.6499***

Non parametric coefficients: EDF EDF EDF
y0 (0.0334**) 3.376* (0.0343)
n.1960 5.468*** 2.651** (0.0521)
i/y.1960 1.285 1.055*** 2.035
Edu.1960 3.485*** 1.734 1.909***
AICc -144.92 -17.33 -76.96
Dev. Expl. 0.85 0.61 0.94
REML score -57.85 -1.18 0.0145
Scale est. 0.0038 0.0338 0.0138
Obs. 61 61 61

Table 8: First-stage regressions of potentially endogenous variables. Significance codes:
0.01”***” 0.05”**” 0.1”*”. Terms in parenthesis enter linearly in the specification.
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Including v Excluding v
Dep. Var: g GAM with CF GAM

1960-2008 1960-2008
Parametric coefficients: Estimate Estimate
const 0.0794 0.0796***

(0.000)

y0 -0.0084 -0.0083***
(0.002)

Edu 0.0092 0.0091**
(0.038)

Non parametric coefficients: EDF EDF
n 3.069 2.565***
i/y 4.711 4.016***
First-stage residuals coefficients: Estimate Estimate
n res -0.0028

(0.918)

i/y res 0.0097
(0.472)

Edu res 0.0097
(0.580)

Table 9: Second-stage regression (Including v) and regression without control for endogeneity
(Excluding v). Significance codes: 0.01”***” 0.05”**” 0.1”*”. P-values form bootstrap in
parenthesis.
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Figure 22: Second-stage regression for n; dot-
ted lines: 95% confidence bands.
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Figure 23: Second-stage regression for i/y;
dotted lines: 95% confidence bands.
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F Adaptive Kernel Estimation

When observations vary in sparseness over the support of the
distribution, the adaptive kernel estimation is a two-stage proce-

dure which mitigates the drawbacks of a fixed bandwidth in den-
sity estimation (see Silverman, 1986, p. 101). In general, given a

multivariate data set X = {X1, ...,XN} and a vector of sample
weights W = {ω1, ..., ωN}, where Xi is a vector of dimension d and
∑N

i=1 ωi = 1, we first run the pilot estimate:

f̃ (x) =
1

N det (H)

N∑

i=1

ωik
{
H

−1 (x−Xi)
}
, (18)

where k (u) = (2π)−1 exp
(
−1

2u
2
)
is a Gaussian kernel and band-

width matrix H is a diagonal matrix (d × d) with diagonal el-
ements (h1, ..., hd) given by the optimal normal bandwidths, i.e.

hi = [4/ (d+ 2)]1/(d+4) σ̂iN
−1/(d+4); σ̂i is the estimated standard er-

ror of the distribution of Xi. The use of a diagonal bandwidth
matrix instead of a full covariance matrix follows the suggestions
in Wand and Jones (1993). In the case of d = 1 we have H =

det (H) = (4/3)1/5N−1/5σ̂. We then define local bandwidth factors
λi by:

λi =
[

f̃ (Xi) /g
]−α

, (19)

where log (g) =
∑N

i=1 ωi log
(

f̃ (Xi)
)

and α ∈ [0, 1] is a sensitivity

parameter. We set α = 1/2 as suggested by Silverman (1986, p.
103). Finally the adaptive kernel estimate f̂ (x) is defined as:

f̂ (x) =
1

N det (H)

N∑

i=1

λ−d
i ωik

{
λ−1
i H

−1 (x−Xi)
}
. (20)

The Gaussian kernel guarantees that the number of modes is a
decreasing function of the bandwidth; this property is at the basis
of the test for unimodality (see Silverman, 1986, p. 139).
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G Multimodality Test

The multimodality test for all estimate distributions follows the
bootstrap procedure described in Silverman (1986, p. 146). Given

a data set X = {x1, . . . , xN} and a vector of sample weights W =
{ω1, . . . , ωN}, we calculate the smallest value of bandwidth, ĥ0, for

which the estimated distribution is unimodal and the correspond-
ing local bandwidth factors Λ = λ1, . . . , λN . We then perform a

smoothed bootstrap from the estimated density of observed data set.
Since we use the Gaussian kernel, it amounts to: i) draw (with re-

placement) a vector I = {i1, . . . , iN} of size N from {1, . . . , N},
given the sample weights W ; ii) define Y = {xi1, . . . , xiN} and
W ∗ = {ωi1, . . . , ωiN}, calculate

x∗j = Ȳ +

(

1 +
(

ĥ0λij

)2

/σ̂2
Y

)− 1

2 (

yj − Ȳ + ĥ0λijǫj

)

, j = 1, . . . , N ;

(21)
where Ȳ and σ̂2

Y
are respectively the mean and the estimate variance

of sample Y and ǫj are standard normal random variables; iii) find
the minimum value of bandwidth, ĥ∗1, for which the estimated den-

sity ofX∗ is unimodal; iv) repeat point i)-iii)B times in order to ob-

tain a vector of critical values of bandwidth
{

ĥ∗1, . . . , ĥ
∗
B

}

. Finally,

p-value of null-hypothesis of unimodality is given by #
{

ĥ∗b ≥ ĥ0

}

/B.

To test bimodality, point iii) has to be modified accordingly. We set
B = 1000.

The multimodality test for the ergodic distribution follows the

same logic, but at point i) vector I is drawn from {1, . . . , nTR},
where nTR is the total number of observed transitions from t to t+τ

(i.e.nTR = Nx (T − τ)); ii) x∗j smoothed bootstrap transitions are
calculated via Eq. (21) (note that all the variables are vectors of two

elements); iii) ĥ∗1 is the minimum value of bandwidth for which the
ergodic distribution calculated from the estimated stochastic kernel

relative to x∗j is unimodal. In order to facilitate the calculation
we consider the same bandwidth for actual and future observations
(their difference is generally negligible).
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H The Estimate of Ergodic Distribution

The ergodic distribution solves:

f∞ (x) =

∫ ∞

0

gτ (x|z) f∞ (z) dz, (22)

where x and z are two levels of the variable, gτ (x|z) is the density
of x, given z, τ periods ahead, under the constraint

∫ ∞

0

f∞ (x) dx = 1. (23)

Since in our estimates all variables are normalized with respect to
their average, the ergodic distribution, moreover, must respect the

additional constraint:
∫ ∞

0

f∞ (x)xdx = 1. (24)

Following the methodology proposed by Johnson (2005) we first

estimate the distribution f̃∞ (x), which satisfies Constraints 22 and
23, but not Constraint 24. We then calculate f∞ (x) = µ̃xf̃∞ (x),

where µ̃x =
∫∞
0 f̃∞ (x)xdx, which will satisfy all Constraints 22,

23 and 24. In particular, Theorems 11 and 13 in (Mood et al.,
1974, pp. 200 and 205) prove that if f̃∞ (x) satisfies Constraints

22 and 23 then f∞ (x) satisfies Constraints 22, 23 and 24. In fact,
gτ (z|x) = fz,x (z, x) /fx (x) and fy,q (y, q) = µzµxfz,x (z, x), where

y = z/µz and q = x/µx. In all computations we set τ = 49.

I Bootstrap Procedure to Compute Confidence Intervals

The bootstrap procedure used to calculate the confidence bands
for the estimated median of the stochastic kernels and ergodic distri-

butions is respectively based on the procedure in Bowman and Azzalini
(1997, p. 44) and in Fiaschi and Romanelli (2009).

Given a sample of observations Y = {Y1, ...,Ym} where Yi is
a vector of dimension N , the bootstrap algorithm consists of three
steps.
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1. Estimate from sample Y the stochastic kernel, the median of

the stochastic kernel and the corresponding ergodic distribu-
tion ψ̂.

2. Select B independent bootstrap samples {Y∗
1, ...,Y

∗
B}, each

consisting of N data values drawn with replacement from Y.

3. Estimate the the stochastic kernel, the median of stochastic

kernel and the corresponding ergodic distribution ψ̂∗
b corre-

sponding to each bootstrap sample b = 1, ..., B.

4. Use the distribution of ψ̂∗
b about ψ̂ to mimic the distribution

of ψ̂ about ψ.

We set B=500 and in each bootstrap the bandwidth is set equal to

the one calculated for the estimation of the density of the observed
sample Y.

J BIPOLNI Index of Polarization

We measure the polarization of a distributions by BIPOLNI

index proposed by Anderson et al. (2012).

In particular, under the assumption that the observed bimodal-

ity is the result of the mixture of two unknown sub-distributions
(corresponding to two subgroups as, e.g., rich and poor countries)

and the observed estimated distribution is bimodal, the estimate of
BIPOLNI is given by (see Eq. (6) in Anderson et al., 2012):

B̂IPOLNI =
1

2

[

f̂ (x̂m,p) + f̂ (x̂m,r)
]

|x̂m,p − x̂m,r|; (25)

where x̂m,p and x̂m,r are the estimated modes, and f̂(x̂m,p) and
f̂(x̂m,r) are the values of the estimated density at the modal points.
When xm,r 6= xm,p and f̂(.) is estimated by a Gaussian kernel, it is



On the Determinants of Distribution Dynamics 41

possible to show that:26

B̂IPOLNI −BIPOLNI

(nh3)−1/2
→D N (Bias,

1

4
[f (xm,p) + f (xm,r)]

2

{
f (xm,p)

[f ′′ (xm,p)]2
+

f (xm,r)

[f ′′ (xm,r)]2

}

‖K ′‖22
)

, (26)

where N is the number of observations, h the bandwidth used in
the kernel, |K ′‖22 the L2 norm of the first derivative of the Gaussian

Kernel (equal to 1
4
√
π
), and Bias reflects the bias in the estimate of

f(xi) deriving from the use of kernel.

Instead, inference on BIPOLNI index runs into troubles when
the modes of the two unknown distributions are so close to each

other that the mixture of the two distributions appears to be uni-
modal; indeed this does not necessarily imply that polarization is

absent, i.e. BIPOLNI = 0, but only that it is not possible to
calculate the index from the estimated observed distribution.

Therefore in the empirical application for the cases where the

estimated distribution appears to be bimodal we report the value
of B̂IPOLNI index and of its standard error calculated according

to Eqq. (25) and ( 26); while for the case where the estimated

distribution appears to be unimodal the B̂IPOLNI index is not
calculated (we report NA).
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