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The R&D investment decision game with product differentiation 
 
 

Abstract 
 
This article extends the classical d’Aspremont and Jacquemin’s (1988, 1990) cost-reducing R&D model with 
spill-overs to allow quantity-setting firms (Cournot rivalry) to play the non-cooperative R&D investment 
decision game with horizontal product differentiation. Unlike Bacchiega et al. (2010), who identify a 
parametric region – defined by the extent of technological spill-overs and the efficiency of R&D activity – in 
which the game is a prisoner’s dilemma (self-interest and mutual benefit of cost-reducing innovation conflict), 
this work shows that product differentiation changes the game into a deadlock (self-interest and mutual benefit 
do not conflict), irrespective of the parameter scale (thus, holding also in the absence of spill-over effects). The 
social welfare when the degree of product differentiation is high enough and a deadlock characterises investing 
in cost-reducing R&D is larger than when firms do not invest in R&D, irrespective of the technological spill-
overs extent and the R&D activity’s efficiency. These findings suggest that investing in R&D challenges the 
improvement of interventions aimed at favouring product differentiation. These results also hold for price-
setting firms (Bertrand rivalry). 
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1. Introduction 
 
    This article revisits the influential d’Aspremont and Jacquemin (1988, 1990), AJ henceforth, model 
of cost-reducing R&D with spill-overs by considering a non-cooperative three-stage game in which 
firms endogenously choose whether to invest in R&D – along the line of Bacchiega et al. (2010) – 
and consumers have preferences characterising horizontally differentiated products (Singh and Vives, 
1984). 
    In their pioneering contributions, AJ build a two-stage game in which two identical firms invest in 
R&D at the first stage turning to be Cournot competitors in a market for homogeneous goods at the 
second stage. The authors consider three cases under which firms (i) non-cooperatively compete at 
both stages (two-stage non-cooperative game), (ii) cooperate at both stages (two-stage cooperative 
solution), and (iii) collude at the R&D stage and compete at the market stage (two-stage mixed game). 
The process innovation R&D investment flows and reduces the investing firms’ marginal cost; 
however, it also exogenously spills over reducing, in turn, the rival’s marginal cost. Specifically, AJ’s 
article aims at comparing the magnitude of cost-reducing technical advance achieved when firms 
conduct R&D either competitively or cooperatively, finding that cooperative R&D leads to greater 
technological advance than competitive R&D for sufficiently large spill-over effects. 
    Later, Henriques (1990) and Suzumura (1992) extend AJ in two distinct directions. In the first 
route, Henriques (1990) augments AJ’s findings by providing stability conditions showing that the 
main results obtained by AJ’s quantity-setting duopoly are meaningful only when the solution of the 
non-cooperative game is stable in the sense of Seade (1980). This implies the existence of thresholds 
– in the parameter space defined by the extent of technological spill-overs and the efficiency of R&D 
activity (as also clarified by Bacchiega et al., 2010) – such that the reaction functions in the R&D 
space should adequately cross. In particular, for any given level of the extent of technological spill-
overs, the efficiency of the R&D technology should be low enough to avoid over-investment in R&D 
that in turn would increase the degree of competition (by reducing average variable costs of 
production, increasing output and lowering market price) thereby eroding profits in both cases of 
strategic substitutability (little technological spill-overs) and complementarity (large technological 
spill-overs) of R&D investments.1 In the second route, Suzumura (1992) applies AJ’s idea to a general 
class of oligopoly models both in the cases of cooperative and non-cooperative R&D with spill-overs. 
    Subsequent extensions by, amongst others, Kamien et al. (1992), Ziss (1994), De Bondt (1996), 
Amir (2000), Amir et al. (2003) and Lambertini and Rossini (2009), have typically shown that 
cooperative R&D decisions amongst firms competing in the product market are socially beneficial. 
In this literature spill-overs are exogenous, i.e., a fixed fraction of a firm’s R&D investment 
exogenously flows to competitors, so that each firm has no direct control over the extent of disclosure. 
    There exists, however, another branch of the literature assuming firms can endogenously control 
spill-overs aiming at investigating whether owners decide about information sharing. The works 
belonging to this literature can be divided into two groups. One group (Poyago-Theotoky, 1999; 
Atallah, 2004; Lambertini et al., 2004) studies the case in which firms decide on information sharing 
after they invested in R&D (i.e., spill-overs do not affect the extent of R&D investments). The main 
result of this branch of literature is to have firms choosing to keep their R&D knowledge secret and 
thus R&D spill-overs are absent (non-disclosure). The second group (Gersbach and Schmutzler, 
2003; Gil-Moltó et al., 2005; Piga and Poyago-Theotoky, 2005; Milliou, 2009) considers the 
possibility of firms choosing whether sharing R&D outcomes before they invest in R&D (i.e., spill-

 
1 In the case of strategic substitutability (resp. complementarity) of the R&D activity, the intensity of the R&D externality 
is small (resp. large) and the amount of R&D investment 𝑥௜ of firm 𝑖 and 𝑥௝ and of firm 𝑗 (𝑖 = {1,2};  𝑖 ≠ 𝑗) are negatively 
(resp. positively) related in the R&D space, i.e., the R&D reaction curves are downward-sloping (resp. upward-sloping). 

The stability conditions require that ฬ
ௗ௫೔

ௗ௫ೕ
ฬ < 1 in both cases. Poyago-Theotoky (1999) interpreted strategic substitutability 

(resp. complementarity) as resembling the case in which R&D-related information disclosure is small (resp. large), and 
firms follow similar (resp. distinct) research paths. 
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overs do affect the extent of R&D investments). Protecting or sharing knowledge depends on price 
or quantity competition (the first paper) on location (second and third papers), and if the extent of 
R&D spill-overs is not too strong, firms may let R&D knowledge flow to competitors (the last paper). 
The main result of this branch of literature is to have firms choosing to disclose R&D knowledge with 
the rivals.2 
    Though the AJ framework is widely used in the industrial organization literature as a basic textbook 
model for process innovation in oligopolistic contexts, the analysis of the properties and solutions of 
the (three-stage) R&D investment decision game played by non-cooperative and selfish firms is rather 
scant. Indeed, while AJ and all of the subsequent aforementioned works just analyse exogenously 
given contexts with R&D investments (irrespective of whether the focus is on either the analysis of 
cooperation versus competition in the R&D phase or the endogeneity or exogeneity of spill-overs), 
the underlying game played by firms choosing whether to invest in R&D in the absence of spill-over 
effects is a prisoner’s dilemma (there exists conflict between self-interest and mutual benefit to 
undertake cost-reducing innovation). In other words, R&D investments result to be profit-reducing. 
    Despite showing this result in the simplified AJ’s two-stage model seems to be rather 
straightforward, it has never been explicitly noted. As an exception, Bacchiega et al. (2010) add the 
investment-decision stage to the two-stage AJ’s game. By assuming R&D spill-over effects occur, 
those authors pinpoint the existence of: (1) a parameter region – defined by the interplay between the 
extent of technological spill-overs and the efficiency of the R&D activity – in which the three-stage 
R&D game (played by the firm that non-cooperatively choose both R&D investment at the R&D 
stage and output at the market stage) is a prisoner’s dilemma (low values of R&D spill-overs); (2) 
conversely and more importantly, a parameter region where the prisoner’s dilemma is solved and the 
game turns to be an anti-prisoner’s dilemma (larger values of R&D spill-overs), in which no conflict 
between self-interest and mutual benefit to undertake cost-reducing innovation exists. However, 
Bacchiega et al. (2010) choose to restrict the analysis to the case of homogeneous products and 
quantity-setting firms. Moreover, they also neglect to consider the R&D cost conditions related to the 
symmetric subgame I/I and the asymmetric subgame I/NI needed to define the parametric space in 
which the non-cooperative version of the R&D game is feasible. 
    The present work aims at generalising the variety of products allowing capturing the case of 
(horizontally) differentiated products and augmenting the analysis to consider all the relevant 
constraints of the R&D game, assuming both Cournot and Bertrand rivalries. Definitively, the article 
proposes to question whether the unpleasant prisoner’s dilemma (on the firm side) is a robust feature 
of the R&D duopoly game framed in the AJ set-up. It explicitly shows that horizontal product 
differentiation solves the dilemma obtained by Bacchiega et al. (2010) and let the game become a 
deadlock, irrespective of the extent of technological spill-overs and the efficiency of the R&D activity. 
It also represents an attempt to provide a thoughtful analysis of the non-cooperative version of the 
R&D model developed by AJ – which is surprisingly missing in the IO literature – by clarifying (a) 
the role played by the relevant thresholds (the stability conditions and the R&D cost conditions) so 
that the feasibility conditions of the model are accurately disentangled to assure the non-violation of 
several bounds (e.g., the non-negativity of the R&D costs), and (b) the parameter configurations under 
which the game is a prisoner’s or an anti-prisoner’s dilemma. As is known, the prisoner’s dilemma 
of the R&D game in the AJ setting reveals the sub-optimality of the non-cooperative solution 
(alternatively, cooperation is Pareto improving). Thus, the AJ’s basic model always shows (regardless 
of the spill-overs effects) the unpleasant result that non-cooperation is harmful. This also explains 
why much of the subsequent literature has focused on the cooperative solution. Unlike the existing 
literature, this article shows that an appropriate generalisation with product differentiation allows the 
non-cooperative and unilateral R&D investment behaviour to turn to be better off for players. 
    Our results differ from those of Bacchiega et al (2010) in a crucial respect: in their work, the 
prisoner’s dilemma vanishes if and only if the extent of technological spill-overs is sufficiently high, 

 
2 There exists another relevant branch of the literature augmenting the AJ model to the analysis of R&D subsidies, i.e., 
Hinloopen (1997, 2000) and Amir et al. (2019). 
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which, in turn, would require that firms disclose (or – equivalently – they are unable to keep closed) 
the information on the results of their R&D investment. However, the non-disclosure (i.e., keeping 
secret) R&D-related result in the AJ setting is in the unilateral interest of each non-cooperative firm. 
Under product differentiation, the prisoner’s dilemma can vanish also in the absence of R&D spill-
overs in both cases of quantity-setting and price-setting duopolies. Moreover, the welfare analysis 
also reveals that, at the non-cooperative Pareto efficient Nash equilibrium with product differentiation 
in which both firms invest in cost-reducing R&D, firms and consumers are better off than without 
R&D. 
    Our findings suggest that investing in R&D challenges the improvement of interventions aimed at 
fostering product differentiation. Though this policy may seem to be detrimental for consumers as it 
strengthens firms’ market power, it also and encourages R&D investments (at least starting with a 
relatively high degree of differentiation) in turn allowing firms to increase their market share at the 
expense of the rival’s share in the market for the product of their variety (and thus consumers’ surplus 
increases in aggregate terms as total supply increases due to the stimulus of the higher variety). This 
eventually contributes to increasing profits and thus social welfare compared to the scenario where 
products are perceived as homogeneous. 
    When products are perfect substitutes, an increase in the degree of R&D spill-overs always induces 
the investing firm to reduce its investment effort (to prevent the rival from taking advantage by free-
riding on its investment activity). An increase in product heterogeneity resulting from consumer 
preferences tends to promote R&D strategic complementarity as the degree of competition in the 
product market reduces and profits increases. Therefore, there is room for the joint use of resources 
devoted to R&D (i.e., the R&D externality of one firm favours the R&D investment of the rival and 
vice versa) if the efficiency of R&D activity is high enough. Finally, product complementarity 
promotes cooperative behaviour in the product market by letting firms act as if they were maximising 
joint profits, and this in turn eventually leads each of them to benefit from R&D complementarity. 
    The remainder of the article is organised as follows. Section 2 outlines the model and discusses the 
main ingredients of the R&D investment decision game with product differentiation. Section 3 
concentrates on quantity-setting firms.3 Section 4 concludes the article. The Appendix provides 
analytical details and the proofs of the propositions. 
 
2. The model 
 
    The starting point of our analysis can be spelt out by following the pioneering idea of cost-reducing 
innovation developed by AJ, augmented almost two decades later by Bacchiega et al. (2010), who 
consider the non-cooperative R&D investment decision game played by two quantity-setting firms. 
    Unlike Bacchiega et al. (2010), this section aims at developing the investment decision game in an 
AJ-like setting (including the stability conditions as in Henriques, 1990) by considering horizontal 
product differentiation à la Singh and Vives (1984). 
    Consider an industry where two quantity-setting firms, 𝑖 and 𝑗 (𝑖 = {1,2};  𝑖 ≠ 𝑗), face the 
perspective of investing in R&D and then sell goods of variety 𝑖 and 𝑗, respectively, in the product 
market. The linear (inverse) demand for product of variety 𝑖 is given by 𝑝௜ = 𝑎 − 𝑏(𝑞௜ + 𝑑𝑞௝), where 
𝑝௜ denotes the price of product 𝑖 (representing the marginal willingness to pay of consumers towards 
products of firm 𝑖), 𝑞௜, and 𝑞௝ are the quantities of product of variety 𝑖 and variety 𝑗 produced by firm 
𝑖 and firm 𝑗, respectively, 𝑎 > 0 is a positive parameter representing the market size, 𝑏 > 0 measures 
the slope of the market demand being part of its elasticity, and −1 ≤ 𝑑 ≤ 1 measures the degree of 
product differentiation as consumers perceive in the market (Singh and Vives, 1984). Positive (resp. 
negative) values of 𝑑 refer to product substitutability (resp. complementarity). When 𝑑 = 0 goods 

 
3 For space constraints, the analysis of Bertrand competition in the AJ setting is available upon request. In this regard, we 
pinpoint that the results of the quantity competition model qualitatively hold for price-setting firms (with quantitative 
differences, especially about the thresholds identified by the stability conditions and the R&D cost conditions). 
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are totally differentiated, i.e., each firm acts as a monopolist. The case 𝑑 = 1 refers to homogeneous 
goods and resembles the model developed by Bacchiega et al. (2010). This demand structure comes 
from the usual specification of quadratic utility for consumers’ preferences, that is 𝑈(𝑞௜ , 𝑞௝) = 𝑎(𝑞௜ +

𝑞௝) −
௕

ଶ
(𝑞௜

ଶ + 𝑞௝
ଶ + 2𝑑𝑞௜𝑞௝), as proposed by Dixit (1979) and subsequently used, amongst many 

others, by Singh and Vives (1984). For reasons of analytical tractability (and without loss of 
generality), we normalise 𝑎 = 𝑏 = 1 henceforth. Therefore, the indirect demand for product of 
variety 𝑖 under horizontal differentiation is: 
 𝑝௜ = 1 − 𝑞௜ − 𝑑𝑞௝, 𝑖, 𝑗 = {1,2}, 𝑖 ≠ 𝑗. (1) 
    The total cost of production and the cost of R&D effort of firm 𝑖 are respectively given by the 
functions 𝐶௜൫𝑞௜ , 𝑥௜, 𝑥௝൯ and 𝑋௜(𝑥௜), where 𝑥௜  and 𝑥௝ represent the R&D effort (investment) firm 𝑖 and 
firm 𝑗 exert, respectively. Following AJ, these functions can be specified using the expressions: 
 𝐶௜൫𝑞௜, 𝑥௜, 𝑥௝൯ = ൫𝑤 − 𝑥௜ − 𝛽𝑥௝൯𝑞௜, 𝑖, 𝑗 = {1,2}, 𝑖 ≠ 𝑗, (2) 
and 
 𝑋௜(𝑥௜) =

௚

ଶ
𝑥௜

ଶ, 𝑖, 𝑗 = {1,2}, 𝑖 ≠ 𝑗, (3) 

where 𝑔 > 0 is a parameter measuring R&D efficiency. It scales up/down R&D investment total 
costs and represents an exogenous index of technological progress measuring, for example, the 
appearance of a new, cost-effective technology, weighting the degree at which the available 
technology for process innovation affects investment decisions and firm’s profits. A reduction in 𝑔 
can be interpreted as a technological advance so that investing in R&D becomes cheaper (i.e., the 
efficiency of R&D investment increases). In addition, 𝛽 ∈ [0,1] captures the extent of spill-overs 
(externality) of the R&D investment activity of firm 𝑗 exogenously flowing as a cost-reducing device 
towards firm 𝑖 (i.e., the amount of information that firm 𝑗 exogenously discloses). We assume that 
both firms symmetrically share this characteristic of the extent of technological spill-overs. This 
scenario represents the standard case of exogenous spill-overs – with respect to which a fixed fraction 
of a firm’s R&D process innovation exogenously flows to competitors, so that each firm has no direct 
control over the extent of disclosure for, e.g., technological reasons – and directly follows AJ and the 
subsequent contributions by Henriques (1990), Suzumura (1992), Kamien et al. (1992), De Bondt 
(1996) and Bacchiega et al. (2010). When 𝛽 = 0 there are no R&D externalities, resembling the case 
of non-disclosure of R&D information. When 𝛽 = 1, R&D information is fully shared, so that R&D 
disclosure is at its (exogenous) highest intensity. 
    The expression representing the firm’s technology in Eq. (2) implies that the unitary cost of 
production should be positive so that 𝑤 − 𝑥௜ − 𝛽𝑥௝ > 0 should always hold, where 0 < 𝑤 < 1 
measures the unitary technology of production cost irrespective of R&D investments. Moreover, the 
expression representing the cost of R&D effort in Eq. (3) reveals diminishing returns in the R&D 
technology exerted by firm 𝑖. Therefore, each firm sustains the cost of R&D effort with a technology 
displaying decreasing returns to scale to achieve the benefit of reducing the total unit costs of 
production with constant returns to scale. 
    Definitively, selfish firms are engaged in a three-stage non-cooperative R&D investment decision 
game with horizontal product differentiation and complete information in which they must choose 
whether to invest in R&D activities at stage one (the investment-decision stage). At stage two (the 
R&D stage), firms choose the extent of process innovation R&D investment (if they invest) or, 
alternatively, they do not invest in R&D. At stage three (the market stage), firms choose the quantity 
(Section 3) or the price of the goods in the Bertrand scenario, available upon request. As usual, the 
game is solved by adopting the backward induction logic. 
 
3. The R&D investment decision game with product differentiation: Cournot competition 
 
This section initiates the analysis of the non-cooperative R&D investment decision game with 
horizontal product differentiation in a quantity-setting (Cournot) rivalry. 
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3.1. The symmetric subgame in which firms do not invest in R&D (NI/NI) 
 
Consider the possibility that firms symmetrically choose not to invest in R&D, that is 𝑥௜ = 0 and 
𝑋௜(𝑥௜) = 0 (𝑖 = {1,2}, 𝑖 ≠ 𝑗). By using Eqs. (1) and (2) the profit function of firm 𝑖 is: 

 Π௜
ேூ/ேூ

= 𝑝௜𝑞௜ − 𝐶௜(𝑞௜, 0,0) = ൫1 − 𝑞௜ − 𝑑𝑞௝ − 𝑤൯𝑞௜, (4) 
where the upper script NI/NI stands for universal no R&D investments. At the market stage of the 
game, each firm chooses the amount of output to maximise profits. Maximisation of (4) with respect 
to 𝑞௜ leads to the following downward-sloping reaction function of firm 𝑖 in the output space: 

 
பஈ೔

ಿ಺/ಿ಺

డ௤೔
= 0 ⇔ 𝑞

௜

ேூ/ேூ
൫𝑞௝൯ =

ଵି௪ିௗ௤ೕ

ଶ
. (5) 

Using Eq. (5) together with the symmetric counterpart for firm 𝑗 allows to obtain the system of 

reaction functions in the (𝑞௜ , 𝑞௝) space, whole solution 𝑞
௜

ேூ/ேூ
൫𝑞௝൯ (𝑖 = {1,2}, 𝑖 ≠ 𝑗) leads firm 𝑖 to 

produce the following equilibrium quantity (denoted with an asterisk) of product of variety 𝑖 (which 
is symmetric to the quantity of product of variety 𝑗 produced by firm 𝑗): 

 𝑞௜
∗ேூ/ேூ

=
ଵି௪

ଶାௗ
. (6) 

    From the expression in (6) one can easily get the equilibrium value of the market price of product 
of variety 𝑖 and profits of firm 𝑖, which are respectively: 

 𝑝௜
∗ேூ/ேூ

=
ଵା௪(ଵାௗ)

ଶାௗ
. (7) 

and 

 Π௜
∗ேூ/ேூ

= ቀ
ଵି௪

ଶାௗ
ቁ

ଶ

. (8) 

Clearly, a change in consumers’ tastes generating an increase in the degree of product differentiation 
(𝑑 ↓) causes, ceteris paribus, an increase in the demand directed to both firms for the product of their 
own variety (at the expense of the rival’s share) also strengthening the market power by eventually 
increasing profits. 
    The equilibrium values of consumers’ surplus (𝐶𝑆∗ேூ/ேூ) and producers’ surplus (𝑃𝑆∗ேூ/ேூ) that 
can be obtained in the NI/NI subgame are summarised as follows: 

 𝐶𝑆∗ேூ/ேூ =
ଵ

ଶ
ቂ൫𝑞௜

∗ேூ/ேூ
൯

ଶ
+ ൫𝑞௝

∗ேூ/ேூ
൯

ଶ
+ 2𝑑𝑞௜

∗ேூ/ேூ
𝑞௝

∗ேூ/ேூ
ቃ =

(ଵି௪)మ(ଵାௗ)

(ଶାௗ)మ . (9) 

and 

 𝑃𝑆∗ேூ/ேூ = Π௜
∗ேூ/ேூ

+ Π௝
∗ேூ/ேூ

= 2 ቀ
ଵି௪

ଶାௗ
ቁ

ଶ

. (10) 

Therefore, social welfare under NI/NI, 𝑊∗ேூ/ேூ, is: 

 𝑊∗ேூ/ேூ = 𝐶𝑆∗ேூ/ேூ + 𝑃𝑆∗ேூ/ேூ =
(ଵି௪)మ(ଷାௗ)

(ଶାௗ)మ . (11) 

 
3.2. The symmetric subgame in which both firms invest in R&D (I/I) 
 
Consider now the possibility that firms symmetrically choose to invest in R&D, that is 𝑥௜ > 0 and 
𝑋௜(𝑥௜) > 0 (𝑖 = {1,2}, 𝑖 ≠ 𝑗). Therefore, by using Eqs. (1), (2) and (3) the profit function of firm 𝑖 
becomes: 

 Π௜
ூ/ூ

= 𝑝௜𝑞௜ − 𝐶௜൫𝑞௜, 𝑥௜, 𝑥௝൯ − 𝑋௜(𝑥௜) = ൫1 − 𝑞௜ − 𝑑𝑞௝൯𝑞௜ − ൫𝑤 − 𝑥௜ − 𝛽𝑥௝൯𝑞௜ −
௚

ଶ
𝑥௜

ଶ, (11) 

where the upper script I/I stands for positive R&D investments of both firms. At the market stage of 
the game, each firm chooses the amount of output to maximise profits. Maximisation of (11) with 
respect to 𝑞௜ leads to the following downward-sloping reaction function of firm 𝑖 in the (𝑞௜, 𝑞௝) space 
as a function also of R&D efforts 𝑥௜ and 𝑥௝, that is: 

 
பஈ೔

಺/಺

డ௤೔
= 0 ⇔ 𝑞

௜

ூ/ூ
൫𝑞௝ , 𝑥௜ , 𝑥௝൯ =

ଵି௪ିௗ௤ೕା௫೔ାఉ௫ೕ

ଶ
. (12) 
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Eq. (12) reveals that an increase in the R&D investment of firm 𝑖 shift outwards its own reaction 
function the thereby contributing to increase production, whereas an increase in the R&D investment 
of the rival (firm 𝑗) shift outwards firm 𝑖’s reaction function with a lower intensity as 𝑥௝ can be 
beneficial for 𝑞௜ only whether there exists positive R&D externalities (𝛽 > 0), so that R&D-related 
information can flow to competitors partially if 0 < 𝛽 < 1 or totally if 𝛽 = 1 generating benefits 
without payments to the rival. In the last case, the 𝑥௝-related externality contributes (at its highest 
intensity) exactly as 𝑥௜ as a device fostering production of firm 𝑖. Using Eq. (12) together with the 
symmetric counterpart for firm 𝑗 allows to obtain the system of reaction functions in the (𝑞௜ , 𝑞௝) space 

as a function of the R&D effort. The solution of the system of output reaction functions 𝑞
௜

ூ/ூ
൫𝑞௝, 𝑥௜, 𝑥௝൯ 

(𝑖 = {1,2}, 𝑖 ≠ 𝑗) allows us to get the following equilibrium output obtained at the third stage of the 
symmetric subgame I/I: 

 𝑞
௜

ூ/ூ
(𝑥௜, 𝑥௝) =

(ଵି௪)(ଶିௗ)ା(ଶିௗఉ)𝑥೔ା(ଶఉିௗ)𝑥ೕ

(ଶିௗ)(ଶାௗ)
. (13) 

Eq. (13) shows that output production of firm 𝑖 depends on its own R&D investments (due to a 
twofold reason) as well as on R&D investments carried out by firm 𝑗 (due to R&D the externality). 
On one hand, the R&D investment undertaken by firm 𝑖 allows for a direct increase in the amount of 
its own output production (whose intensity is weighted by the coefficient 2) due to the strategic 
interaction with the rival. Therefore, firm 𝑖 increases production through this channel. On the other 
hand, if products are substitutes (𝑑 > 0), there exists a mitigating effect of 𝑥௜ on 𝑞௜ because of the 
amount of R&D-related information externalities flowing from firm 𝑖 to firm 𝑗 (whose intensity is 
equal to  𝑑𝛽). Therefore, firm 𝑖 reduces production through this channel. However, the strength of 
the latter effect can never counterbalance the strength of the former, including under the most extreme 
conditions, i.e., when the products are perfect substitutes (𝑑 = 1) and disclosure is at its maximum 
intensity (𝛽 = 1). Definitively, an increase in 𝑥௜ always causes an increase in 𝑞௜ if products are 
substitutes. Product complementarity (𝑑 < 0), instead, sharply modifies the incentives on firm 𝑖’s 
flowing through R&D towards firm 𝑗. Specifically, the mitigating effect becomes a strengthening 
one, so that there exists a positive effect on firm 𝑖’s output of its own R&D externality flowing 
towards the rival. It is like that firm 𝑖 would have the advantage of agreeing with firm 𝑗 to disclose 
R&D information. This effect reaches its maximal effectiveness when products are perfect 
complements (𝑑 = −1) and disclosure is at its maximum intensity (𝛽 = 1). Additionally, the R&D 
disclosure of both firms allows for a further increase in output production of firm 𝑖 through the R&D 

investments of firm 𝑗 if and only if the extent of technological spill-overs is sufficiently large (𝛽 >
ௗ

ଶ
, 

i.e., 𝑥௜  and 𝑥௝ are strategic complements), turning otherwise to a reduction if the extent of 

technological spill-overs is sufficiently small (𝛽 <
ௗ

ଶ
, i.e., 𝑥௜ and 𝑥௝ are strategic substitutes). This 

holds when products are substitutes and the degree of product substitutability tends to counterbalance 
the positive feedback effect of the spill-overs, reaching its maximal intensity under product 
substitutability (𝑑 = 1). This implies that the higher the degree of product substitutability, the higher 
the need for firms to disclose R&D information to increase their own output in the product market. 
Differently, product complementarity works exactly out in the opposite direction thereby letting 
output production always being positively correlated with the amount R&D investment of the rival. 
    Substituting out Eq. (13) together its counterpart for firm 𝑗 in Eq. (11) allows to obtain firm 𝑖’s 

profits as a function of R&D efforts 𝑥௜ and 𝑥௝, i.e., Π௜
ூ/ூ

(𝑥௜, 𝑥௝). Following the tradition initiated by 
AJ in the non-cooperative version of the process investment R&D duopoly, firms maximise profits 
non-cooperatively at the second (R&D) stage of the game by choosing the amount of cost-reducing 
investment. Formally, this implies that: 

 
பஈ೔

಺/಺(𝑥𝑖,𝑥𝑗)

డ௫೔
= 0 ⇔ 𝑥௜

ூ/ூ
=

ଶ(ଶିௗఉ)ቂ(ଶିௗ)(ଵି௪)ା(ଶఉିௗ)𝑥𝑗ቃ

௚[ଵ଺ିௗమ(଼ିௗమ)]ାଶௗఉ(ସିௗఉ)ି଼
. (14) 

Using Eq. (14) together with the corresponding counterpart for firm 𝑗 allows to get the system of 
reaction functions in the R&D space, that is (𝑥௜, 𝑥௝). Solving the system of the R&D reaction functions 
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allows us to obtain the amount of equilibrium investment (denoted as usual with an asterisk) following 
the process innovation effort of firm 𝑖 at the second stage of the game (and consequently the 
symmetrical firm 𝑗’s response), that is: 

 𝑥௜
∗ூ/ூ

=
ଶ(ଵି௪)(ଶିௗఉ)

௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)
. (15) 

From Eq. (15), 𝑥௜
∗ூ/ூ

> 0 if and only if the denominator is positive, that is 𝑔 >
ଶ(ଵାఉ)(ଶିௗఉ)

(ଶିௗ)(ଶାௗ)మ ≔

𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑), as will be clear later (see Eq. (19)), where the subscript 𝑆𝐶 denotes “Stability 
Condition”. 

    The second-order condition for a maximum (concavity) requires that 
பమஈ೔

಺/಺
(௫೔,௫ೕ)

డ௫೔
మ ฬ

௫೔ୀ௫೔
∗಺/಺

< 0. This 

implies that the inequality 

 𝑔 >
ଶ(ଶିௗఉ)మ

(ଶିௗ)మ(ଶାௗ)మ
≔ 𝑔ௌை஼(𝛽, 𝑑) (second-order condition), (16) 

must hold to guarantee that the solution to the profit maximisation problem is economically 
meaningful, where the subscript 𝑆𝑂𝐶 denotes “Second Order Condition”. This condition boils down 

to 𝑔 > 𝑔ௌை஼(𝛽, 1) ≔
ଶ

ଽ
(2 − 𝛽)ଶ if 𝑑 = 1, which replicates exactly the AJ’s result in our normalised 

set up. The R&D equilibrium characterised by the expression in (15) is stable (in the sense of Seade, 
1980) if and only if the reaction functions defined in the R&D space should adequately cross 
(Henriques, 1990). Indeed, Henriques (1990) and Bacchiega et al. (2010) find that the R&D reaction 
curves can be downward-sloping or upward-sloping depending on the relative size of 𝛽 (the R&D 
externality). If they are downward-sloping (resp. upward-sloping), 𝑥௜ and 𝑥௝ are strategic substitutes 
(resp. complements). This holds when the R&D externality is small (resp. large). The stability 

conditions require that ฬ
ௗ௫೔

ௗ௫ೕ
ฬ < 1 in both cases of strategic substitutability and complementarity and 

thus lead to a relationship only between 𝑔 and 𝛽 in the case of perfect substitutability, i.e., 𝑑 = 1 
(Bacchiega et al., 2010). Differently, the R&D reaction curves in the case of product differentiation 
can be downward-sloping or upward-sloping depending on the relative size of 𝛽 and 𝑑 and 
consequently the stability conditions include three parameters (𝑔, 𝛽 and 𝑑). By computing the 
derivative 

 
ௗ௫೔

ௗ௫ೕ
=

ଶ(ଶఉିௗ)(ଶିௗఉ)

௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ, (17) 

the denominator is positive if and only if 𝑔 > 𝑔ௌை஼(𝛽, 𝑑), which should always be fulfilled for 

concavity. Therefore, 
ௗ௫೔

ௗ௫ೕ
< 0 if and only if 𝛽 <

ௗ

ଶ
 (𝑥௜ and 𝑥௝ are strategic substitutes) and 

ௗ௫೔

ௗ௫ೕ
> 0 if 

and only if 𝛽 >
ௗ

ଶ
 (𝑥௜ and 𝑥௝ are strategic complements). These conditions boil down to those found 

by Bacchiega et al. (2010) under the assumption of perfect substitutability (𝑑 = 1). The stability 

conditions ฬ
ௗ௫೔

ௗ௫ೕ
ฬ < 1 in the R&D model with product differentiation require that one should impose: 

 𝑔 >
ଶ(ଵିఉ)(ଶିௗఉ)

(ଶିௗ)మ(ଶାௗ)
≔ 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) if 0 ≤ 𝛽 <
ௗ

ଶ
, (𝑥௜ and 𝑥௝ are strategic substitutes), (18) 

and 

 𝑔 >
ଶ(ଵାఉ)(ଶିௗఉ)

(ଶିௗ)(ଶାௗ)మ
≔ 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) if 
ௗ

ଶ
< 𝛽 ≤ 1, (𝑥௜ and 𝑥௝ are strategic complements), (19) 

where 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 0 ≤ 𝛽 ≤
ௗ

ଶ
 and 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 
ௗ

ଶ
≤

𝛽 ≤ 1. Therefore, the condition that guarantees positive R&D investments (𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑)) from 
Eq. (15) and the second-order condition (𝑔 > 𝑔ௌை஼(𝛽, 𝑑)) are fulfilled for any 0 ≤ 𝛽 ≤ 1 if the 
stability conditions are satisfied. We basically recall that the second-order condition and the stability 
conditions suggest that the efficiency of R&D activity should not be too high, i.e., parameter 𝑔 should 
not be too low to avoid excessive R&D investments that would contribute to greatly reduce marginal 
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and average production costs and increase output pushing down the market price of products of both 
varieties. This would reduce the market power of firms, the extent of which depends on the price 
elasticity of demand. Indeed, if 𝑔 > 𝑔ௌை஼(𝛽, 𝑑), the percentage reduction in market price is high 
enough to let profits become negative (as will be clear from Eq. (24)). 
    A graph can help understanding this result. In this regard, Figure 1, drawn in the (𝛽, 𝑔) space, 
depicts the second-order condition in (16), black line, and the stability conditions in (18) and (19), 
orange and green lines respectively, showing for the case of homogeneous products (𝑑 = 1) that 𝑔 >
𝑔ௌை஼(𝛽, 𝑑) holds for every 𝑔 satisfying the stability conditions irrespective of the value of 𝛽 for which 
(given 𝑑) 𝑥௜ and 𝑥௝ are strategic substitutes and strategic complements. If 𝑞௜ and 𝑞௝ are complements 
(negative values of 𝑑) the relevant stability condition is always given by the inequality in (19), i.e., 
𝑥௜ and 𝑥௝ are strategic complements for any couple (𝛽, 𝑔) in that case. An increase in the degree of 
product differentiation (𝑑 ↓) changes the shape of the stability conditions in the (𝛽, 𝑔) space. In 
particular, the 𝛽-threshold separating the region of strategic substitutability from the region of 

strategic complementarity, i.e., 
ௗ

ଶ
, shifts leftward in the (𝛽, 𝑔) space thus favouring strategic 

complementarity in the R&D effort that works therefore out as a device enforcing the R&D 
externality. Figure 2 contrasts Figure 1 and clearly shows this result for the case heterogeneous 
products, where Panel A refers to product substitutability (𝑑 = 0.5) and Panel B to product 

complementarity (𝑑 = −0.5). This can also be ascertained analytically by studying how 𝑥௜
∗ூ/ூ reacts 

to a change in 𝛽 by comparing the cases of homogeneous and heterogeneous products. In fact, 

 
డ௫೔

∗಺/಺

డ𝛽
=

ିଶ(ଵି௪)ൣ௚ௗ(ଶିௗ)(ଶାௗ)మିଶ(ଶିௗఉ)మ൧

[௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)]మ . (20) 

From Eq. (20), one can see that 
డ௫೔

∗಺/಺

డఉ
< 0 for any 𝛽 and 𝑔 when products are perfect substitutes (𝑑 =

1) as 𝑔 > 𝑔ௌை஼(𝛽, 1) must hold. In fact, as the externality of R&D investment becomes larger, each 
firm has an incentive to reduce its own amount of cost-reducing R&D investment as it can benefit 
from the externality resulting from the rival’s investment. Instead, when products are differentiated 
(𝑑 < 1) the effect on 𝑥௜

∗ூ/ூ of a change in 𝛽 depends on whether products are substitutes (𝑑 > 0) or 

complements (𝑑 < 0). In the former case, 
డ௫೔

∗಺/಺

డఉ
> 0 if 𝑔 <

௚ೄೀ಴(ఉ,ௗ)

ௗ
 and 

డ௫೔
∗಺/಺

డఉ
< 0 if 𝑔 >

௚ೄೀ಴(ఉ,ௗ)

ௗ
, 

where 
௚ೄೀ಴(ఉ,ௗ)

ௗ
> 𝑔ௌை஼(𝛽, 𝑑) for any 0 < 𝑑 < 1, and the difference between the two thresholds 

increases as the degree of product differentiation increases. An increase in product heterogeneity 
resulting from consumer preferences tends to promote R&D strategic complementarity as the degree 
of competition in the product market reduces and profits increases. Therefore, there is room for the 
joint use of resources devoted to R&D (i.e., the R&D externality of one firm favours the R&D 
investment of the rival and vice versa) if the efficiency of R&D activity is high enough (low values 

of 𝑔). In the latter case, instead, 
డ௫೔

∗಺/಺

డఉ
> 0 for any 𝛽 and 𝑔 as product complementarity promotes 

cooperative behaviour in the product market by letting firms act as if they were maximising joint 
profits, and this in turn eventually leads each of them to benefit from R&D complementarity. 
    The analysis made so far should be augmented with additional constraints on the side of the costs 
of production. Indeed, as we know from Eq. (2), the unitary production cost 𝑤 − 𝑥௜ − 𝛽𝑥௝  as part of 

the total costs of production 𝐶௜൫𝑞௜, 𝑥௜ , 𝑥௝൯ must always be positive. Therefore, by using Eq. (15) the 
inequality 𝑤 − 𝑥௜ − 𝛽𝑥௝ > 0 is fulfilled if and only if: 

 𝑔 >
ଶ(ଵାఉ)(ଶିௗఉ)

௪(ଶିௗ)(ଶାௗ)మ ≔ 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤), (R&D cost condition), (21) 

where the subscript 𝑇 stands for “Threshold”. 
    The inequality in (21) must hold as an additional threshold in determining meaningful Nash 
equilibrium outcomes of the game, as will be clear from the analysis presented in Section 3.4. Figure 
3 – plotted in the (𝛽, 𝑔) space for four different values of 𝑤 depicted in Panels A-D – however 
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clarifies the behaviour of the threshold 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) for the subgame I/I (the blue line in the figure) 
by overlapping it to the stability conditions in (18) and (19) depicted in Figures 1 for the case of 
homogeneous products (the second-order condition was not drawn as it is always fulfilled once the 

stability conditions are satisfied). As can be seen, the shape of the threshold 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) also 

depends on 𝑤. Therefore, it is important to study when the threshold 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding 
compared to the stability conditions for the subgame I/I.  

    Comparison of (19) and (21) easily reveals that 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 𝑤 < 1 and 

𝑔்
ூ/ூ

(𝛽, 𝑑, 1) → 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) from above for 𝑤 → 1. Differently, comparison of (18) and (21) reveals 

that 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) can be higher or lower than 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) depending on the relative size of 𝛽, 𝑑 and 

𝑤. Proposition 1 deepens this result and complements Figure 3 by showing that 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) can be 
binding in the (𝛽, 𝑔) space depending on some conditions on the main parameters of the problem. 

Let us first define 𝛽்
ூ/ூ

≔
ି(ଶିௗ)ା௪(ଶାௗ)

ଶିௗା௪(ଶାௗ)
 as a threshold value of the intensity of the R&D externality 

such that 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) = 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) in the (𝛽, 𝑔) space. Then, 𝛽்

ூ/ூ
→

ௗ

ଶ
 if 𝑤 → 1 and 𝛽்

ூ/ூ
<

ௗ

ଶ
 for 

any 𝑑 and 𝑤 < 1. In addition, 𝛽்
ூ/ூ

< 0 if 𝑤 <
ଶିௗ

ଶାௗ
≔ 𝑤்

ூ/ூ and 𝛽்
ூ/ூ

> 0 if 𝑤 > 𝑤்
ூ/ூ, where 𝑤்

ூ/ூ
=

ଵ

ଷ
 if 𝑑 = 1, 𝑤்

ூ/ூ
= 1 if 𝑑 = 0 and 𝑤்

ூ/ூ
> 1 if 𝑑 < 0. Then, the following proposition holds. 

 

Proposition 1. 1) If products are complements (𝑑 < 0) then 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding in the (𝛽, 𝑔) 
space for any for any 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 < 1 for the subgame I/I. 2.1) If products are substitutes 
(𝑑 > 0) and 𝑤 < 𝑤்

ூ/ூ then 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding in the (𝛽, 𝑔) space for any 𝛽 for the subgame I/I. 

2.2) If products are substitutes (𝑑 > 0) and 𝑤 > 𝑤்
ூ/ூ then 3.1) 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) is binding in the (𝛽, 𝑔) 

space for any 𝛽 < 𝛽்
ூ/ூ for the subgame I/I, and 3.2) 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding in the (𝛽, 𝑔) space for 

any 𝛽 > 𝛽்
ூ/ூ for the subgame I/I. 3) If products are substitutes (𝑑 > 0) and 𝑤 → 1 then 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) 

is binding for any 0 ≤ 𝛽 <
ௗ

ଶ
 and 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) is binding for any 
ௗ

ଶ
< 𝛽 ≤ 1 for the subgame I/I. 

 
Proof. Appendix. 
 
    Proposition 1 clarifies the role of the unitary (and marginal) costs of productions in an R&D 

environment within the subgame I/I. Basically, it tells us that 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) tends to be binding for the 
subgame I/I when 1) products are complements as this kind of consumers’ tastes favours R&D 
strategic complementarity by increasing the R&D investment of each firm, 2) products are substitutes 
but the unitary cost resulting from the technology of production of final goods is sufficiently low, and 
3) product are substitutes and the extent of technological spill-overs is sufficiently high. In each of 
these cases, in fact, there are reasons for each firm to greatly reduce production costs. A huge 
reduction in the unitary (and marginal) production costs through R&D effort in fact implies a dramatic 
increase in output (as shown by the output reaction function Eq. (12)) and a corresponding reduction 
in the market price that erodes the market power of firms leading them to produce eventually 
quantities corresponding to the downward-sloping branch of their own total revenue function, where 
the price elasticity of demand is smaller than one, so that firms should reduce instead of increase 
production to maximise profits in that case. An increase in the degree of product differentiation (𝑑 ↓) 

has an ambiguous effect on 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) depending on the extent of the R&D externality (𝛽). This 

can be ascertained by computing 
డ௚೅

಺/಺
(ఉ,ௗ,௪)

డௗ
, whose sign is the same (and depends on the same 

thresholds) as the sign of 
డ௫೔

∗಺/಺

డௗ
. Indeed, this derivative is (i) positive (resp. negative) if 

ଶ

ଷ
< 𝑑 < 1 



 

 11 

(resp. −1 < 𝑑 <
ଶ

ଷ
) if 𝛽 = 0, (ii) positive (resp. negative) if 

ଷାఉିඥ(ଵିఉ)(ଽା଻ఉ)

ଶఉ
< 𝑑 < 1 (resp. −1 <

𝑑 <
ଷାఉିඥ(ଵିఉ)(ଽା଻ఉ)

ଶఉ
) for any 0 < 𝛽 <

ଵ

ଶ
, where 

ଷାఉିඥ(ଵିఉ)(ଽା଻ఉ)

ଶఉ
>

ଶ

ଷ
 and 

ଷାఉିඥ(ଵିఉ)(ଽା଻ఉ)

ଶఉ
= 1 if 

𝛽 =
ଵ

ଶ
, and (iii) negative for any −1 < 𝑑 < 1 if 

ଵ

ଶ
< 𝛽 ≤ 1. Therefore, product heterogeneity 

broadens the feasible parameter space bounded by the R&D cost condition (𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤)  ↓) if the 
degree of product substitutability is sufficiently small (ranging from the cases of no externality up to 
half the strength of the externality of R&D information). If products are perceived as poorly 
differentiated, a reduction in 𝑑 allows each firm to reduce R&D investment at the optimum (as 
product differentiation per se increases output and then reduces the need to invest in R&D) thus 
widening the parameter region in the (𝑔, 𝛽) space in which the R&D cost condition is fulfilled. 
However, the larger the externality of the cost-reducing R&D activity (𝛽), the smaller this effect. 
    Differently, product heterogeneity narrows the feasible parameter space bounded by the R&D cost 

condition (𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) ↑) if the degree of product substitutability is sufficiently large. Unlike the 
previous case, in fact, when products of variety 𝑖 and 𝑗 are perceived as highly differentiated, a further 
reduction in 𝑑 marks the start for an increase in R&D investment at the optimum to capture 
unilaterally the benefits of higher product differentiation, and the larger the externality of the cost-
reducing R&D activity (𝛽), the stronger this effect. Finally, if the extent of R&D externality is high 

enough (𝛽 >
ଵ

ଶ
) product differentiation always favours strategic complementarity of R&D effort and 

thus contributes to let the R&D cost condition become more and more binding in the (𝑔, 𝛽) space for 
the subgame I/I. 
    We now move forward by continuing the equilibrium analysis of the subgame I/I. By using the 

symmetrical equilibrium R&D expression in (15) and substituting out for 𝑥௜
∗ூ/ூ in the equilibrium 

output obtained at the third stage of the game, one gets the amount of output produced by firm 𝑖 (𝑖 =
{1,2}, 𝑖 ≠ 𝑗) at equilibrium under I/I, that is: 

 𝑞௜
∗ூ/ூ

=
௚(ଵି௪)(ଶିௗ)(ଶାௗ)

௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)
. (22) 

Eq. (22) reveals that 𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) is sufficient to guarantee a positive output production for both 
firms. In addition, from the expressions in (15) and (22) one can easily get the equilibrium values of 
the market price of product of variety 𝑖 and profits of firm 𝑖, which are respectively given by the 
following equations: 

 𝑝௜
∗ூ/ூ

=
௚(ଶିௗ)(ଶାௗ)[ଵା௪(ଵାௗ)]ିଶ(ଵାఉ)(ଶିௗఉ)

௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)
, (23) 

where the denominator is positive if 𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓
(𝛽, 𝑑), and 

 Π௜
∗ூ/ூ

=
௚(ଵି௪)మൣ௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ൧

[௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)]మ . (24) 

The expressions of the equilibrium price and equilibrium profits in (23) and (24) reveal that 𝑝௜
∗ூ/ூ

>

0 if 𝑔 >
ଶ(ଵାఉ)(ଶିௗఉ)

(ଶିௗ)(ଶାௗ)[ଵା௪(ଵାௗ)]
≔ 𝑔௣

ூ/ூ
(𝛽, 𝑑, 𝑤) and Π௜

∗ூ/ூ
> 0 if 𝑔 > 𝑔ௌை஼(𝛽, 𝑑). We note that 

𝑔௣
ூ/ூ

(𝛽, 𝑑, 𝑤) < 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 0 < 𝑤 < 1 and 𝑔௣
ூ/ூ

(𝛽, 𝑑, 1) → 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) if 𝑤 → 1. 

Therefore, both thresholds are satisfied if either 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) or 𝑔 > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) holds. 

    The equilibrium values of consumers’ surplus (𝐶𝑆∗ூ/ூ) and producers’ surplus (𝑃𝑆∗ூ/ூ) that can be 
obtained in the I/I subgame are summarised as follows: 

 𝐶𝑆∗ூ/ூ =
ଵ

ଶ
ቂ൫𝑞௜

∗ூ/ூ
൯

ଶ
+ ൫𝑞௝

∗ூ/ூ
൯

ଶ
+ 2𝑑𝑞௜

∗ூ/ூ
𝑞௝

∗ூ/ூ
ቃ =

௚మ(ଵି௪)మ(ଵାௗ)(ଶିௗ)మ(ଶାௗ)మ

[௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)]మ
. (25) 

and 

 𝑃𝑆∗ூ/ூ = Π௜
∗ூ/ூ

+ Π௝
∗ூ/ூ

=
ଶ௚(ଵି௪)మൣ௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ൧

[௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)]మ . (26) 

Therefore, social welfare under I/I, 𝑊∗ூ/ூ, is given by: 
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 𝑊∗ூ/ூ = 𝐶𝑆∗ூ/ூ + 𝑃𝑆∗ூ/ூ =
௚(ଵି௪)మ[௚(ଷାௗ)(ଶିௗ)మ(ଶାௗ)మିସ(ଶିௗఉ)మ]

[௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)]మ
. (27) 

    Comparison between Eqs. (11) and (27) allows the get the following proposition. 
 
Proposition 2. Social welfare under I/I is larger than social welfare under NI/NI. 
 
Proof. Appendix. 
 

 
Figure 1. Second order condition (black line) and stability conditions (orange and green lines) in the 
(𝛽, 𝑔) space when products are homogeneous (𝑑 = 1). The sand-coloured area represents the 
parametric region of unfeasibility. 
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               (A)            (B) 
Figure 2. Second order condition (black line) and stability conditions (orange and green lines) in the 
(𝛽, 𝑔) space when products are substitutes (𝑑 = 0.5), Panel A, and complements (𝑑 = −0.5), Panel 
B. The sand-coloured area represents the parametric region of unfeasibility. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               (A)            (B) 
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               (C)            (D) 
Figure 3. The R&D cost condition (blue line) and the stability conditions (orange and green lines) 
for different values of the unitary cost resulting from the technology of production (0 < 𝑤 < 1) and 
product homogeneity (𝑑 = 1): Panel A: 𝑤 = 0.2. Panel B: 𝑤 = 0.4. Panel C: 𝑤 = 0.6. Panel D: 𝑤 =
0.8. The sand-coloured area represents the parametric region of unfeasibility. 
 
3.3. The asymmetric subgame in which only one firm invest in R&D (I/NI) 
 
This section continues the analysis made so far by considering the asymmetric subgame in which one 
firm invests in R&D (say, firm 𝑖) and the rival does not (say, firm 𝑗). As the R&D investment of firm 
𝑖 is positive and the R&D investment of firm 𝑗 is zero, we have that 𝑥௜ > 0 and 𝑋௜(𝑥௜) > 0, and 𝑥௝ =

0 and 𝑋௝൫𝑥௝൯ = 0. Therefore, on one hand, firm 𝑖 invests in process innovation allowing to reduce its 
own average and marginal production costs but does not benefit from any stream of knowledge 
(externality) related to firm 𝑗’s R&D activity, which is absent in this case. On the other hand, firm 𝑗 
does not invest in process innovation but it can benefit from a stream of knowledge (externality) 
related to firm 𝑖’s R&D activity, whose extent is measured by the parameter 𝛽. Therefore, by using 
Eqs. (1), (2) and (3) the profit functions of firm 𝑖 and firm 𝑗 read now respectively as follows: 

 Π௜
ூ/ேூ

= 𝑝௜𝑞௜ − 𝐶௜(𝑞௜, 𝑥௜, 0) − 𝑋௜(𝑥௜) = ൫1 − 𝑞௜ − 𝑑𝑞௝൯𝑞௜ − (𝑤 − 𝑥௜)𝑞௜ −
௚

ଶ
𝑥௜

ଶ, (28) 

and 
 Π௝

ூ/ேூ
= 𝑝௝𝑞௝ − 𝐶௝൫𝑞௝, 0, 𝑥௜൯ = ൫1 − 𝑞௝ − 𝑑𝑞௜൯𝑞௝ − (𝑤 − 𝛽𝑥௜)𝑞௝, (29) 

where the upper script I/NI stands for positive R&D investments of firm 𝑖 and no R&D investments 
of firm 𝑗. At the market stage of the game, each firm chooses the optimal amount of output production 
by maximising profits. Therefore, the maximisation of (28) and (29) with respect to 𝑞௜ and 𝑞௝, 
respectively, leads to the following downward-sloping output reaction function of firm 𝑖 and firm 𝑗 
in the (𝑞௜, 𝑞௝) space as a function also of the R&D effort exerted by firm  𝑖 (𝑥௜), that is: 

 
பஈ೔

಺/ಿ಺

డ௤೔
= 0 ⇔ 𝑞

௜

ூ/ேூ
(𝑞௝, 𝑥௜) =

ଵି௪ିௗ௤ೕା௫೔

ଶ
, (30) 

and 
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பஈೕ

಺/ಿ಺

డ௤ೕ
= 0 ⇔ 𝑞

௝

ூ/ேூ
(𝑞௜, 𝑥௜) =

ଵି௪ିௗ௤೔ାఉ௫೔

ଶ
. (31) 

    Eq. (30) and (31) reveal that the output reaction functions of both firms 𝑖 and 𝑗 in the asymmetric 
subgame are similar, differing however in one crucial respect: an increase in the R&D investment of 
firm 𝑖, in fact, shift outwards both reaction functions, thereby contributing to increase production of 
firm 𝑖 and firm 𝑗, but the extent of the upward shift of the output reaction function of firm 𝑖 – that 
sustains process innovation R&D – is larger than the upward shift of the output reaction function of 
firm 𝑗 – that does not incur in R&D costs and can benefit only partially (𝛽 < 1) by the positive R&D 
externality generated by the rival. The extent of the upward shift of the reaction function of firm 𝑗 is 
the same as that of firm 𝑖 only under full disclosure of R&D-related information by firm 𝑖 (𝛽 = 1). 

The solution of the system of output reaction functions 𝑞
௜

ூ/ேூ
(𝑞௝, 𝑥௜) and 𝑞

௝

ூ/ேூ
(𝑞௜, 𝑥௜) (𝑖 = {1,2}, 𝑖 ≠

𝑗) allows us to get the following equilibrium output obtained by firms 𝑖 and 𝑗 at the third stage of the 
asymmetric subgame I/NI, that is: 

 𝑞
௜

ூ/ேூ
(𝑥௜) =

(ଵି௪)(ଶିௗ)ା(ଶିௗఉ)𝑥೔

(ଶିௗ)(ଶାௗ)
. (32) 

and 

 𝑞
௝

ூ/ேூ
(𝑥௜) =

(ଵି௪)(ଶିௗ)ା(ଶఉିௗ)𝑥೔

(ଶିௗ)(ଶାௗ)
. (33) 

A direct comparison of Eqs. (32) and (33) with Eq. (13) allows to conclude that if products are 
substitutes (𝑑 > 0), depending on the extent of technological spill-overs, the amount of output 
production of the investing firm 𝑖 at the third stage of the game in the asymmetric subgame I/NI is 
smaller (resp. larger) that the amount of output production of firm 𝑖 at the third stage of the game in 

the symmetric subgame I/I. In particular, 𝑞
௜

ூ/ூ
൫𝑥௜ , 𝑥௝൯ < 𝑞

௜

ூ/ேூ
(𝑥௜) if 𝛽 <

ௗ

ଶ
 (i.e., 𝑥௜ and 𝑥௝ are strategic 

substitutes) and 𝑞
௜

ூ/ூ
൫𝑥௜, 𝑥௝൯ > 𝑞

௜

ூ/ேூ
(𝑥௜) if 𝛽 >

ௗ

ଶ
 (i.e., 𝑥௜ and 𝑥௝ are strategic complements). In 

addition, the amount of output production of the non-investing firm 𝑗 at the third stage of the game in 
the asymmetric subgame I/NI is always smaller than the amount of output production obtained by the 
corresponding firm at the third stage of the game in the symmetric subgame I/I. Differently, if 
products are complements (𝑑 < 0) the output production of both firms in the symmetric subgame I/I 
is always larger than the output production of the investing and non-investing firms in the asymmetric 
subgame I/NI. 
    Substituting out Eqs. (32) and (33) in the profit equations (28) and (29) allows to obtain profits of 
the investing and non-investing firms as a function of the R&D effort 𝑥௜, i.e., Π௜

ூ/ேூ
(𝑥௜) and Π௝

ூ/ேூ
(𝑥௜). 

At the second (R&D) stage of the game, the investing firm 𝑖 maximises its own profits Π௜
ூ/ேூ

(𝑥௜) by 
choosing the amount of cost-reducing investment. Formally, this implies that: 

 
ௗஈ೔

಺/ಿ಺(𝑥𝑖)

ௗ௫೔
= 0 ⇔ 𝑥௜

∗ூ/ேூ
=

ଶ(ଵି௪)(ଶିௗ)(ଶିௗఉ)

௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ
. (34) 

As only firm 𝑖 does invest in R&D in this subgame, there are no R&D reaction functions so that 𝑥௜
∗ூ/ேூ 

represents the amount of equilibrium investment following the process innovation effort of firm 𝑖. 
The denominator of the expression of 𝑥௜

∗ூ/ேூ in (34) should be positive to guarantee positive R&D 

effort. By imposing 𝑥௜
∗ூ/ேூ

> 0 one gets 𝑔 >
ଶ(ଶିௗఉ)మ

(ଶିௗ)మ(ଶାௗ)మ ≔ 𝑔ௌை஼(𝛽, 𝑑), which coincides with the 

second-order condition in (16). Therefore, the condition 𝑥௜
∗ூ/ேூ

> 0 is always fulfilled once the 
stability conditions in (18) and (19) and the R&D cost condition in (21) resulting from the symmetric 
subgame in which both firms do invest in process innovation are satisfied. Differentiating the 

expression in (34) with respect to 𝛽 gives 
డ௫೔

∗಺/ಿ಺

డఉ
< 0. In fact, as the externality of the R&D 

investment generated by the investing firm becomes larger, the rival can free ride at a higher degree 
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so firm 𝑖 is incentivised to reduce its own amount of cost-reducing R&D investment, otherwise it 
would favour to much the rival by reducing its own production cost. 
    Like the symmetric subgame I/I, we should augment the analysis by considering the additional 
constraints on the side of the costs of production of both the investing firm 𝑖 and non-investing firm 
𝑗 by explicitly accounting for their own R&D cost conditions resulting from the inequalities 𝑤 − 𝑥௜ >
0 for the investing firm 𝑖 and 𝑤 − 𝛽𝑥௜ > 0 for the non-investing free-riding firm 𝑗, as part of their 
own total costs of production 𝐶௜(𝑞௜, 𝑥௜, 0) and 𝐶௝൫𝑞௝, 0, 𝑥௜൯, respectively. This can be specialised by 

substituting out 𝑥௜
∗ூ/ேூ from (34) into the last inequalities showing that they are fulfilled if and only 

if: 

 𝑔 >
ଶ(ଶିௗఉ)[ଶିௗାௗ௪(ଵିఉ)]

௪(ଶିௗ)మ(ଶାௗ)మ ≔ 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), (R&D cost condition of the investing firm). (35) 

and 

 𝑔 >
ଶ(ଶିௗఉ)[ଶ௪(ଵିఉ)ାఉ(ଶିௗ)]

௪(ଶିௗ)మ(ଶାௗ)మ , (R&D cost condition of the non-investing firm). (36) 

    The condition in (36) is never binding as 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) >
ଶ(ଶିௗఉ)[ଶ௪(ଵିఉ)ାఉ(ଶିௗ)]

௪(ଶିௗ)మ(ଶାௗ)మ
 is always 

fulfilled in the asymmetric subgame I/NI. Differently, the expression in (35) adds another (the last!) 

threshold to the stability condition (18), i.e., 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑), and the R&D cost condition of the 

symmetric subgame I/I (21), i.e., 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤), in determining the feasible region for the emergence 
of meaningful Nash equilibrium outcomes of the investment decision game with product 
differentiation (which is drawn as the red line in Figures 4-7). The comparison amongst the shapes of 

the relevant constraints of the game 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑), 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) as well as their 

position in the (𝛽, 𝑔) space is a complex exercise depending, amongst others, on the relative size of 
𝑤. Therefore, to avoid lengthening the exposition further with additional graphs, we leave the 
complete geometrical analysis to Section 3.4, dealing with the study of the Nash equilibria of the 
game and related discussion. However, the Proposition 3 below resembles Proposition 1 and 

examines further this issue analytically by definitively clarifying the position of 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑), 

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) in the (𝛽, 𝑔) space depending on 𝛽, 𝑑 and 𝑤, showing therefore 
which constraint is definitively binding for the R&D investment decision game. 

    Let us first consider the relationship between 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) and define 

 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) ≔

ௗ௪

ଶିௗ(ଵି௪)
< 1, (37) 

as a threshold value of the intensity of the R&D externality such that 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) = 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) 

in the (𝛽, 𝑔) space. If products are complements (𝑑 < 0) then 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 0 and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 ≤ 1. If products are substitutes (𝑑 > 0) then 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) > 0 and 1) 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤)  for any 0 ≤ 𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤), 2) 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤)  for 

any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1. If 𝑤 → 1 then 𝛽

భ்

ூ/ேூ
(𝑑, 1) →

ௗ

ଶ
, 𝑔்

ூ/ூ
(𝛽, 𝑑, 1) → 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑), and 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 1) > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) = 𝑔்
ூ/ூ

(𝛽, 𝑑, 1) for any 0 ≤ 𝛽 <
ௗ

ଶ
 and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 1) <

𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) = 𝑔்
ூ/ூ

(𝛽, 𝑑, 1) for any 
ௗ

ଶ
< 𝛽 ≤ 1. 

    Consider now the relationship between 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) and define 

 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) ≔

ௗିଶ(ଵି௪)

ଶ௪
< 1, (38) 

as a threshold value of the intensity of the R&D externality such that 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) = 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) in 

the (𝛽, 𝑔) space, where 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 

 𝑑்
ூ/ேூ

(𝑤) ≔ 2(1 − 𝑤), (39) 
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as a threshold value of the degree of product differentiation such that 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) = 0, where 

𝑑்
ூ/ேூ

(0) = 2 if 𝑤 → 0, 𝑑்
ூ/ேூ

ቀ
ଵ

ଶ
ቁ = 1 if 𝑤 =

ଵ

ଶ
 and 𝑑்

ூ/ேூ
(1) = 0 if 𝑤 → 1, so that 𝑑்

ூ/ேூ
(𝑤) > 1 for 

any 0 < 𝑤 <
ଵ

ଶ
 and 0 < 𝑑்

ூ/ேூ
(𝑤) ≤ 1 for any 

ଵ

ଶ
≤ 𝑤 < 1. 

    By looking at the expression of 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) in (38) it is clear that 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 0 for any 0 <

𝑤 < 1 and −1 ≤ 𝑑 ≤ 0, 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 0 for any 0 < 𝑤 <

ଵ

ଶ
 and 0 ≤ 𝑑 ≤ 1, 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 0 for 

any 
ଵ

ଶ
≤ 𝑤 < 1 and 0 ≤ 𝑑 < 𝑑்

ூ/ேூ
(𝑤), and 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) > 0 for any 

ଵ

ଶ
≤ 𝑤 < 1 and 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 ≤

1. Therefore,  
 

1) if products are complements (𝑑 < 0) then 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 0 and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) 

for any 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 < 1 in the (𝛽, 𝑔) space; 

2) if products are substitutes (𝑑 > 0), 0 < 𝑤 <
ଵ

ଶ
 and 0 < 𝑑 ≤ 1 then 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 0 and 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 ≤ 1; 

3) if products are substitutes (𝑑 > 0), 
ଵ

ଶ
≤ 𝑤 < 1 and 0 < 𝑑 < 𝑑்

ூ/ேூ
(𝑤) then 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 0 

and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 ≤ 1; 

4) if products are substitutes (𝑑 > 0), 
ଵ

ଶ
≤ 𝑤 < 1 and 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 ≤ 1 then 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) ≥ 0 

and 1) 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) < 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 < 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) and 2) 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1; 

5) If products are substitutes (𝑑 > 0) and 𝑤 → 1 then 𝑑்
ூ/ேூ

(𝑤) → 0, 𝛽
మ்

ூ/ேூ
(𝑑, 1) →

ௗ

ଶ
, 

𝑔்
ூ/ூ

(𝛽, 𝑑, 1) → 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑), and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 1) > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) =

𝑔்
ூ/ூ

(𝛽, 𝑑, 1) for any 0 ≤ 𝛽 <
ௗ

ଶ
 and 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) = 𝑔்
ூ/ூ

(𝛽, 𝑑, 1) > 𝑔்
ூ/ேூ

(𝛽, 𝑑, 1) >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 

ௗ

ଶ
< 𝛽 ≤ 1. 

 
    These arguments together with those used to state Proposition 1 allow us to write down the 
following proposition to definitively clarify which constraint is binding in the (𝛽, 𝑔) space for the 
investment decision game. 
 
Proposition 3. The relevant constraints of the R&D investment decision game with quantity 
competition and product differentiation are the following. 
 

[1] If products are complements (𝑑 < 0) then 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding in the (𝛽, 𝑔) space for any 0 ≤
𝛽 ≤ 1 and 0 < 𝑤 < 1 for the investment decision game. 
 

[2] If products are substitutes (𝑑 > 0) and 0 < 𝑤 <
ଵ

ଶ
 then 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding for any 0 ≤ 𝛽 <

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤)  is binding for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 for the investment decision 

game. 
 

[3] If products are substitutes (𝑑 > 0), 
ଵ

ଶ
≤ 𝑤 < 1 and 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 ≤ 1 then 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) is binding 

for any 0 ≤ 𝛽 < 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 for the investment decision game. 
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[4] If products are substitutes (𝑑 > 0), 
ଵ

ଶ
≤ 𝑤 < 1 and 0 < 𝑑 < 𝑑்

ூ/ேூ
(𝑤) then 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is 

binding for any 0 ≤ 𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤)  is binding for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 for 

the investment decision game. 
 

[5] If products are substitutes (𝑑 > 0) and 𝑤 → 1 then 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) is binding for any 0 ≤ 𝛽 <

ௗ

ଶ
 and 

𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) is binding for any 
ௗ

ଶ
< 𝛽 ≤ 1 for the investment decision game. 

 
Proof. Appendix. 
 
    Proposition 3 allows us to make it clear the constraints emerging in the non-cooperative version of 
the d’Aspremont and Jacquemin’s (1988, 1990) cost-reducing R&D model with spill-overs with 
homogeneous or heterogeneous products and let the R&D investment decision game be meaningful. 
These constraints are the stability condition emerging when 𝑥௜ and 𝑥௝ are strategic substitutes or 
strategic complements, the R&D cost condition emerging in the symmetric subgame I/I and the R&D 
cost condition emerging in the asymmetric subgame I/NI. Basically, the proposition tells us that 

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is always binding for the R&D investment decision game when products are 
complements (irrespective of the other parameters of the model). This is because this kind of 
consumers’ tastes favours R&D strategic complementarity by incentivising both firms to invest in 
R&D to increase their own profits. Differently, product substitutability increases the complexity and 
let spill-overs and the unitary cost become relevant in determining the feasibility conditions. 

    Specifically, when the unitary production cost is sufficiently small (0 < 𝑤 <
ଵ

ଶ
), the relevant 

constraint is 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) if the R&D externality is low enough (0 ≤ 𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤)). In this case, 

in fact, there are conditions for one (and only one) firm to invest in R&D as the non-investing firm 
(in the asymmetric subgame) cannot free ride at a high degree, so the investing firm is incentivised 
to keep its own cost-reducing investment high (whose size however reduces as far as 𝛽 increases). 
When the unitary production cost is sufficiently high and products are perceived ad highly 

differentiated by customers (
ଵ

ଶ
≤ 𝑤 < 1 and 0 < 𝑑 < 𝑑்

ூ/ேூ
(𝑤)) but the extent of technological spill-

overs is sufficiently high (𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1) the incentive for only one firm to invest in R&D is 

reduced as it would be making its rival benefit too much through the degree of R&D externality by 
the cost-reducing investment activity. Therefore, the rival starts investing to avoid losing the 
opportunity to increase profits through the cost-reducing R&D effort, and the relevant constraint 

becomes 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
    When the unitary production cost is sufficiently high and products are perceived as poorly 

differentiated by customers (
ଵ

ଶ
≤ 𝑤 < 1 and 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 ≤ 1), i.e., they tend to be highly 

substitutable or perfect substitutes, the stability condition 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) becomes the relevant constraint 

when the extent of technological spill-overs is sufficiently small (0 ≤ 𝛽 < 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤)) as the R&D 

cost conditions tend to be always fulfilled in this case (i.e., thy become less important in defining the 
boundaries of the feasible region of the R&D investment decision game). Increases in the degree of 
the R&D externality however let the R&D cost conditions become the relevant thresholds to define 
meaningfulness of the R&D investment decision game for the same reasons discussed so far. 
    We now continue the equilibrium analysis of the asymmetric subgame I/NI. By using the 
expression in (34) and substituting out for 𝑥௜

∗ூ/ேூ in the equilibrium output obtained at the third stage 
of the game, one gets the amount of output produced by the investing firm 𝑖 and the non-investing 
firm 𝑖 (𝑖 = {1,2}, 𝑖 ≠ 𝑗) at equilibrium under I/NI, that is: 
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 𝑞௜
∗ூ/ேூ

=
௚(ଵି௪)(ଶିௗ)మ(ଶାௗ)

௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ, (40) 

and 

 𝑞௝
∗ூ/ேூ

=
(ଵି௪)ൣ௚(ଶିௗ)మ(ଶାௗ)ିଶ(ଵିఉ)(ଶିௗఉ)൧

௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ
. (41) 

Eqs. (40) and (41) reveal that the denominator is positive for any 𝑔 > 𝑔ௌை஼(𝛽, 𝑑), which is always 

fulfilled if the other constraints discussed in Proposition 3 hold. Therefore, 𝑞௜
∗ூ/ேூ

> 0 always holds 

and 𝑞௝
∗ூ/ேூ

> 0 if and only if 𝑔 > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑), which is one of the relevant constraints discussed so 

far. 
    From the equations determining the equilibrium quantities in the subgame I/NI as expressed in (40) 
and (41), one can get the equilibrium values of the market price of product of variety 𝑖 and variety 𝑗 
and the corresponding profit equations, that is: 

 𝑝௜
∗ூ/ேூ

=
௚(ଶିௗ)మ(ଶାௗ)[ଵା௪(ଵାௗ)]ିଶ(ଶିௗఉ)[ଶିௗାௗ (ଵିఉ)]

௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ , (42) 

 𝑝௝
∗ூ/ேூ

=
௚(ଶିௗ)మ(ଶାௗ)[ଵା௪(ଵାௗ)]ିଶ(ଶିௗఉ)[ଵା௪(ଵିఉ)ାఉ(ଵିௗ)]

௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ , (43) 

 Π௜
∗ூ/ேூ

=
௚(ଵି௪)మ(ଶିௗ)మ

௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ, (44) 

and 

 Π௝
∗ூ/ேூ

=
(ଵି௪)మൣ௚(ଶିௗ)మ(ଶାௗ)ିଶ(ଵିఉ)(ଶିௗఉ)൧

మ

[௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ]మ . (45) 

Eqs. (42) and (43) easily reveal that 𝑝௜
∗ூ/ேூ

> 0 if 𝑔 >
ଶ(ଶିௗఉ)[ଶିௗାௗ௪(ଵିఉ)]

(ଶିௗ)మ(ଶାௗ)[ଵା௪(ଵାௗ)]
≔ 𝑔௣೔

ூ/ேூ
(𝛽, 𝑑, 𝑤) and 

𝑝௝
∗ூ/ேூ

> 0 if 𝑔 >
ଶ(ଶିௗఉ)[ଵା௪(ଵିఉ)ାఉ(ଵିௗ)]

(ଶିௗ)మ(ଶାௗ)[ଵା௪(ଵାௗ)]
≔ 𝑔௣ೕ

ூ/ேூ
(𝛽, 𝑑, 𝑤). 

    In addition, 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔௣೔

ூ/ேூ
(𝛽, 𝑑, 𝑤), 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) > 𝑔௣೔

ூ/ேூ
(𝛽, 𝑑, 𝑤), 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) >

𝑔௣ೕ

ூ/ேூ
(𝛽, 𝑑, 𝑤), 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) > 𝑔௣ೕ

ூ/ேூ
(𝛽, 𝑑, 𝑤) and both 𝑔௣೔

ூ/ேூ
(𝛽, 𝑑, 𝑤) and 𝑔௣ೕ

ூ/ேூ
(𝛽, 𝑑, 𝑤) are never 

binding in the (𝛽, 𝑔) space and thus they are always fulfilled if the three constraints discussed in 
Proposition 3 are binding for any −1 ≤ 𝑑 ≤ 1, 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 < 1. 
    If 𝑤 → 1 then 𝑔௣೔

ூ/ேூ
(𝛽, 𝑑, 1) → 𝑔ௌை஼(𝛽, 𝑑) and 𝑔௣ೕ

ூ/ேூ
(𝛽, 𝑑, 1) → 𝑔ௌை஼(𝛽, 𝑑), which are always 

fulfilled. Finally, from the expressions of the equilibrium profits in (44) and (45) one gets Π௜
∗ூ/ேூ

> 0 

if 𝑔 > 𝑔ௌை஼(𝛽, 𝑑) and Π௝
∗ூ/ேூ

> 0 and it is economically meaningful for any 𝑔 > 𝑔ௌை஼(𝛽, 𝑑) and 𝑔 >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑), which are fulfilled for any 𝛽 if the stability conditions are satisfied. 

    We avoid introducing the equilibrium values of consumers’ surplus (𝐶𝑆∗ூ/ேூ) and producers’ 
surplus (𝑃𝑆∗ூ/ேூ) for the I/NI subgame (along with the corresponding social welfare 𝑊∗ூ/ேூ) because, 
as we will see later, there are no asymmetric Nash equilibria in the R&D investment decision game 
and we do not want to lengthen the analysis further. 
    The next section studies the owner’s choice whether to invest in R&D activities at stage one of the 
R&D game, and then provides a Nash equilibrium analysis along with the corresponding discussion. 
 
3.4. The investment-decision stage under quantity competition: Nash equilibria and discussion 
 
This section examines the first stage of the game, in which firms choose whether to invest in R&D in 
a non-cooperative quantity-setting environment à la d’Aspremont and Jacquemin’s (1988, 1990), by 
also clarifying the role of the constraints (the stability conditions and the R&D cost conditions) of the 
R&D investment decisions game and stressing the differences between homogeneous and 
heterogeneous products. 
    Making use of the firms’ profits in (8) for the symmetric subgame NI/NI, (24) for the symmetric 
subgame I/I, (44) and (45) for the asymmetric subgame I/NI, it is possible to build on the payoff 
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matrix summarised in Table 1 regarding the Cournot R&D game with product differentiation 
(following the analysis of Bacchiega et al., 2010). 
 

Table 1. The investment-decision game (payoff matrix). Cournot competition. 
Firm 2   → 
Firm 1   ↓ 

I NI 

I Πଵ
∗ூ/ூ, Πଶ

∗ூ/ூ Πଵ
∗ூ/ேூ, Πଶ

∗ூ/ேூ 

NI Πଵ
∗ேூ/ூ, Πଶ

∗ேூ/ூ Πଵ
∗ேூ/ேூ, Πଶ

∗ேூ/ேூ 

 
    To satisfy the technical restrictions and have well-defined equilibria in pure strategies for every 
strategic profile (one for each player), the analysis is restricted to the feasibility constraints discussed 
in Proposition 3 (which is assumed to be always satisfied henceforth). Then, to derive all the possible 
equilibria of the game, one must study the sign of the following profit differentials for 𝑖 = {1,2}, 𝑖 ≠
𝑗, that is: 

 ΔΠ஺ = Π௜
∗ூ/ேூ

− Π௜
∗ேூ/ேூ

=
ଶ(ଵି௪)మ(ଶିௗ𝛽)మ

(ଶାௗ)మ[௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ]
> 0, (46) 

 
 ΔΠ஻ = Π௜

∗ேூ/ூ
− Π௜

∗ூ/ூ
=

ିଶ(ଵି௪)మ(ଶିௗఉ)మ

[௚(ଶିௗ)మ(ଶାௗ)మିଶ(ଶିௗఉ)మ]మ[௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)]మ

× {𝑑଼𝑔ଷ − 6𝑑଺𝑔ଶ𝛽ଶ − 16𝑑଺𝑔ଷ + 12𝑑ସ𝑔𝛽ଶ + 4𝑑଺𝑔ଶ + 8𝑑ହ𝑔ଶ𝛽 + 64𝑑ସ𝑔ଶ𝛽ଶ

−8𝑑ଶ𝛽଺ + 96𝑑ସ𝑔ଷ − 16𝑑ସ𝑔𝛽ଶ − 32𝑑ଷ𝑔𝛽ଷ − 64𝑑ଶ𝑔𝛽ସ − 56𝑑ସ𝑔ଶ − 64𝑑ଷ𝑔ଶ𝛽

−224𝑑ଶ𝑔ଶ𝛽ଶ + 16𝑑ସ𝛽ସ + 32𝑑𝛽ହ + 64𝑑ଷ𝑔𝛽 − 256𝑑ଶ𝑔ଷ + 32𝑑ଶ𝑔𝛽ଶ

, (47) 

+256𝑑𝑔𝛽ଶ + 256𝑑ଶ𝑔ଶ − 8𝑑ଶ𝛽ଶ + 128𝑑𝑔ଶ𝛽 − 64𝑑𝛽ଷ + 256𝑔ଶ𝛽ଶ − 32𝛽ସ − 64𝑑ଶ𝑔 
−128𝑑𝑔𝛽 + 256𝑔ଷ − 256𝑔𝛽ଶ + 32𝑑𝛽 − 384𝑔ଶ + 64𝛽ଶ + 192𝑔 − 32} < 0 
 
and 

 ΔΠ஼ = Π௜
∗ேூ/ேூ

− Π௜
∗ூ/ூ

=
ଶ(ଵି௪)మ(ଶିௗ𝛽)൛௚(ଶାௗ)మ[ଶ(ଵିௗ)ାఉ(ସିௗ)]ିଶ(ଵାఉ)మ(ଶିௗఉ)ൟ

(ଶାௗ)మ[௚(ଶିௗ)(ଶାௗ)మିଶ(ଵାఉ)(ଶିௗఉ)]మ . (48) 

Eqs. (46) and (47) reveal that ΔΠ஺ > 0 and ΔΠ஻ < 0 irrespective of the parameter scale, whereas 
from Eq. (48) we have that ΔΠ஼ can be positive or negative depending on the relative values of 𝛽, 𝑔 
and 𝑑. In this regard, let 

 𝑔஼(𝛽, 𝑑) ≔
ଶ(ଵାఉ)మ(ଶିௗఉ)

(ଶାௗ)మ[ଶ(ଵିௗ)ାఉ(ସିௗ)]
, (49) 

be the threshold value of 𝑔 as a function of the intensity of the spill-overs effect and the degree of 
product differentiation such that ΔΠ஼ = 0. If 𝑔 < 𝑔஼(𝛽, 𝑑) then ΔΠ஼ > 0 and profits both firms under 
the strategic profile NI/NI are higher than profits under the strategic profile I/I. If 𝑔 > 𝑔஼(𝛽, 𝑑) then 
ΔΠ஼ < 0 and profits both firms under the strategic profile I/I are higher than profits under the strategic 
profile NI/NI. 
    Eq. (49) highlights the most important difference between the R&D investment decision game with 
homogeneous products (Bacchiega et al., 2010) and the R&D investment decision game with 
heterogeneous products, as was already pinpointed in the introduction. Indeed, our results differ from 
those of Bacchiega et al (2010) in a crucial respect: in their work, the prisoner’s dilemma vanishes if 
and only if the extent of technological spill-overs is positive and sufficiently high, which, in turn, 
would require that firms disclose (or – equivalently – they are unable to keep closed) the information 
on the results of their own R&D investment at a certain degree. However, the non-disclosure (i.e., 
keeping secret) R&D-related result in the AJ setting is in the unilateral interest of each non-
cooperative firm. The prisoner’s dilemma can vanish also in the absence of R&D spill-overs if the 
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degree of product differentiation is sufficiently high. In fact, when 𝑑 = 1 Eq. (49) boils down to 

𝑔஼(𝛽, 1) ≔
ଶ(ଵାఉ)మ(ଶିఉ)

ଶ଻
, so that 𝑔஼(0,1) → +∞ if 𝛽 → 0. 

    Therefore, 𝑔 can be higher or lower than 𝑔஼(𝛽, 1) if and only if 0 < 𝛽 ≤ 1 if products are 
homogeneous (𝑑 = 1). This implies that a in the case of no disclosure (𝛽 = 0) it is not possible to 
find a finite value of 𝑔 to solve the prisoner’s dilemma of the R&D game if products are homogeneous 
or perfect substitutes. 
    Differently, if products are heterogeneous (imperfect substitutes or complements) then 𝑔஼(0, 𝑑) ≔

ଶ

(ଵିௗ)(ଶାௗ)మ
> 0 if 𝛽 = 0 (no disclosure). Therefore, 𝑔 can be higher or lower than 𝑔஼(𝛽, 𝑑) for any 

0 ≤ 𝛽 ≤ 1 if products are heterogeneous (−1 ≤ 𝑑 < 1). This means that there exists a finite value 
of 𝑔 that solves the prisoner’s dilemma of the R&D game irrespective of the extent of the R&D spill-
overs including the case of no disclosure, which is in the unilateral interest of each firm in the AJ 
setting. This result is clarified in the next Proposition 4 that concentrates on the case of imperfect 
substitutability (𝑑 < 1) avoiding treating the case of perfect substitutability dealt with by Bacchiega 
et al. (2010), according to which the prisoner’s dilemma can vanish only whether firms are disclosing. 
This case is reported in Corollary 1 following Proposition 4. The shape of 𝑔஼(𝛽, 𝑑) (dotted line) and 
the shapes of the other relevant constraints of the model are depicted in Figures 4-7 in the parameter 

space (𝛽, 𝑔) for different values of 𝑤 and 𝑑, where Figures 4A and 4B refer to the case 0 < 𝑤 <
ଵ

ଶ
 

(Points [2] and [3] of Proposition 4), Figures 5A and 5B refer to the case 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
 (Points [4], [5] 

and [6] of Proposition 4), Figures 6A and 6B refer to the case 
ଶ

ଷ
≤ 𝑤 < 1 (Points [11] and [12] of 

Proposition 4), and Figures 7A and 7B refer to the case 𝑤 → 1 (Points [13] and [14] of Proposition 
4). The figures consider only the case of product substitutability. This is because the Nash equilibrium 
of the game in the case of product complementarity is univocally given by the Pareto efficient 
outcome (I,I) and skip Points [7], [8], [9] and [10] of Proposition 4 as the outcomes resemble those 
of Figure 5. These figures aim at helping the reader through the narrative of the analytical results. 
The sand-coloured region represents the unfeasible parameter space. This region is bounded by the 
constraints discussed above (Proposition 3) and tells us that – for any given value of the spill-overs – 
the efficiency of R&D activity should not be too high, i.e., parameter 𝑔 should not be too low to avoid 
excessive R&D investments that would contribute to greatly reduce marginal and average production 
costs and increase output pushing down the market price of products of both varieties at too low a 
level. However, product differentiation favours technological progress by pushing downwards the 
stability conditions and the R&D cost conditions in the (𝛽, 𝑔) space. 
    Define now some thresholds useful to disentangle the results of the points in which Proposition 4 
is divided. Let 

 𝛽̅஼(𝑑, 𝑤) ≔
൫଼ାௗమ൯(ଵି௪)ାௗ(ଵ଴௪ି଺)ିඥ(ଵି௪)(ଶିௗ)మ[ଵ଺ା(ଵି௪)ௗమା(ଵ଺௪ି )ௗ]

଼௪
, (50) 

be a threshold value of the intensity of the R&D externality such that 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) = 𝑔஼(𝛽, 𝑑) in 

the (𝛽, 𝑔) space prevailing when 0 < 𝑤 ≤
ହ

଼
, where 𝛽̅஼(𝑑, 𝑤) ≥ 0 for any 𝑑̅஼(𝑤) ≤ 𝑑 ≤ 1 and 

𝛽̅஼(𝑑, 𝑤) < 0 for any −1 ≤ 𝑑 < 𝑑̅஼(𝑤), and 

 𝑑̅஼(𝑤) ≔
ଷ(ଵି௪)ିඥ(ଵି௪)(ଵାଷ௪)

ଶିଷ௪
> 0, (51) 

for any 0 < 𝑤 ≤
ହ

଼
 represents a threshold value of the degree of product differentiation such that 

𝛽̅஼(𝑑, 𝑤) = 0. Let 

 𝛽̿஼(𝑑) ≔
ଷௗିଶ

଺ିௗ
, (52) 

be a threshold value of the intensity of the R&D externality such that 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) = 𝑔஼(𝛽, 𝑑) in the 

(𝛽, 𝑔) space prevailing when 
ହ

଼
< 𝑤 <

ଶ

ଷ
, where 𝛽̿஼(𝑑) ≥ 0 for any 𝑑̿஼ ≤ 𝑑 ≤ 1 and 𝛽̿஼(𝑑) < 0 for 

any −1 ≤ 𝑑 < 𝑑̿஼, and 
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 𝑑̿஼ =
ଶ

ଷ
. (53) 

represents a threshold value of the degree of product differentiation such that 𝛽̿஼(𝑑) = 0. Let 
 𝑑஼஼(𝑤) ≔ 6 − 8𝑤, (54) 
be a threshold value of the degree of product differentiation such that 𝛽̅஼(𝑑, 𝑤) = 𝛽̿஼(𝑑), where 

𝑑஼஼(𝑤) > 0 for any 0 < 𝑤 <
ଷ

ସ
 (so that it is certainly positive for any 0 < 𝑤 <

ଶ

ଷ
), 𝑑஼஼(𝑤) ≤ 1 for 

any 
ହ

଼
≤ 𝑤 < 1 and 𝑑஼஼(𝑤) > 1 for any 0 < 𝑤 <

ହ

଼
. Therefore, if 0 < 𝑤 <

ହ

଼
 then 𝛽̅஼(𝑑, 𝑤) < 𝛽̿஼(𝑑) 

for any −1 ≤ 𝑑 ≤ 1; if 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 then 𝛽̅஼(𝑑, 𝑤) ≥ 𝛽̿஼(𝑑) for any 𝑑஼஼(𝑤) ≤ 𝑑 ≤ 1 and 𝛽̅஼(𝑑, 𝑤) <

𝛽̿஼(𝑑) for any −1 ≤ 𝑑 < 𝑑஼஼(𝑤). In addition, 𝑑஼஼(𝑤) > 𝑑்
ூ/ேூ

(𝑤) > 𝑑̅஼(𝑤) > 𝑑̿஼  for any 0 < 𝑤 <
ଶ

ଷ
, 𝑑஼஼(𝑤) < 𝑑்

ூ/ேூ
(𝑤) < 𝑑̅஼(𝑤) < 𝑑̿஼ for any 

ଶ

ଷ
< 𝑤 < 1, 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽̅஼(𝑑, 𝑤) for any 

𝑑்
ூ/ேூ

(𝑤) ≤ 𝑑 ≤ 1 and 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 0 for any 𝑑 < 𝑑்

ூ/ேூ
(𝑤) if 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
, and 𝛽̿஼(𝑑) ≤

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) for any 𝑑஼஼(𝑤) ≤ 𝑑 ≤ 1 and 𝛽̿஼(𝑑) > 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) for any 𝑑 < 𝑑஼஼(𝑤) if 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
. 

    The following proposition summarises the Nash equilibrium outcomes of the R&D investment 
decision game with product differentiation under quantity competition. 
 
Proposition 4. The outcomes of the R&D investment decision game with quantity competition and 
product differentiation are the following. 
 
[1] Products are complements (𝑑 < 0). Let 0 < 𝑤 < 1 hold. If −1 ≤ 𝑑 < 0 then (I,I) is the unique 
Pareto efficient Nash equilibrium and the R&D investment decision game with product differentiation 

is a deadlock for any 0 ≤ 𝛽 ≤ 1 and 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

[2] Products are substitutes (𝑑 > 0). Let 0 < 𝑤 <
ଵ

ଶ
 hold. If 𝑑̅஼(𝑤) ≤ 𝑑 < 1 then [2.1] (I,I) is the 

unique Pareto inefficient Nash equilibrium and the R&D investment decision game with product 

differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) < 𝑔 <
𝑔஼(𝛽, 𝑑), and [2.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment 
decision game with product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔 >

𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) <

𝛽 ≤ 1 and 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

[3] Products are substitutes (𝑑 > 0). Let 0 < 𝑤 <
ଵ

ଶ
 hold. If 0 < 𝑑 < 𝑑̅஼(𝑤) then (I,I) is the unique 

Pareto efficient Nash equilibrium and the R&D investment decision game with product differentiation 
is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤

1 and 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

[4] Products are substitutes (𝑑 > 0). Let 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
 hold. If 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 < 1 then [4.1] (I,I) is the 

unique Pareto inefficient Nash equilibrium and the R&D investment decision game with product 

differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 <

𝑔஼(𝛽, 𝑑), and for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) < 𝑔 < 𝑔஼(𝛽, 𝑑), and [4.2] 

(I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment decision game with 

product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 
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[5] Products are substitutes (𝑑 > 0). Let 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
 hold. If 𝑑̅஼(𝑤) ≤ 𝑑 < 𝑑்

ூ/ேூ
(𝑤) then [5.1] (I,I) 

is the unique Pareto inefficient Nash equilibrium and the R&D investment decision game with 

product differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) < 𝑔 <
𝑔஼(𝛽, 𝑑), and [5.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment 
decision game with product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔 >

𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) <

𝛽 ≤ 1 and 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

[6] Products are substitutes (𝑑 > 0). Let 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
 hold. If 0 < 𝑑 < 𝑑̅஼(𝑤) then (I,I) is the unique 

Pareto efficient Nash equilibrium and the R&D investment decision game with product differentiation 

is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤

1 and 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

[7] Products are substitutes (𝑑 > 0). Let 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 hold. If 𝑑஼஼(𝑤) ≤ 𝑑 < 1 then [7.1] (I,I) is the 

unique Pareto inefficient Nash equilibrium and the R&D investment decision game with product 

differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 < 𝑔஼(𝛽, 𝑑), and 

[7.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment decision game 
with product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̿஼(𝑑) <

𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

[8] Products are substitutes (𝑑 > 0). Let 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 hold. If 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 < 𝑑஼஼(𝑤) then [8.1] (I,I) 

is the unique Pareto inefficient Nash equilibrium and the R&D investment decision game with 

product differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 <

𝑔஼(𝛽, 𝑑), and for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) < 𝑔 < 𝑔஼(𝛽, 𝑑), and [8.2] 

(I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment decision game with 
product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

[9] Products are substitutes (𝑑 > 0). Let 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 hold. If 𝑑̅஼(𝑤) ≤ 𝑑 < 𝑑்

ூ/ேூ
(𝑤) then [9.1] (I,I) 

is the unique Pareto inefficient Nash equilibrium and the R&D investment decision game with 

product differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) < 𝑔 <
𝑔஼(𝛽, 𝑑), and [9.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment 
decision game with product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔 >

𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) <

𝛽 ≤ 1 and 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

[10] Products are substitutes (𝑑 > 0). Let 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 hold. If 0 < 𝑑 < 𝑑̅஼(𝑤) then (I,I) is the unique 

Pareto efficient Nash equilibrium and the R&D investment decision game with product differentiation 
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is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤

1 and 𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

[11] Products are substitutes (𝑑 > 0). Let 
ଶ

ଷ
≤ 𝑤 < 1 hold. If 𝑑̿஼ =

ଶ

ଷ
≤ 𝑑 < 1 then [11.1] (I,I) is the 

unique Pareto inefficient Nash equilibrium and the R&D investment decision game with product 

differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 < 𝑔஼(𝛽, 𝑑), and 

[11.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment decision game 
with product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̿஼(𝑑) <

𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

[12] Products are substitutes (𝑑 > 0). Let 
ଶ

ଷ
≤ 𝑤 < 1 hold. If 0 < 𝑑 <

ଶ

ଷ
= 𝑑̿஼ then (I,I) is the unique 

Pareto efficient Nash equilibrium and the R&D investment decision game with product differentiation 

is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

[13] Products are substitutes (𝑑 > 0). Let 𝑤 → 1 hold. If 𝑑̿஼ =
ଶ

ଷ
≤ 𝑑 < 1 then [13.1] (I,I) is the 

unique Pareto inefficient Nash equilibrium and the R&D investment decision game with product 

differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 < 𝑔஼(𝛽, 𝑑), and 

[13.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment decision game 
with product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̿஼(𝑑) <

𝛽 ≤
ௗ

ଶ
 and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), and for any 
ௗ

ଶ
< 𝛽 ≤ 1 and 𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑). 

 

[14] Products are substitutes (𝑑 > 0). Let 𝑤 → 1 hold. If 0 < 𝑑 <
ଶ

ଷ
= 𝑑̿஼  then (I,I) is the unique 

Pareto efficient Nash equilibrium and the R&D investment decision game with product differentiation 

is a deadlock for any 0 ≤ 𝛽 ≤
ௗ

ଶ
 and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), and for any 
ௗ

ଶ
< 𝛽 ≤ 1 and 𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑). 

 
Proof. Appendix. 
 

Corollary 1. Products are perfect substitutes (𝑑 = 1). [1] Let 0 < 𝑤 <
ଵ

ଶ
 hold. Then [1.1] (I,I) is the 

unique Pareto inefficient Nash equilibrium and the R&D investment decision game with product 

differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̅஼(1, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 1, 𝑤) < 𝑔 < 𝑔஼(𝛽, 1), 
and [1.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment decision game 
with product differentiation is a deadlock for any 0 < 𝛽 ≤ 𝛽̅஼(1, 𝑤) and 𝑔 > 𝑔஼(𝛽, 1), for any 
𝛽̅஼(1, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(1, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 1, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(1, 𝑤) < 𝛽 ≤ 1 and 𝑔 >

𝑔்
ூ/ூ

(𝛽, 1, 𝑤). [2] Let 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
 hold. Then [2.1] (I,I) is the unique Pareto inefficient Nash 

equilibrium and the R&D investment decision game with product differentiation is a prisoner’s 

dilemma for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(1, 𝑤) and 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 1) < 𝑔 < 𝑔஼(𝛽, 1), and for any 𝛽
మ்

ூ/ேூ
(1, 𝑤) <

𝛽 ≤ 𝛽̅஼(1, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 1, 𝑤) < 𝑔 < 𝑔஼(𝛽, 1), and [2.2] (I,I) is the unique Pareto efficient Nash 
equilibrium and the R&D investment decision game with product differentiation is a deadlock for 

any 0 < 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(1, 𝑤) and 𝑔 > 𝑔஼(𝛽, 1), for any 𝛽

మ்

ூ/ேூ
(1, 𝑤) < 𝛽 ≤ 𝛽̅஼(1, 𝑤) and 𝑔 > 𝑔஼(𝛽, 1), 

for any 𝛽̅஼(1, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(1, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 1, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(1, 𝑤) < 𝛽 ≤ 1 and 



 

 25 

𝑔 > 𝑔்
ூ/ூ

(𝛽, 1, 𝑤). [3] Let 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 hold. Then [3.1] (I,I) is the unique Pareto inefficient Nash 

equilibrium and the R&D investment decision game with product differentiation is a prisoner’s 

dilemma for any 0 ≤ 𝛽 ≤ 𝛽̿஼(1) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 1) < 𝑔 < 𝑔஼(𝛽, 1), and [3.2] (I,I) is the unique Pareto 

efficient Nash equilibrium and the R&D investment decision game with product differentiation is a 

deadlock for any 0 < 𝛽 ≤ 𝛽̿஼(1) and 𝑔 > 𝑔஼(𝛽, 1), for any 𝛽̿஼(1) < 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(1, 𝑤) and 𝑔 >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 1), for any 𝛽

మ்

ூ/ேூ
(1, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(1, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 1, 𝑤), and for any 

𝛽
భ்

ூ/ேூ
(1, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 1, 𝑤). [4] Let 

ଶ

ଷ
≤ 𝑤 < 1 hold. Then [4.1] (I,I) is the unique 

Pareto inefficient Nash equilibrium and the R&D investment decision game with product 

differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̿஼(1) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 1) < 𝑔 < 𝑔஼(𝛽, 1), and 

[4.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment decision game 
with product differentiation is a deadlock for any 0 < 𝛽 ≤ 𝛽̿஼(1) and 𝑔 > 𝑔஼(𝛽, 1), for any 𝛽̿஼(1) <

𝛽 ≤ 𝛽
మ்

ூ/ேூ
(1, 𝑤) and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 1), for any 𝛽
మ்

ூ/ேூ
(1, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(1, 𝑤) and 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 1, 𝑤), and for any 𝛽
భ்

ூ/ேூ
(1, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 1, 𝑤). [5] Let 𝑤 → 1 hold. Then 

[5.1] (I,I) is the unique Pareto inefficient Nash equilibrium and the R&D investment decision game 

with product differentiation is a prisoner’s dilemma for any 0 ≤ 𝛽 ≤ 𝛽̿஼(1) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 1) < 𝑔 <

𝑔஼(𝛽, 1), and [5.2] (I,I) is the unique Pareto efficient Nash equilibrium and the R&D investment 
decision game with product differentiation is a deadlock for any 0 ≤ 𝛽 ≤ 𝛽̿஼(1) and 𝑔 > 𝑔஼(𝛽, 1), 

for any 𝛽̿஼(1) < 𝛽 ≤
ௗ

ଶ
 and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 1), and for any 
ௗ

ଶ
< 𝛽 ≤ 1 and 𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 1). 

 
Proof. Appendix. 
 
    Propositions 3 and 4 and Corollary 1 definitively identify the parametric conditions under which 
the stability conditions and R&D cost conditions are binding for the R&D investment decision game, 
showing that a sufficiently high degree of product differentiation is capable to solve the prisoner’s 
dilemma allowing (i) to let the R&D investment decisions game become a deadlock irrespective of 
the intensity of the R&D spill-overs, including the case of no disclosure (Proposition 4), and (ii) to 
pinpoint under perfect substitutability that the prisoner’s dilemma can be solved if and only if firms 
are disclosing on their R&D activity (Corollary 1). 
    Though there are several parametric conditions in which either a stability condition or an R&D 
cost condition is binding, the outcomes of the R&D investment decision game belong to two standard 
paradigms: the prisoner’s dilemma (when the degree of product differentiation is sufficiently low) 
and the anti-prisoner’s dilemma (when the degree of product differentiation is sufficiently high). In 
the former case, investing in R&D represents a dominant strategy, the Nash equilibrium (I,I) is Pareto 
inefficient and thus there exists a conflict between self-interest and mutual benefit to undertake cost-
reducing innovation. In the latter case, investing in R&D represents a dominant strategy, the Nash 
equilibrium (I,I) is Pareto efficient and thus there exists no conflict between self-interest and mutual 
benefit to undertake cost-reducing R&D. Other things being equal, product differentiation – by 
increasing firm’s profits – helps to relax the tightness of the relevant constraints in the (𝛽, 𝑔) space, 
contributes pushing down the stability conditions and the R&D cost conditions, in turn, allowing 
firms to increase the efficiency of the R&D activity (lower values of 𝑔) and reduce the need to sharing 
R&D related information (lower values of 𝛽), eventually opening the route for a solution to the 
prisoner’s dilemma identified by Bacchiega et a. (2010). Figures 4-7 provide qualitative support to 
the analysis carried out so far, by helping to clarify (for different values of the unitary cost 𝑤) the role 
of product differentiation in the AJ setting, showing specifically the role of the stability conditions 
and the R&D cost conditions in determining the Nash equilibrium outcomes of the game in the case 
of homogeneous products (𝑑 = 1) and heterogeneous products (𝑑 < 1). Amongst other things, the 
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figures clearly show that product differentiation pushes downwards all the constraints thus increasing 
the potential of technological improvements (𝑔 ↓) for any given value of the extent of the spill-overs. 
    When the degree of product differentiation is low (𝑑 ↑), the results of Bacchiega et al. (2010) 
generally hold, so that – for a given value of the efficiency of R&D activity, 𝑔 – the Nash equilibrium 
outcome is Pareto inefficient when 𝛽 is sufficiently low and Pareto efficient when 𝛽 becomes larger. 
However, unlike the case of homogeneous products studied by Bacchiega et al. (2010), there exists a 
finite value of 𝑔 such that the game turns to be a deadlock also in the absence of spill-over effects 
(𝛽 = 0). Let us begin with a parametric configuration such that the R&D game is a prisoner’s 
dilemma with a low spill-overs effect. In that case, I is a dominant strategy of each rational and selfish 
player (allowing to obtain the best outcome regardless of the rival’s choice), but the Nash equilibrium 
(I,I) is sub-optimal as firms have a joint incentive to coordinate towards NI though each of them has 
a unilateral incentive to play I and invest in R&D. Given the payoff matrix no one is interested in 
playing NI if the rival plays NI. This is because everyone prefers to unilaterally invest in process 
innovation, increase output and obtain a higher profit. No one is also interested in playing NI even 
when the rival plays I. This is because each player prefers to forgo being NI rather than be the only 
one to play NI, which leads to the worst possible outcome as a portion of its profits is eroded by the 
rival that is investing in R&D. Thus, regardless of the rival’s activity no one will play NI, and 
everyone will forgo obtaining a higher profit by becoming an investing firm. However, if both players 
had decided to cooperate to become a non-investing firm, they would be better off. Thus, by making 
decisions that guarantee each player the best outcome unilaterally, both players are worse off than 
they would have been if they had both chosen to play NI: the pursuit of individual success can thus 
lead to a collective failure. Can we then expect that both players, aware that they may get being 
disappointed by this result, will reach an agreement to jointly play NI? No. Players’ choices are 
consistent if only if no one should regret after knowing the rivals’ strategy. In an R&D game with 
this parameter configuration, players make consistent decisions when they choose to play I. After 
both firms have chosen to play I, no one will regret it as anyone who had decided to play NI 
unilaterally would have been worse off. In contrast, players would have made conflicting decisions 
if they had both chosen to cooperate and play NI. In this case, each would have regretted their choice 
as playing I unilaterally would have been better off resulting in a higher payoff. On one hand, we 
must expect players to be able to achieve an agreement prescribing consistent choices (R&D 
investments) because everyone is aware that no one after the agreement will be interested in the 
violation if the rival complies with it. On the other hand, we should not expect players to be able to 
achieve an agreement prescribing choices that are not mutually consistent (no R&D investment). This 
is because everyone is aware that no one will be interested in complying with that agreement if the 
rival complies with it. 
    In this setting, an increase in the degree of R&D spill-overs allows (i) an increase in profits of the 
non-investing firm in the asymmetric sub-game, and (ii) a reduction in profits of the investing firm 
in the asymmetric sub-game. Indeed, the former player gains from the free-riding activity at the 
expense of the investing rival (the latter). However, both increase their own profits under the strategic 
profile I. Therefore, the game becomes a deadlock and there is no conflict between self-interest and 
mutual benefit to undertake cost-reducing R&D. 
    When the degree of product differentiation increases (𝑑 ↓), the market share (in the markets for the 
relevant products) of each firm tends to increase and firms’ profits become larger than when the 
degree of product differentiation was lower. Under this parameter configuration, there is no need to 
disclose, both firms invest in R&D and the R&D game becomes a deadlock irrespective of the 
parameter scale. 
    It is now important to turn to the study of social welfare following the results of Proposition 2, i.e., 
𝑊∗ூ/ூ > 𝑊∗ேூ/ேூ for any 0 ≤ 𝛽 ≤ 1. Indeed, though in the absence of spill-overs and homogeneous 
products R&D investments improve social welfare, firms are worse off (the game is a prisoner’s 
dilemma). Differently, product differentiation represents a win-win result as social welfare under I/I 
is larger than under NI/NI, but firms are better off (the game is an anti-prisoner’s dilemma). 
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    In addition, the government should intervene to favour product differentiation. This is because 
𝑊∗ூ/ூ is a monotonic decreasing function of 𝑑, so that increasing the degree of product differentiation 
(𝑑 ↓) is welfare improving. This is because both profits of the investing firms and consumers’ surplus 
increase when 𝑑 decreases, though the latter is the result of two opposing effects (in the case of linear 
demand): 1) it reduces due to the reduction in the number of available goods; 2) it increases due to 
the increase in the variety of products available in the markets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         (A)                                                                                          (B) 

Figure 4. The R&D investment decision game: Nash equilibrium outcomes when 0 < 𝑤 <
ଵ

ଶ
 (𝑤 =

0.2) and 𝑑 = 1 > 𝑑̅஼(𝑤) (Panel A) and 𝑑 = 𝑑̅஼(𝑤) = 0.90616 (Panel B). The sand-coloured region 
represents the parametric area of unfeasibility in the (𝛽, 𝑔) space. In Panel A, the R&D game is a 
prisoner’s dilemma (area A) and an anti-prisoner’s dilemma (area B). In Panel B, the prisoner’s 
dilemma is solved, and the R&D game is anti-prisoner’s dilemma irrespective of the parameter scale 
(area B). 
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      (A)                                                                                             (B) 

Figure 5. The R&D investment decision game: Nash equilibrium outcomes when 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
 (𝑤 =

0.6) and 𝑑 = 1 > 𝑑̅஼(𝑤) (Panel A) and 𝑑 = 𝑑̅஼(𝑤) = 0.7085 (Panel B). The sand-coloured region 
represents the parametric area of unfeasibility in the (𝛽, 𝑔) space. In Panel A, the R&D game is a 
prisoner’s dilemma (area A) and an anti-prisoner’s dilemma (area B). In Panel B, the prisoner’s 
dilemma is solved, and the R&D game is an anti-prisoner’s dilemma irrespective of the parameter 
scale (area B). 
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       (A)                                                                                           (B) 

Figure 6. The R&D investment decision game: Nash equilibrium outcomes when 
ଶ

ଷ
≤ 𝑤 < 1 (𝑤 =

0.8) and 𝑑 = 1 > 𝑑̿஼ =
ଶ

ଷ
 (Panel A) and 𝑑 = 𝑑̿஼ =

ଶ

ଷ
 (Panel B). The sand-coloured region represents 

the parametric area of unfeasibility in the (𝛽, 𝑔) space. In Panel A, the R&D game is a prisoner’s 
dilemma (area A) and an anti-prisoner’s dilemma (area B). In Panel B, the prisoner’s dilemma is 
solved, and the R&D game is an anti-prisoner’s dilemma irrespective of the parameter scale (area B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (A)                                                                                           (B) 
Figure 7. The R&D investment decision game: Nash equilibrium outcomes when 𝑤 → 1 and 𝑑 =

1 > 𝑑̿஼ =
ଶ

ଷ
 (Panel A) and 𝑑 = 𝑑̿஼ =

ଶ

ଷ
 (Panel B). The sand-coloured region represents the parametric 

area of unfeasibility in the (𝛽, 𝑔) space. In Panel A, the R&D game is a prisoner’s dilemma (area A) 
and an anti-prisoner’s dilemma (area B). In Panel B, the prisoner’s dilemma is solved, and the R&D 
game is an anti-prisoner’s dilemma irrespective of the parameter scale (area B). 
 
4. Conclusions 
 
This article takes d’Aspremont and Jacquemin (1988, 1990) seriously and deepens the analysis of the 
non-cooperative version of the cost-reducing R&D model with spill-overs using a game-theoretic 
approach. The work aims at complementing Bacchiega et al. (2010), who concentrate on 
homogeneous products and identify an interplay between the extent of technological spill-overs and 
the efficiency of the R&D activity in determining whether the game is a prisoner’s dilemma or an 
anti-prisoner’s dilemma. However, in their work, the prisoner’s dilemma vanishes if and only if the 
extent of technological spill-overs is sufficiently high, which, in turn, would require that firms 
disclose (or – equivalently – they are unable to keep closed) the information on the results of their 
R&D investment. Generalising on the assumption of product differentiation à la Singh and Vives 
(1984) allows solving the dilemma also in the absence of R&D spill-overs in both cases of quantity 
and price competition. 
    Unlike the previous literature, this article (i) provides a thoughtful and detailed analysis of the role 
of the constraints needed to define the feasibility of the R&D investment decision game with 
homogeneous and heterogeneous products, (ii) identifies the parametric regions in which the game is 
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a prisoner’s dilemma or an anti-prisoner’s dilemma, and (iii) shows the conditions for making the 
prisoner’s dilemma disappear. 
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Appendix 
 

Proof of Proposition 1. 1) If 𝑑 < 0, then 𝑤்
ூ/ூ

> 1 and 𝛽்
ூ/ூ

< 0 for any 0 < 𝑤 < 1. Therefore, 

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 < 1. 2) If 𝑑 > 0, then 𝑤்

ூ/ூ
< 1, and 

𝛽்
ூ/ூ

< 0 for any 𝑤 < 𝑤்
ூ/ூ and 𝛽்

ூ/ூ
> 0 for any 𝑤 > 𝑤்

ூ/ூ. Therefore, 2.1) if 𝑤 < 𝑤்
ூ/ூ then 

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 𝛽, and 2.2) if 𝑤 > 𝑤்

ூ/ூ then 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) < 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 

𝛽 < 𝛽்
ூ/ூ and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) for any 𝛽 > 𝛽்
ூ/ூ. 3) If 𝑑 > 0 and 𝑤 → 1 then 𝛽்

ூ/ூ
→

ௗ

ଶ
 and 

𝑔்
ூ/ூ

(𝛽, 𝑑, 1) → 𝑔ௌ஼

ఉ೓೔೒೓
(𝛽, 𝑑) from above for any 0 ≤ 𝛽 ≤ 1. Therefore, 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔ௌ஼

ఉ೓೔೒೓
(𝛽, 𝑑) 

for any 0 ≤ 𝛽 ≤
ௗ

ଶ
 and 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 
ௗ

ଶ
≤ 𝛽 ≤ 1. Q.E.D. 

 
Proof of Proposition 2. By computing the difference 𝑊∗ூ/ூ − 𝑊∗ேூ/ேூ and solving for 𝑔 allows to 

get the threshold 𝑔ௐ(𝛽, 𝑑) ≔
(ଷାௗ)(ଶିௗఉ)(ଵାఉ)మ

(ଶାௗ)మ[ସିௗିௗమା଺ఉିௗమఉ]
> 0, which is smaller than 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 

0 ≤ 𝛽 ≤ 1, −1 < 𝑑 < 1. Therefore, 𝑊∗ூ/ூ > 𝑊∗ேூ/ேூ either for any 𝑔 > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) or for any 

𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). Q.E.D. 
 
Proof of Propositions 3. 
 

Point [1]. If products are complements (𝑑 < 0), then 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) > 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) 

for any 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 < 1. 
 

Points [2] and [4]. If products are substitutes (𝑑 > 0) and 0 < 𝑤 <
ଵ

ଶ
 or if products are substitutes 

(𝑑 > 0), 
ଵ

ଶ
≤ 𝑤 < 1 and 0 < 𝑑 < 𝑑்

ூ/ேூ
(𝑤) then 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 0, 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) > 0, 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 ≤ 1, 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 <

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤), and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1. Therefore, 
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𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) is binding for any 0 ≤ 𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding for any 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1.  

 

Point [3]. If products are substitutes (𝑑 > 0), 
ଵ

ଶ
≤ 𝑤 < 1 and 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 ≤ 1 then 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) >

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) > 0, 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 < 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤), 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 <

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤), and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1. Therefore, 

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) is binding for any 0 ≤ 𝛽 < 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) <

𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1. 

 

Point [5]. If products are substitutes and 𝑤 → 1, then 𝛽
భ்

ூ/ேூ
(𝑑, 1) > 0 and 𝛽

భ்

ூ/ேூ
(𝑑, 1) →

ௗ

ଶ
, 

𝛽
మ்

ூ/ேூ
(𝑑, 1) > 0 and 𝛽

మ்

ூ/ேூ
(𝑑, 1) →

ௗ

ଶ
, 𝑔்

ூ/ூ
(𝛽, 𝑑, 1) → 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) from above and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 1) →

𝑔ௌை஼(𝛽, 𝑑) for any 0 < 𝑑 ≤ 1, and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 1) > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 0 ≤ 𝛽 <
ௗ

ଶ
 

and 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) > 𝑔்
ூ/ேூ

(𝛽, 𝑑, 1) > 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 

ௗ

ଶ
< 𝛽 ≤ 1. Q.E.D. 

 
Proof of Propositions 4. 
 

Point [1]. If products are complements (𝑑 < 0) then 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding for any 0 ≤ 𝛽 ≤ 1 and 

0 < 𝑤 < 1 in the (𝛽, 𝑔) space (from Proposition 3). Moreover, 𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) for any 

−1 ≤ 𝑑 < 0, 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 < 1. If 𝛽 = 0 then 𝑔஼(0, 𝑑) < 𝑔்
ூ/ூ

(0, 𝑑, 𝑤) as 2(1 − 𝑤) −

𝑑(2 − 𝑤) > 0 for any −1 ≤ 𝑑 < 0 and 0 < 𝑤 < 1. In addition, 
డ௚಴(ఉ,ௗ)

డఉ
< 0 and 

ப௚೅
಺/಺

(ఉ,ௗ,௪)

డఉ
> 0 for 

any −1 ≤ 𝑑 < 0, 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 < 1. Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 
0 ≤ 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

Points [2] and [3]. If products are substitutes (𝑑 > 0) and 0 < 𝑤 <
ଵ

ଶ
 then 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding 

for any 0 ≤ 𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤)  is binding for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) 

space (from Proposition 3). In addition, 
డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 0 < 𝑤 <

ଵ

ଶ
. If 𝑑̅஼(𝑤) ≤

𝑑 < 1 then 𝑔஼(𝛽, 𝑑) ≥ 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for 

any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 1, where 𝛽̅஼(𝑑, 𝑤) > 0 and 𝛽̅஼(𝑑, 𝑤) < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) for any 0 < 𝑤 <

ଵ

ଶ
. 

Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) < 𝑔 <

𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 
𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 >

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). If 0 < 𝑑 < 𝑑̅஼(𝑤) then 𝛽̅஼(𝑑, 𝑤) < 0 and 𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 ≤

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and 𝑔஼(𝛽, 𝑑) < 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 

𝑔 > 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 

𝑔 > 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

Points [4], [5] and [6]. If products are substitutes (𝑑 > 0), 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
 and 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 < 1 then 

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) is binding for any 0 ≤ 𝛽 ≤ 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) <
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𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from 

Proposition 3). In addition, 
డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
. Then, 𝑔஼(𝛽, 𝑑) >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 ≤ 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔஼(𝛽, 𝑑) ≥ 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔஼(𝛽, 𝑑) < 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 1, where 

𝛽̅஼(𝑑, 𝑤) > 0 and 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽̅஼(𝑑, 𝑤) < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) for any 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
. Therefore, ΔΠ஺ > 0, 

ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 < 𝑔஼(𝛽, 𝑑), and for any 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) < 𝑔 < 𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, ΔΠ஻ < 0 and 

ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 

𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). If products are substitutes (𝑑 > 0), 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
 and 

𝑑̅஼(𝑤) ≤ 𝑑 < 𝑑்
ூ/ேூ

(𝑤) then 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) is binding for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from Proposition 3). In addition, 

డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
. Then, 𝑔஼(𝛽, 𝑑) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 <

𝛽̅஼(𝑑, 𝑤), 𝑔஼(𝛽, 𝑑) ≤ 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 𝛽̅஼(𝑑, 𝑤) ≤ 𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔஼(𝛽, 𝑑) <

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 1, where 𝛽̅஼(𝑑, 𝑤) > 0 and 𝛽̅஼(𝑑, 𝑤) < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) for any 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
. Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) < 𝑔 < 𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 

𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). If products are substitutes (𝑑 > 0), 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
 and 0 <

𝑑 < 𝑑̅஼(𝑤) then 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) is binding for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from Proposition 3). In addition, 

డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤

𝛽 ≤ 1 and 
ଵ

ଶ
≤ 𝑤 <

ହ

଼
. Then, 𝑔஼(𝛽, 𝑑) < 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and 𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), 

and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

Points [7], [8], [9] and [10]. If products are substitutes (𝑑 > 0), 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 and 𝑑஼஼(𝑤) ≤ 𝑑 < 1 then 

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) is binding for any 0 ≤ 𝛽 ≤ 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) <

𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from 

Proposition 3). In addition, 
డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
. Then, 𝑔஼(𝛽, 𝑑) >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 < 𝛽̿஼(𝑑), 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔஼(𝛽, 𝑑) > 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for 

any 𝛽̿஼(𝑑) ≤ 𝛽 < 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔஼(𝛽, 𝑑) < 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤), 

𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 ≤ 1, where 𝛽̿஼(𝑑) > 0 and 𝛽̿஼(𝑑) <

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) for any 

ଵ

ଶ
≤ 𝑤 <

ହ

଼
. Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 

0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 < 𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤

𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̿஼(𝑑) ≤ 𝛽 < 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), for any 



 

 33 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤), 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 ≤ 1 and 𝑔 >

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). If products are substitutes (𝑑 > 0), 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
 and 𝑑்

ூ/ேூ
(𝑤) ≤ 𝑑 < 𝑑஼஼(𝑤) then 

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) is binding for any 0 ≤ 𝛽 ≤ 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) <

𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from 

Proposition 3). In addition, 
డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
. Then, 𝑔஼(𝛽, 𝑑) >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 ≤ 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔஼(𝛽, 𝑑) ≥ 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔஼(𝛽, 𝑑) < 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 1, where 

𝛽̅஼(𝑑, 𝑤) > 0 and 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽̅஼(𝑑, 𝑤) < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) for any 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
. Therefore, ΔΠ஺ > 0, 

ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 < 𝑔஼(𝛽, 𝑑), and for any 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) < 𝑔 < 𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, ΔΠ஻ < 0 and 

ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 

𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). If products are substitutes (𝑑 > 0), 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
 and 

𝑑̅஼(𝑤) ≤ 𝑑 < 𝑑்
ூ/ேூ

(𝑤) then 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) is binding for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) is binding 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from Proposition 3). In addition, 

డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
. Then, 𝑔஼(𝛽, 𝑑) > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 <

𝛽̅஼(𝑑, 𝑤), 𝑔஼(𝛽, 𝑑) ≤ 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 𝛽̅஼(𝑑, 𝑤) ≤ 𝛽 < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔஼(𝛽, 𝑑) <

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 1, where 𝛽̅஼(𝑑, 𝑤) > 0 and 𝛽̅஼(𝑑, 𝑤) < 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) for any 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
. Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) < 𝑔 < 𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽̅஼(𝑑, 𝑤) and 

𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̅஼(𝑑, 𝑤) < 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). If products are substitutes (𝑑 > 0), 

ହ

଼
≤ 𝑤 <

ଶ

ଷ
 and 0 <

𝑑 < 𝑑̅஼(𝑤) then 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) is binding for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from Proposition 3). In addition, 

డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤

𝛽 ≤ 1 and 
ହ

଼
≤ 𝑤 <

ଶ

ଷ
. Then, 𝑔஼(𝛽, 𝑑) < 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) for any 0 ≤ 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and 𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), 

and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). 

 

Points [11] and [12]. If products are substitutes (𝑑 > 0), 
ଶ

ଷ
≤ 𝑤 < 1 and 

ଶ

ଷ
≤ 𝑑 < 1 then 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) 

is binding for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤) is binding for any 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 <

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from Proposition 

3). In addition, 
డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 

ଶ

ଷ
≤ 𝑤 < 1. Then, 𝑔஼(𝛽, 𝑑) > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) for 

any 0 ≤ 𝛽 < 𝛽̿஼(𝑑), 𝑔஼(𝛽, 𝑑) < 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 𝛽̿஼(𝑑) ≤ 𝛽 < 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤), 𝑔஼(𝛽, 𝑑) <

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤), 𝑔஼(𝛽, 𝑑) < 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) for any 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 ≤ 1, where 𝛽̿஼(𝑑) > 0 and 𝛽̿஼(𝑑) < 𝛽

మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) for any 

ଶ

ଷ
≤ 𝑤 <
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1. Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 <

𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 

𝛽̿஼(𝑑) ≤ 𝛽 < 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤), 𝑔 >

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤), and for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) ≤ 𝛽 ≤ 1 and 𝑔 > 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤). If products are substitutes 

(𝑑 > 0), 
ଶ

ଷ
≤ 𝑤 < 1 and 0 < 𝑑 <

ଶ

ଷ
 then 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) is binding for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤), 

𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) is binding for any 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 < 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔்

ூ/ூ
(𝛽, 𝑑, 𝑤) is binding 

𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from Proposition 3). In addition, 

డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤

𝛽 ≤ 1 and 
ଶ

ଷ
≤ 𝑤 < 1. Then, 𝛽̿஼(𝑑) < 0 and 𝑔஼(𝛽, 𝑑) < 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤), 

𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ேூ

(𝛽, 𝑑, 𝑤) and 𝑔஼(𝛽, 𝑑) < 𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤) for any 𝛽
భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1. Therefore, 

ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), for any 

𝛽
మ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) and 𝑔 > 𝑔்

ூ/ேூ
(𝛽, 𝑑, 𝑤), and for any 𝛽

భ்

ூ/ேூ
(𝑑, 𝑤) < 𝛽 ≤ 1 and 𝑔 >

𝑔்
ூ/ூ

(𝛽, 𝑑, 𝑤). 
 

Points [13] and [14]. If products are substitutes (𝑑 > 0), 𝑤 → 1 and 
ଶ

ଷ
≤ 𝑑 < 1 then 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) is 

binding for any 0 ≤ 𝛽 ≤
ௗ

ଶ
 and 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) is binding for any 
ௗ

ଶ
< 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from 

Proposition 3). In addition, 
డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 𝑤 → 1. Then, 𝑔஼(𝛽, 𝑑) >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 < 𝛽̿஼(𝑑), 𝑔஼(𝛽, 𝑑) ≤ 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) for any 𝛽̿஼(𝑑) ≤ 𝛽 ≤
ௗ

ଶ
, 𝑔஼(𝛽, 𝑑) <

𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 
ௗ

ଶ
≤ 𝛽 ≤ 1, where 𝛽̿஼(𝑑) > 0 and 𝛽̿஼(𝑑) <

ௗ

ଶ
 for any 𝑤 → 1. Therefore, ΔΠ஺ >

0, ΔΠ஻ < 0 and ΔΠ஼ > 0 for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) < 𝑔 < 𝑔஼(𝛽, 𝑑), and ΔΠ஺ > 0, 

ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤ 𝛽 ≤ 𝛽̿஼(𝑑) and 𝑔 > 𝑔஼(𝛽, 𝑑), for any 𝛽̿஼(𝑑) ≤ 𝛽 <
ௗ

ଶ
 and 𝑔 >

𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑), and for any 

ௗ

ଶ
≤ 𝛽 ≤ 1 and 𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑). If products are substitutes (𝑑 > 0), 𝑤 →

1 and 0 < 𝑑 ≤
ଶ

ଷ
 then 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑) is binding for any 0 ≤ 𝛽 ≤
ௗ

ଶ
 and 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) is binding for any 
ௗ

ଶ
< 𝛽 ≤ 1 in the (𝛽, 𝑔) space (from Proposition 3). In addition, 

డ௚಴(ఉ,ௗ)

డఉ
< 0 for any 0 ≤ 𝛽 ≤ 1 and 

𝑤 → 1. Then, 𝑔஼(𝛽, 𝑑) < 𝑔ௌ஼
ఉ೗೚ೢ(𝛽, 𝑑) for any 0 ≤ 𝛽 <

ௗ

ଶ
 and 𝑔஼(𝛽, 𝑑) ≤ 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑) for any 
ௗ

ଶ
≤

𝛽 ≤ 1, where 𝛽̿஼(𝑑) < 0 for any 𝑤 → 1. Therefore, ΔΠ஺ > 0, ΔΠ஻ < 0 and ΔΠ஼ < 0 for any 0 ≤

𝛽 ≤
ௗ

ଶ
 and 𝑔 > 𝑔ௌ஼

ఉ೗೚ೢ(𝛽, 𝑑), and for any 
ௗ

ଶ
≤ 𝛽 ≤ 1 and 𝑔 > 𝑔ௌ஼

ఉ೓೔೒೓(𝛽, 𝑑). Q.E.D. 

 
Proof of Corollary 1. The proof of Corollary 1 follows the same line of reasoning and uses the same 

arguments as the proof Proposition 4 by assuming 𝑑 = 1 and knowing that 𝑔஼(𝛽, 1) ≔
ଶ(ଵାఉ)మ(ଶିఉ)

ଶ଻ఉ
, 

so that 𝑔஼(0,1) → +∞ if 𝛽 → 0. This implies that it is not possible to solve the prisoner’s dilemma 
in the absence of R&D spill-overs if products are perfect substitutes. Q.E.D. 
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