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Discussion Paper

n. 171

Davide Fiaschi - Angela

An Estimate of the Degree of

Interconnectedness between European Regions:

A Bayesian Model Averaging Approach

Abstract

This paper provides a methodology based on General Variance
Decomposition and Bayesian Model Averaging to estimate the degree
of economic interconnectedness across different regions, and applies
such methodology to a sample of 199 European NUTS2 regions in
the period 1980-2008. The estimated connectedness appears very het-
erogeneous and not symmetric. The idiosyncratic component is not
very significant, as well as the common component. A clear pattern
of core-periphery exists but not defined in geographical terms. The
country component is not very significant, very heterogeneous across
countries, and proportional to countries’ size. The degree of inter-
connectedness positively depends on the time horizon of the analysis.
Finally, the comparison of the estimated connectedness matrix with
two spatial matrices generally used in spatial econometrics (a first-
order contiguity and a distance-based matrix) reveals that both are
far from representing the actual interconnectedness between European
regions.

Classificazione JEL: C11; R11; R12; O50
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I. Introduction

The literature on European regions mainly focuses on growth and convergence
in income and productivity (see, e.g., Barro and Sala-i Martin (1991), Barro and
Sala-i Martin (2004)), and on the geographic concentration of per capita GDP
(see, e.g., Le Gallo and Ertur (2003)). Another strand of literature analyzes the
degree of interconnectedness and the diffusion of shocks across European regions.
In particular, two distinct approaches have been proposed. The first analyzes
the correlation among growth cycles of the European regions (see, e.g, De Nardis
et al. (1996)), and try to summarize their interactions and co-movements.

The second, originally developed in the regional science and geography liter-
atures, is based on a spatial weight matrix, where the elements of this matrix
represent the direction and strength of spillovers between each pair of units. For
example, Le Gallo et al. (2003) study the spatial diffusion process in income
growth implied by a spatial error model, assuming that the spatial interaction
between regions can be represented by an exogenous spatial weight matrix based
on the inverse of squared distance between regional centroid.

In spatial econometric, “the spatial weight matrix is the fundamental tool used
to model the spatial interdependence between regions. More precisely, each region
is connected to a set of neighbouring regions by means of a spatial pattern intro-
duced exogenously as a spatial weight matrix W” (Le Gallo et al. (2003, p.110)).
Therefore, the W matrix represents the a priori assumption about interaction
strength between regions. However, in many cases considerable attention should
be given to specifying the matrix W to represent as far as possible economic
process (see Corrado and Fingleton (2012)).

The aim of the paper is twofold: i) to find a methodology which allows to
estimate a connectedness matrix without take it as exogenous; ii) to apply the
methodology to the per capita GDP growth of 199 European NUTS2 regions
(EU15) over the period 1980-2008.

The paper it is organized as it follows: Section explains the methodology to
calculated a panel of growth rate volatility of per capita GDP and to estimate
the associated connectedness matrix. Section III. discusses an application to this
methodology to a large sample of European regions. Section IV. concludes.

II. The Methodology

This section firstly discusses how to estimate a panel of growth rate volatil-
ities (GRV) for a sample of regions (Section II.A.); this panel is then used to
perform a general variance decomposition analysis (GVD) on the residuals from
a VAR in order to estimated the so-called connectedness matrix (Section II.B.).
The procedure is largely inspired by Diebold and Yilmaz (2011), with the addi-
tional difficulty arising in the estimate of VAR, where the number of observations
for each region is generally lower than the number of regions, i.e. we face a
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typically high-dimensional problem (see Hastie et al. (2008)). We will discuss
how Bayesian Model Averaging is particularly adapted to deal with this type of
problem.1 Section II.C. discusses how the perspective of network theory provides
crucial insights on the mechanics of interconnection behind the connectedness
matrix; finally, Section II.E. compares the proposed approach with the two of the
most used matrices in spatial econometrics, i.e. first-order contiguity matrix and
matrix based on the inverse-distance.

II.A. Estimation of a Panel of GRV

In this section we discuss how to estimate a panel of GRV for a sample of
regions/countries following the approach in McConnell and Perez-Quiros (2000)
and Fiaschi and Lavezzi (2011). The basic idea is that the dynamics of growth
rate of per capita GDP can be well-approximated by an autoregressive process of
order p (denoted by AR (p)):

γjt = µj + φ1γj,t−1 + ...+ φpγj,t−p + ǫjt, (1)

where ǫjt is assumed to be normally distributed. Given that ǫjt follows a normal
distribution, an unbiased estimator of the standard deviation of ǫjt, σ

ǫ
jt, is given

by:

σ̂ǫ
jt =

√

π

2
|ǫ̂jt|. (2)

As pointed out in literature (see McConnell and Perez-Quiros (2000)), the ab-
solute value specification make the estimator more robust to departures from the
hypothesized conditional normality of errors than the estimator of the variance
ǫ̂2jt. From Eq. (2) we derive the unbiased estimator of the standard deviation of
the growth rate of per capita GDP, σγ

jt. For example, if the growth rate follows an
AR(1) process (see Hamilton (1994), p.53), the standard deviation of the growth
rate is given by:

σ̂γ
jt =

σ̂ǫ
jt

√

1− φ2
1

=

√

π
2
|ǫ̂jt|

√

1− φ2
1

. (3)

This method is easily extended to higher-order AR models (see Hamilton (1994),
pp. 58-59.). This methodology allows us to build a panel of GRV by exploiting
both the cross-sectional and the time-series dimensions of growth rates.

In the empirical analysis we select for each region in the sample the best order
of AR using the EIC criteria, that is a bootstrap version of the Akaike Information
Criteria for small samples (see Ishiguro et al. (1997)).

1In a companion paper the same problem has been dealt with a LASSO approach (see Fiaschi
and Parenti (2013)).
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II.B. The Connectedness Matrix

As in Diebold and Yilmaz (2011) we use a vector-autoregressive (VAR) model
to represent the process governing the GRV of regions, and estimate the gen-
eralized variance decomposition (GVD hereafter) which allows to measure the
population connectedness, i.e. assessing the share of forecast error variance in a
region due to shocks arising elsewhere.

The use of VAR implicitly implies that relationships across units of observa-
tions are essentially linear, and that the contemporaneous relationships are well
represented by pairwise correlations (i.e., the variance-covariance matrix).

Moreover, the use of GVD is subject to some restrictive assumptions, the most
notable is the Gaussian distribution of shocks.2

Assume that a VAR of order p is a good approximating model of the process
governing the GRV of regions:3

xt = c+

p
∑

i=1

Φixt−i + ǫt, t = 1, ..., T, (4)

where c is a N × 1 vector of constants, xt = (x1t, ..., xNt)
′ is a N × 1 vector

of jointly determined dependent variables, and Φi, i = 1, ..., N is the N × N
coefficients matrix.

As in Pesaran and Shin (1998), we assume that:

1. E(ǫt) = 0, E(ǫtǫ
′

t) = Σ for all t, where Σ = {σij , j = 1, ..., N} is an N ×N
positive definite matrix, and E(ǫtǫ

′

t′) = 0 for all t 6= t′.

2. All roots of |IN −
∑p

i=1 Φiz
i| = 0 fall outside the unit circle, that is xt is

covariance-stationary.

3. xt−1, ...,xt−p, t = 1, ..., T are not perfectly collinear.

Under Assumption 2 Eq. (4) can be rewritten as the infinite moving average
representation:

xt = µ+
∞
∑

i=0

Θiǫt−i, t = 1, ..., T, (5)

where µ = (IN −Φ1 − · · · −Φp)
−1c is the mean of the process, and the N × N

coefficient matrices Θi can be obtained as:

Θi = Φ1Θi−1 + ...+ΦpΘi−p, i = 1, 2, ... (6)

with Θ0 = IN and Θi = 0 for i < 0.

2Alternatively, the use of Cholesky-factor identification is sensitive to ordering of the units
of observations.

3Notation refers to Pesaran and Shin (1998).
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To measure the effect of shocks at a given point in time on the expected
future values of variables in a dynamical system, Koop et al. (1996) advance the
generalized impulse response function. In particular, denoting the history of the
economy up to time t as Ωt−1, the generalized impulse response function of xt at
horizon H is defined as:

GIx(H, δ,Ωt−1) = E(xt+H |ǫt = δ,Ωt−1)− E(xt+H |Ωt−1) = ΘHδ. (7)

If we consider the generalized impulse response function to be conditional not
on all the shocks at time t, but on just one of them, we get:

GIx(H, δj,Ωt−1) = E(xt+H |ǫjt = δj,Ωt−1)− E(xt+H |Ωt−1). (8)

If the vector of random shocks, ǫt, has a multivariate normal distribution the
conditional expectation of the shocks is a liner function of the single shock δj ,
that is:

E(ǫt|ǫjt = δj) = (σ1,j , ..., σNj)
′σ−1

jj δj = Σejσ
−1
jj δj ; (9)

where ej is an N × 1 selection vector with unity as its j-th element and zero
elsewhere.

Therefore, the vector of unscaled generalized impulse response of the effect of
a shock in the j-th equation at time t on xt is given by:

GIx(H, δj ,Ωt−1) =

(

ΘHΣej√
σjj

)(

δj√
σjj

)

. (10)

In particular, by setting δj =
√
σjj we get the scaled generalized impulse response

function:
ψg
j (H) = σ

−
1
2

jj ΘHΣej ; (11)

which measure the effect of one standard error shock to the j-th equation at time
t on expected values of x at time t+H .

From the above generalized impulses, Pesaran and Shin (1998) derive the
generalized (i.e., order-invariant) forecast error variance decomposition, defined
as the proportion of the H-step ahead forecast error variance of variable i which
is accounted for by innovations in variable j in the VAR. Then, for H = 1, 2, ...4,
H -step GVD matrix DgH = [dgHij ] has entries:

dgHij =
σ−1
jj

∑H−1
h=0 (e

′

iΘhΣej)
2

∑H−1
h=0 (e

′

iΘhΣΘ
′

hei)
(12)

where ej is the selection vector, Θh is the coefficient matrix of the h-lagged shock
vector in the MA representation of the non-orthogonalized VAR, Σ is the covari-
ance matrix of the shock in the non-orthogonalized VAR, and σii its diagonal.

4Notice that H = 1 actually corresponds to the contemporaneous connectedness.
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As in Diebold and Yilmaz (2011) we normalize the GVD matrix by row in
order to have unity sums of forecast error variance contribution (remember that
the shocks are not necessarily orthogonal). Therefore, the connectedness matrix

has entries as d̃gHij =
d
gH
ij

∑N
j=1 d

gH
ij

.

x1 ... xN From Others

x1 d̃gH11 ... d̃gH1N
∑N

j=1 d̃
gH
1j , j 6= 1

...
...

...
...

xN d̃gHN1 ... d̃gHNN

∑N

j=1 d̃
gH
Nj , j 6= N

To Others
∑N

i=1 d
H
i1, i 6= 1 ...

∑N

i=1 d̃
gH
iN , i 6= 1 1

N

∑

i, j = 1N d̃gHij , i 6= j

Table 1: Connectedness Matrix derived from the GVD Matrix.

In particular, d̃gHij is the ij-th H-step ahead variance decomposition compo-
nent, that is the fraction of region’s i H-step forecast error variance due to shocks
in region j. The cross-variance decomposition, that is the off-diagonal elements
(i.e., i 6= j), measure the pairwise directional connectedness and, in general,
can be different (i.e., d̃gHij 6= d̃gHji ) as the bilateral imports/exports. On the other
hand, the diagonal elements (own connectedness) measure the fraction of region’s
i H-step forecast error variance due to shocks arising in the same region.

The connectedness matrix is based on the predictive horizon H that is related
to the concept of dynamic connectedness. In particular, the generalized variance
decomposition 1-step ahead represents the contemporaneous connectedness. As
the predictive horizon increases there is more possibility for connectedness to
appear. In this sense, we can distinguish between short-run and long-run con-
nectedness.

II.C. Network Interpretation of Connectedness Matrix

The proposed methodology has a straightforward interpretation in terms of
network and of percolation of shocks through it. For the sake of simplicity con-
sider the case with three regions and VAR(1), whose variance-covariance matrix
Σ is given by:

Σ =





σ11 σ12 0
σ21 σ22 σ23
0 σ32 σ33



 (13)

from which the GVD matrix at H = 1:

Dg1 =





1 σ12

σ22
0

σ21

σ11
1 σ23

σ33

0 σ32

σ22
1



 (14)



An Estimate of the Degree of Interconnectedness between European Regions 9

In case of VAR(1) Θ0 = IN , Θ1 = Φ, Θ2 = Φ2, ..., where Φ is the coefficient
matrix of VAR.

The network representation related to Dg1 in Eq. (14) is reported in Fig. (1).
The structure of contemporaneous network fully reflects the shape of Σ both in
terms of existence of links and in terms of their strength. However, differently
from Σ, Dg1 is not symmetric, i.e. the contemporaneous network is both weighted
and directional. In the analysis of connectedness matrix D we generally consider
row-standardize elements in the spirit of the methodology of GVD. Adopting a
network approach this normalization could have not effect on the analysis only
if we focus on the existence of links (as it is the case for the analysis in Section
III.D.); a study of the percolation of shocks through network, on the contrary,
would request to use the original values; but this is out of the scope of paper.

Assuming that the coefficient matrix Θ1 of the 1 -lagged shock vector in the
MA representation of the non-orthogonalized VAR(1) is given by:

Θ1 = Φ =





φ11 0 φ13

0 0 0
φ31 0 φ33



 (15)

Therefore, the GVD matrix at H = 2 is given by:

Dg2 =























σ11 + φ2
11σ11

σ11 + φ2
11σ11 + φ2

13σ33

σ12
σ22

[

1 +
(

φ11 + φ13
σ32

σ12

)2
]

φ2
13σ33

φ33φ13σ33 + φ31φ11σ11

σ21
σ11

1
σ23
σ33

φ2
31σ11

φ11φ31σ11 + φ13φ33σ33

σ32
σ22

[

1 +
(

φ33 + φ31
σ12

σ32

)2
]

σ33 + φ2
33σ33

σ33 + φ2
33σ33 + φ2

31σ11























(16)
The network representation related to Dg2 in Eq. (16) is reported in Fig. (2).

The structure of network appears crucially affected by Φ both in terms of the
emergence of new links and in terms of their strength.
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1

2 3

σ21/σ11

σ12/σ22

σ23/σ33

σ32/σ22

Figure 1: Network representation of
GVD matrix at horizon H = 1

1

2 3

σ21/σ11

σ12

σ22

[

1 +
(

φ11 + φ13
σ32

σ12

)2
]

σ23/σ33

σ32

σ22

[

1 +
(

φ33 + φ31
σ12

σ32

)2
]

φ2

31
σ11

φ11φ31σ11+φ13φ33σ33

φ2

13
σ33

φ33φ13σ33+φ31φ11σ11

Figure 2: Network representation of
GVD matrix at horizon H = 2

In particular, new links appear connecting Regions 1 and 3 through the VAR
coefficients φ13 and φ31.

VAR coefficients also drive the extent of persistence of shocks over time; for
example, dg211 depends on φ11 (the effect of autoregressive component of Region
1) and φ13 (the shocks received from Region 3); the coefficients appear to have a
power proportional to time horizon (i.e. 2), that is shocks have an exponential
decay. It is straightforward to show that a longer time horizon increases the
strength of links with an exponential decay (for example dg311 would present terms
like φ4

11 and φ2
13).

Region 2, missing any lag with itself and with the other regions in the VAR,
displays a network partially independent of the time horizon considered. In par-
ticular, the connectedness from Region 2 to other regions are affected through
the contemporaneous covariances σ12, σ22, and σ32, while the connectedness from
other regions to Region 2 are not affected.

Relaxing the assumption of VAR(1), for example in favor of VAR(2), increases
both the percolation of shocks through network and their persistence, but the
qualitative results remain the same.

II.D. The Estimation of Connectedness Matrix via Bayesian Model
Averaging

The typical dimensions of datasets used in cross-country and cross-region
analysis are such that the number of countries/regions N is much higher than
the length of time series T , i.e. we are facing a high-dimensional problem with
N ≫ T . This suggests to maintain the order of VAR at the minimum level equal
to 1, i.e. GRV of each region at time t will depend on a constant, on its lagged
GRV at time t− 1, and on the GRV of all other regions at time t− 1.

We depart from Diebold and Yilmaz (2011) considering also a common com-
ponent affecting the GRV of all regions in the sample.5

5In the empirical analysis as common component we will use the GRV estimated for the
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Since N ≫ T , the VAR(1) cannot be estimated by standard OLS: the total
number of parameters to be estimated equal to K = N + 2, i.e. all lagged GRV
of regions plus common component plus constant, is higher than the number
of observations T . This problem is here overcome by using a Bayesian Model
Averaging (BMA) approach.

Many empirical application involve linear regression model with a large num-
ber of potential explanatory variables. Including all the potential variables in
the regression can decrease the accuracy of the estimation as long as some of the
variables are irrelevant. The traditional approach is to do a sequence of tests with
the aim of selecting a single best model which omits all the irrelevant variables.
However, ”each time a test is carried out, there is a possibility that a mistake
will be made (i.e. the researcher will reject the ’better’ model for a ’not so good
one’). The probability of making a mistake quickly increases as sequences of tests
are carried out. Secondly, even if a sequential testing procedure does lead to a
selection of the ’best’ model, standard decision theory implies that it is rarely
desirable to simply present results for this model and ignore all evidence from the
’not quite so good’ models. By doing so model uncertainty is ignored.” (Koop
(2003, p.267)).

The logic of BMA is that one should obtain results for every model un-
der consideration and average them, using the posterior model probabilities as
weights.6 In particular, given a dependent variable Y , a number of observations
T , and a set of candidate regressors X1, ..., XK , the variable selection problem
is to find the most effective subset of regressors. Consider R different models,
Mr for r = 1, ..., R, where each one represents a subset of the candidate regres-
sors. Model Mr has the form Y = α+

∑Kr

j=1 β
(r)
j X

(r)
j + ǫ, where X

(r)
1 , ..., X

(r)
Kr

is a

subset of X1, ..., XK , β
(r) = (β

(r)
1 , ..., β

(r)
Kr
) is a vector of regression coefficients to

be estimated, and ǫ ∼ N(0, σ2) is the error term. Finally, θr = (α, β(r), σ) is the
vector of parameters in Mr.

The likelihood function of modelMr, p(D|θr,Mr), summarizes all the informa-
tion about θr that is provided by the data, D. Using the law of total probability,
it is possible to calculate from the likelihood function the integrated likelihood
p(D|Mr). Denoting p(Mr) the prior probability that Mr is the correct model
given that of the models is considered, the posterior model probability of Mr,
p(Mr|D) is given by the model’s share of the total posterior mass:

p(Mr|D) =
p(D|Mr)p(Mr)

∑R

r=1 p(D|Mr)p(Mr)
. (17)

Therefore, the posterior inclusion probability (PIP) of a candidate regressor,
p(βj 6= 0|D), can be obtained by summing the posterior model probabilities

growth of the aggregated EU15 per capita GDP.
6See for example (Eicher et al., 2011).
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across those models that include the regressor. The PIP can be interpreted as
the probability that each regressor should be included.

The implementation of the BMA has two main problems. First, if K is the
number of potential explanatory variables, the number of possible models is 2K .
Therefore, if K is large, the number of possible models is astronomical. In this
respect we follow the literature and we use the so-called MC3 algorithms for the
estimation.

Second, the implementation of BMA in linear regression is subject to the
specification of the prior distributions. For BMA, the prior has two parts: a prior
for the parameters of each model, and the prior probability of each model (see
(Fernandez et al., 2001)). If substantial prior information is available and can
be expressed as a probability distribution, this should be used. Often, however,
the prior information is small relative to the information in the data, and then it
makes sense to use a default prior. Priors on parameters may affect results since
they may influence the integrated likelihood p(D|Mr), which is a key component
of the posterior model weights. We follow Fernandez et al. (2001) in setting the
prior for parameters and, in particular, the Zellner’s g-prior is set to gr = 1/K2

given that in our case T << K2.7 As regards the model priors, we use the random
theta prior by Ley and Steel (2009), who suggest a binomial-beta hyperprior on
the a priori inclusion probability p(Mr).

8

The goal of model selection is to choose a model for future prediction. Under
the Bayesian approach, the model with highest PIP is not necessarily the optimal
predictive model. Barbieri and Berger (2004) show that, for selection among
normal linear models, the optimal predictive model is often the median probability
model, which is defined as the model consisting of those variables which have
overall PIP greater than or equal to 1/2 of being in a model.9 As estimation of
VAR(1) we will therefore use the median probability model.

II.E. Connectedness Matrix versus Spatial Matrix

As discussed in the introduction one of the main goals of the paper is to
get some insights on the shape of spatial matrix W, which in spatial literature
measures the spatial dependence across different regions (see (Anselin, 2001) for
a general introduction).

W is generally taken as exogenous in spatial literature and it is specified or in
term of geographic contiguity or in terms of geographical distance (see (Anselin,
2001)). Corrado and Fingleton (2012) formulate three main critiques to current
literature: i) the values in the cells ofW comprise an explicit hypothesis about the

7Values of gr that are closer to zero imply priors that are less informative.
8The estimation is carried out using the bms function of the BMS R-package.
9A different approach not pursued here is proposed by Brown et al. (2002): BMA for variable

selection can be well approximated by the median probability model when orthogonality of both
the prior and x -variables can be assumed; the latter can be however suboptimal when these
orthogonality conditions fails.
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strength of interlocation connection”, in particular, “a priori assumption about
interaction strength”; ii) “Typically, isotropy is assumed, so that only distance
between j and h is relevant, not the direction j to h”; iii) “The potential for
dynamic W matrices poses some problems for estimation, given the assertion
that W is necessarily a fixed entity. While this my not be such an issue for cross-
section approaches, [...], with the extension of spatial econometrics to include
panel data modelling it may be the case that W is evolving.”

To discuss how our connectedness matrix DgH is strictly related to W assume
that the data generating process of GRV of regions y follows:

yt = (IN − ρW)−1 [µN +Xtβ + ut] = (IN − ρW)−1 [µN +Xtβ] + vt (18)

where µN is the vector of fixed effects of length N , yt is a vector of length N ,
Xt is a matrix of dimensions (N, k), β is a vector of length k of coefficients, and
ut is the error component of dimension N and vt is the spatially filtered error
component of dimension N . The error component ut is specified as:

ut = λWut + ψWut−1 + φut−1 + ǫt, (19)

where ǫt is the vector of innovations, with E [ǫt, ] = 0, E [ǫtǫ
′

t, ] = σ2
ǫ IN , and

E [ǫtǫ
′

t′ , ] = 0 for each t′ 6= t. Eq. (19) reflect the possibility that ut can display
mixed dynamics in both space and time.10 We follow the literature assuming that
W is the same for the spatially lagged dependent variable and the errors.

From Eq. (19) we derive:11

ut = (IN − λW)−1

{

∞
∑

i=0

φi
[

(IN + ψ/φW) (IN − λW)−1]i ǫt−i

}

from which we get the variance-covariance matrix of ut, U, for all t, i.e.:

U = E [utu
′

t] = σ2
ǫ (IN − λW)−1 ×

×
[

IN − φ2 (IN − λW′)
−1

(IN + ψ/φW′) (IN + ψ/φW) (IN − λW)−1
]

−1

×

× (IN − λW′)
−1

(20)

Therefore, the variance-covariance matrix of vt, V, for all t is given by:

V = E [vtv
′

t] = (IN − ρW)−1U (IN − ρW′)
−1
. (21)

Assuming that the VAR representation is an approximating model of yt (see
Diebold and Yilmaz (2011, p. 11)), a possible estimation of V is given by the
variance-covariance matrix of the VAR(1) model, i.e. Σ̂.

10See Elhorst (2013) for a general introduction to spatial panel models.
11We are assuming that the first-order spatial autoregressive process is ergodic.
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The approximation of stochastic process through a VAR representation allows
to overcome the incidental parameters problem discussed, e.g., in Anselin (2002).
In our model the total number of parameters to be estimate is equal to N2−N+5
(all no-zero elements ofW plus λ, φ, ψ, ρ, and σ2

ǫ ) and the number of observations
are equal to N2 (the elements of V ); under the assumption N > 5 it is therefore
possible to estimate the elements of W as well as the other parameters of Eq.
(21). But the estimate of W from Σ̂ becomes very unreliable already for small
N : for our sample of N = 199 observations, the total number of parameters o
estimate is equal to 39407 against a number of observations equal to 39601.

However, a comparison between Eqq. (12) and (21) makes clear that DgH

and W are calculated on the same information set, i.e. Σ̂.
Moreover, the comparison highlights how spatial panels whose observations

refer to variable with different timing (e.g. panel of annual observations versus
panel with five-year average observations) should include different spatial matrix
reflecting the different degrees of interconnectedness (five-year average observa-
tions are likely to have a higher level of interconnectedness). A similar argument
is made in network analysis (see Newman (2009)).

III. Empirical Results

In this section we first discuss the estimated GRV of European regions; then
we proceed to show the results of the estimate of VAR(1); finally we investigate
the properties of the estimated connectedness matrix in light of network approach
and in comparison to two popular spatial matrices used in spatial literature.

III.A. Estimated GRV for 199 European Regions

Our sample consists of the growth rates of per capita GDP of 199 European
NUTS2 regions belong to EU1512 over the period 1980-2008.13

12Appendix A contains the list of regions and the best AR order selected by EIC.
13Data on per capita GDP come from Econometrics (2010).
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Figure 3: Estimated cross-section averages of GRV for the period 1980-2008 for the
sample of 199 European regions

Figure 4 reports the sample average volatility for the period 1980-2008. The
peaks in volatility can be associated with different shocks occurred during this
period, as the 1979 oil crisis, the Japan’s bubble economy of the 1980s, the
German reunification and the 1992 EMS crisis. The 1999-2002 period correspond
to the introduction of euro,14 while the last peak in volatility displayed in the
Fig. 4 reflected the financial crisis of 2007-2008.

Figure 4 report the time averages for each regions in the sample. The overall
impression is the presence of a spatial pattern of core-periphery (with regions in
the center of Europe displaying less GRV), but it is not clear if there exists also
a country component (except for Greece, Norway and Finland).

14The euro came into existence on 1 January 1999 even though the currency was only virtually,
and in 2002 notes and coins began to circulate.
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Figure 4: Estimated (log of ) time averages of GRV for the sample of 199 European
regions

III.B. The Estimate of VAR(1) Coefficients Φ̂

As showed in Section II.C. the connectedness structure appears crucially af-
fected by the estimated VAR coefficients Φ̂ both in terms of the emergence of
new links and in terms of their strength.

Figure (5) shows that at most each region has 21 sources of shocks (including
is own lagged value and the common factor) in the VAR, and that the volatility
of some regions only depends on the constant (i.e, none of the lagged values of
volatilities are significantly different from zero).15 Differently, the distribution
of the number of region to which shocks are transmitted is more symmetrically
distributed around 17, as showed in Figure (6), and that at most a region is a
source of shocks for other 29 regions in the VAR.

15As showed in Section II.C. this does not implies that these regions are disconnected given
that the Σ̂ matrix is full.
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Figure 6: Significant VAR(1) coeffi-
cients: To Regions

III.C. Summary of Connectedness Matrix

The full-sample connectedness matrix is 199 × 199; therefore, it is not pos-
sible to look at the entire matrix. In order to get information on the degree of
connectedness between European regions we give some summary of the matrix
and a network visualization.

First of all we consider the contemporaneous connectedness, that is the vari-
ance decomposition 1-year ahead, D̃g1.
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Figure 9: Idiosyncratic Factor
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Figure 10: Common Factor

Figure 7 shows the total connectedness from others, that is the 1-year forecast-
error variance of each region coming from shocks arising in all other regions, while
Figure 8 shows the total connectedness to others, that is the 1-year forecast-error
variance coming from shocks arising in each region and transmitted to all other
regions. We notice that regions with high connectedness form others also have
high connectedness to other and, therefore, they are highly interconnected. These
is the case of Northern regions of the United Kingdom, most of the Southern
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regions of Italy and Greece, a cluster of neighboring regions across Germany and
Denmark, and a cluster of neighboring regions across France and Spain.

Figure 9 shows the idiosyncratic factor, that is the fraction of 1-year forecast
error variance due to a shock arising in the region itself. The idiosyncratic factor
range from about 9% in Dytiki Ellada (GR23) to about 14% in Mellersta Norrland
(SE32) and it has a significant impact for regions of Portugal, Norther Ireland
and some regions in the center of France. Finally, Figure 10 shows the common
factor, that is the fraction of 1-year forecast error variance due to a shock that is
common for all European regions. The impact of common factor is low, ranging
from 0% to 3%. However, some regions as Tuscany (ITE1), Mellersta Norrland
(SE32), Dytiki Ellada (GR23), Auvergne (FR72) and Bourgogne (FR26) have
both high impact of the idiosyncratic and common factors and, therefore, seem
to be poorly interconnected.
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Figure 11: Country Component for
each region with the mean value (grey
lines) and the value under the null hy-
pothesis of equal impact of all regions
(black points).
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Figure 12: Country Component in the
short-run and long-run: aggregate level

Figure 11 shows, for each region, how much of the contemporaneous connect-
edness is due to shocks arising in regions belonging to the same country (but
excluding the region itself). For each region we also report the value of the per-
centage of forecast error variance explained by the other regions belonging to the
same country under the null hypothesis of equal impact of each region in the
sample (black points) and the mean value across each country’s regions (grey
lines).16 For most of the regions belonging to Belgium, Finland and Sweden the
contemporaneous connectedness due to shocks arising in regions belonging to the

16In particular, the null hypothesis of absence of country effect for region i is that the share
of its total forecast error variance due to the regions belonging to the same country of i should
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same country is lower than the value under the null hypothesis of equal impact,
implying that these regions tend to be more connected to the rest of Europe while
for most of the regions of Denmark, Greece and Italy the country component is
more important.

Figure 12 shows, at aggregate level, how much of the forecast error variance
can be attributed to the country component both in the short-run (i.e. 1-year fore-
cast error variance) and in the long-run (i.e., 10-years forecast error variance).17

The long-run connectedness of Germany, Spain, France and Italy is higher than
the contemporaneous connectedness. This implies that in the long-run the shocks
arising in these countries are more important and, therefore, they show a lower
degree of interconnectedness. On the contrary, for Denmark and Netherlands the
country component is less important in the long-run.

III.D. Network Approach to the Analysis of Interconnectedness

As stated by Diebold and Yilmaz (2011, p.8) “[...] variance decompositions
are networks. More precisely, the variance decomposition matrix D, which de-
fines our connectedness table, and all associated connectedness measure, is a
network adjacency matrix A. Hence network connectedness measures can be
used in conjunction with variance decompositions to understand connectedness
among components”. Specifically, variance decompositions define weighted, di-
rected networks.

To analyze connectedness matrices as a networks only links, i.e. pairwise
directional connectedness, with a strength greater than 2.12% will be considered;
in other words, we consider that region i and region j are linked only if the
fraction of region’s i H-step forecast error variance due to shocks in region j,
dHij , is higher than 2.12% corresponding to a significance level equal to 0.025.18

Moreover, we consider only the existence of the link without its weight (that is,
we construct from the connectedness matrix a 0-1 adjacent matrix corresponding
to a directed but unweighted network).

be equal to:
∑

j∈NC

i

d̃g1i,j =
NC

i

N − 1

(

1− d̃g1ii − d̃i(N+1)

)

, (22)

where NC
i is the set of regions in the same country of region i, and d̃i(N+1) is the forecast error

variance due to common component.
17We still exclude the region itself.
18In particular, the 2.12% threshold is derived by simulating the variance-covariance matrix

of the VAR(1) under the null hypothesis: E(ǫt) = 0, E(ǫtǫ
′

t) = σ̂2
i IN for all t, where σ̂2

i is the

estimated variance of the VAR(1) (i.e. diag(Σ̂)), and E(ǫtǫ
′

t′) = 0 for all t 6= t′. Using this
simulated variance-covariance matrix we therefore estimate the 1-year ahead GVD matrix under
the same null hypothesis and we get the 2.12% threshold which corresponds to the fraction of
1-step ahead forecast error variance, dH=1

ij , derived from a covariance σij that is significantly
different from zero at 2.5% significance level. Since under the null-hypothesis also all coefficients
of VAR are zero, this threshold holds also for each H-step ahead forecast error variance.
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Table 2 reports some basic statistics of the networks for different H (1 (con-
temporaneous), 5, 10, and 20). We follow the notation in Newman (2009) la-
belling by n the number of vertices (for our sample the number of regions plus
common component), m the number of edges (the number of no-zero links), c
the mean degree (i.e. m/c, S the fraction of vertices in the largest (weakly con-
nected) component), l the mean geodesic distance (any two no-connected links
are excluded by calculation), d the diameter of network (the length of the longest
finite geodesic path), C the average clustering coefficient (based on transitivity
in weak form), and r the assortative coefficient.

N m c S l d C r
H1 200 1195 5.97 1 3.31 6 0.15 0.83
H5 200 1185 5.92 1 2.97 8 0.14 0.12
H10 200 1232 6.16 1 3.07 7 0.1 0.28
H20 200 1291 6.46 1 3.06 6 0.09 0.41

Table 2: Characteristics of the networks derived from the GVD matrix with H1, H5,
H10, H20. N is the number of vertices (for our sample the number of regions plus
common component), m the number of edges (the number of no-zero links), c the
mean degree (i.e. m/c, S the fraction of vertices in the largest (weakly connected)
component), l the mean geodesic distance (any two no-connected links are excluded
by calculation), d the diameter of network (the length of the longest finite geodesic
path), C the average clustering coefficient (based on transitivity in weak form), and r
the assortative coefficient (see Newman (2009)).

Connectedness measured by c (and by the inverse of l) increases with time
horizon. Clustering is instead decreasing with time horizon, but remains at high
level suggesting a core-periphery structure.

Fundamental characteristic of a network is its degree distribution, that is a
description of relative frequencies of nodes that have a given degree d under a
certain degree distribution, where the degree of a node is the number of links to
other nodes. In particular, in a regular network all nodes have the same degree,
while a Poisson random network has a Poisson degree distribution. Another
prominent distribution is a scale-free distribution where the relative probabilities
of degree of fixed ratio are the same independent of the scale of those degrees.
Scale-free distribution has “fat tails”, that is there have many more nodes with
very small and very large degrees with respect to a Poisson distribution.

Figures 13-15 show the degree distributions (in log-log) of the connectedness
matrices with H=1, 5 and 10 years respectively. In all cases, the degree distri-
butions seem to follow a Poisson distribution. This implies that in all variance
decomposition matrices (with H=1, 5 and 10 years) there is a great deal of het-
erogeneity in the degrees of nodes.



An Estimate of the Degree of Interconnectedness between European Regions 22

Degree (log scale)

F
re

qu
en

cy
 (

lo
g 

sc
al

e)

To regions (Contemporaneous)
From regions (Contemporaneous)

1 2 3 4 5 6 7 8 9 11

0.
03

0.
08

0.
15

0.
4

0.
76
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Finally, using a Kamada-Kawai algorithm Figures 17 and 18 a provides a
graphical visualization of the estimated network across Europrean regions.19 The

19The aim of the Kamada-Kawai algorithm is to find a set of coordinates in which, for each
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colors of the vertices are the same for regions belonging to the same country and
correspond to those in Figure (11).
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Figure 17: Kamadakawai network with
threshold=2.12% for adjacent matrix
derived form DgH.Norm.H1
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Figure 18: Kamadakawai network with
threshold=2.12% for adjacent matrix
derived form DgH.Norm.H10

The higher degree of connectedness of network with time horizon of 10 years
is evident, as well as the core-periphery structure of network.

III.E. Connectedness Matrix versus Spatial Matrix

In order to compare our connectedness matrix with some spatial weight matrix
used in the spatial econometric literature, we construct two networks derived
from the GVD of the variance-covariance matrix of a spatial model as the one in
Eq. (21) of Section II.E.. In particular we assume two different spatial weight
matrices, i.e. a first-order contiguity matrix, Wcont, and a distance based matrix
with cut-off, WinvDistQ1, (both row-standardized) whose weights are given by:

wcont(i, j) =

{

1 if i and j share a border
0 otherwise

winvDistQ1(i, j) =

{

d−2
ij if dij < 370 miles

0 otherwise

pair of nodes, the Euclidean distance is approximately proportional to the geodesic distance
between two nodes.
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and we calibrate the parameters of the model (ρ=0.32, λ=0.42, φ=0.32, ψ=0
and σ2

ǫ=1) to get networks which are similar to our contemporaneous network in
terms of mean degrees (see Table ??).20

n m c S l d C r
H1 199 1188 5.97 1 3.3 6 0.15 0.83
Wcont 199 1082 5.44 18 2.47 16 0.56 0.94
WinvDistQ1 199 1237 6.22 5 4.05 21 0.63 0.97

Table 3: Characteristics of the networks derived from the GVD matrix with H1, Wcont

and WinvDistQ1.

The network graph visualization is given in Figures (19)-(20). As before, the
colors of the vertices are the same for regions belonging to the same country and
correspond to those in Figure (11).
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Figure 19: Kamadakawai network with
threshold=2.12% for adjacent matrix
derived from the spatial model with
Wcont
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Figure 20: Kamadakawai network with
threshold=2.12% for adjacent matrix
derived from the spatial model with
WinvDistQ1

20Obviously we use the same level of significance on the pairwise directional connectedness
equal to 2.12% and we build the 0-1 adjacent matrices corresponding to directed but unweighted
networks.
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IV. Concluding Remarks

In this paper we have discussed how it is possible to estimate the intercon-
nections between European regions by a connectedness matrix. The latter has
the advantage to be immediately interpretable as a network between regions;
finally we have investigate how the most popular spatial matrices used in the
spatial literature have features completely different with respect to our estimated
connectedness matrix.

The use of Bayesian Model Averaging has been motivated by the high-dimensional
problem we face; however, this is not the only approach that it is possible to fol-
low; in a companion paper we illustrate how a LASSO approach can produce a
better result (see Fiaschi and Parenti (2013)).

As regards the empirical applications a next step is to apply the proposed
methodology to the analysis of the interconnection between the dynamics of per
capita GDP of countries.
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A List of NUTS2 Regions and selected AR order

Region Code Region Name AR order Region Code Region Name AR order
selected by EIC selected by EIC

AT11 Burgenland (A) 0 DK01 Hovedstaden 0
AT12 Nieder?sterreich 0 DK02 Sj?lland 0
AT13 Wien 1 DK03 Syddanmark 0
AT21 K?rnten 0 DK04 Midtjylland 0
AT22 Steiermark 0 DK05 Nordjylland 0
AT31 Ober?sterreich 0 ES11 Galicia 0
AT32 Salzburg 0 ES12 Principado de Asturias 0
AT33 Tirol 0 ES13 Cantabria 0
AT34 Vorarlberg 0 ES21 Pais Vasco 0
BE1 R?gion de Bruxelles-Capitale 1 ES22 Comunidad Foral de Navarra 0
BE21 Prov. Antwerpen 0 ES23 La Rioja 0
BE22 Prov. Limburg (B) 0 ES24 Arag?n 1
BE23 Prov. Oost-Vlaanderen 0 ES3 Comunidad de Madrid 1
BE24 Prov. Vlaams Brabant 1 ES41 Castilla y Le?n 0
BE25 Prov. West-Vlaanderen 1 ES42 Castilla-la Mancha 1
BE31 Prov. Brabant Wallon 0 ES43 Extremadura 0
BE32 Prov. Hainaut 0 ES51 Catalu?a 1
BE33 Prov. Li?ge 1 ES52 Comunidad Valenciana 1
BE34 Prov. Luxembourg (B) 1 ES53 Illes Balears 0
BE35 Prov. Namur 0 ES61 Andalucia 1
DE11 Stuttgart 0 ES62 Regi?n de Murcia 0
DE12 Karlsruhe 0 ES63 Ciudad Aut?noma de Ceuta (ES) 0
DE13 Freiburg 0 ES64 Ciudad Aut?noma de Melilla (ES) 0
DE14 T?bingen 0 ES7 Canarias (ES) 1
DE21 Oberbayern 0 FI13 It?-Suomi 0
DE22 Niederbayern 0 FI18 Etel?-Suomi 0
DE23 Oberpfalz 0 FI19 L?nsi-Suomi 0
DE24 Oberfranken 0 FI1A Pohjois-Suomi 0
DE25 Mittelfranken 0 FI2 ?land 0
DE26 Unterfranken 0 FR1 Ille de France 0
DE27 Schwaben 0 FR21 Champagne-Ardenne 0
DE5 Bremen 0 FR22 Picardie 0
DE6 Hamburg 0 FR23 Haute-Normandie 2
DE71 Darmstadt 0 FR24 Centre 0
DE72 Gie?en 0 FR25 Basse-Normandie 0
DE73 Kassel 0 FR26 Bourgogne 0
DE91 Braunschweig 0 FR3 Nord - Pas-de-Calais 0
DE92 Hannover 0 FR41 Lorraine 0
DE93 L?neburg 0 FR42 Alsace 0
DE94 Weser-Ems 0 FR43 Franche-Comt? 0
DEA1 D?sseldorf 0 FR51 Pays de la Loire 0
DEA2 K?ln 0 FR52 Bretagne 0
DEA3 M?nster 0 FR53 Poitou-Charentes 0
DEA4 Detmold 0 FR61 Aquitaine 0
DEA5 Arnsberg 0 FR62 Midi-Pyr?n?es 0
DEB1 Koblenz 0 FR63 Limousin 0
DEB2 Trier 0 FR71 Rh?ne-Alpes 0
DEB3 Rheinhessen-Pfalz 0 FR72 Auvergne 0
DEC Saarland 0 FR81 Languedoc-Roussillon 0
DEF Schleswig-Holstein 0 FR82 Provence-Alpes-C?te d’Azur 0

FR83 Corse 0
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Region Code Region Name AR order Region Code Region Name AR order
selected by EIC selected by EIC

GR11 Anatoliki Makedonia, Thraki 0 PT15 Algarve 0
GR12 Kentriki Makedonia 0 PT16 Centro (PT) 0
GR13 Dytiki Makedonia 0 PT17 Lisboa 0
GR14 Thessalia 0 PT18 Alentejo 0
GR21 Ipeiros 0 SE11 Stockholm 0
GR22 Ionia Nisia 0 SE12 ?stra Mellansverige 0
GR23 Dytiki Ellada 0 SE21 Sm?land med ?arna 0
GR24 Sterea Ellada 0 SE22 Sydsverige 0
GR25 Peloponnisos 0 SE23 V?stsverige 0
GR3 Attiki 0 SE31 Norra Mellansverige 2
GR41 Voreio Aigaio 1 SE32 Mellersta Norrland 0
GR42 Notio Aigaio 0 SE33 ?vre Norrland 0
GR43 Kriti 0 UKC1 Tees Valley and Durham 0
IE01 Border, Midlands and Western 0 UKC2 Northumberland, Tyne and Wear 0
IE02 Southern and Eastern 0 UKD1 Cumbria 1
ITC1 Piemonte 0 UKD2 Cheshire 0
ITC2 Valle d’Aosta 0 UKD3 Greater Manchester 1
ITC3 Liguria 0 UKD4 Lancashire 1
ITC4 Lombardia 1 UKD5 Merseyside 0
ITD1 Provincia Autonoma Bolzano 0 UKE1 East Yorkshire, Northern Lincolnshire 0
ITD2 Provincia Autonoma Trento 0 UKE2 North Yorkshire 0
ITD3 Veneto 0 UKE3 South Yorkshire 0
ITD4 Friuli-Venezia Giulia 0 UKE4 West Yorkshire 1
ITD5 Emilia-Romagna 0 UKF1 Derbyshire, Nottinghamshire 0
ITE1 Toscana 3 UKF2 Leicestershire, Rutland, Northants 0
ITE2 Umbria 0 UKF3 Lincolnshire 0
ITE3 Marche 0 UKG1 Herefordshire, Worcestershire, Warks 0
ITE4 Lazio 0 UKG2 Shropshire, Staffordshire 0
ITF1 Abruzzo 0 UKG3 West Midlands 1
ITF2 Molise 0 UKH1 East Anglia 1
ITF3 Campania 1 UKH2 Bedfordshire, Hertfordshire 1
ITF4 Puglia 0 UKH3 Essex 1
ITF5 Basilicata 0 UKI1 Inner London 1
ITF6 Calabria 1 UKI2 Outer London 1
ITG1 Sicilia 0 UKJ1 Berkshire, Bucks and Oxfordshire 1
ITG2 Sardegna 0 UKJ2 Surrey, East and West Sussex 1
LU LUXEMBOURG 1 UKJ3 Hampshire and Isle of Wight 0
NL11 Groningen 0 UKJ4 Kent 0
NL12 Friesland (NL) 0 UKK1 Gloucestershire, Wiltshire, Bristol 1
NL13 Drenthe 2 UKK2 Dorset and Somerset 1
NL21 Overijssel 1 UKK3 Cornwall and Isles of Scilly 1
NL22 Gelderland 0 UKK4 Devon 0
NL31 Utrecht 0 UKL1 West Wales and The Valleys 1
NL32 Noord-Holland 0 UKL2 East Wales 1
NL33 Zuid-Holland 0 UKM2 Eastern Scotland 0
NL34 Zeeland 0 UKM3 South Western Scotland 0
NL41 Noord-Brabant 1 UKM5 North Eastern Scotland 0
NL42 Limburg (NL) 1 UKM6 Highlands and Islands 0
PT11 Norte 0 UKN Northern Ireland 1
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