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1 Introduction
In recent years, Natural Language Processing (NLP) has become an essential tool
for extracting and interpreting information from large volumes of unstructured
textual data across a wide range of domains. As Chowdhary defines it, NLP is
the study and development of computational systems that can process human
language to derive useful insights [30]. A core challenge in NLP involves represent-
ing long-form text in a way that captures its contextual depth without sacrificing
computational efficiency. This task is especially relevant in domains like finance,
where extended documents—such as business plans, financial reports, and regula-
tory filings—contain complex and nuanced language critical to decision-making.
Accordingly, advancements in NLP techniques for text representation have enabled
more sophisticated analysis of these types of documents, opening new avenues for
data-driven insights where traditional data sources are limited.

This paper examines the evolution of NLP methods for text representation,
tracing the progression from early, foundational models to advanced deep learning
techniques that leverage attention mechanisms for more nuanced understanding.
We begin by reviewing the development of NLP representation methods, from basic
models like Bag-of-Words (BoW) to distributed embeddings such as Word2Vec and
GloVe, culminating in the advent of Transformer-based architectures like BERT.
These advancements significantly improved NLP’s capacity to capture context and
semantics, though they also introduced challenges, such as high computational
demands when processing extensive datasets.

We then address the specific challenges posed by long texts, where preserving
coherence and contextual relevance across lengthy documents becomes complex.
Recent innovations, including adaptations to Transformer architectures, have
provided strategies to manage long-form texts efficiently, enabling NLP to handle
extended documents more effectively.

Lastly, we explore applications of NLP in the financial sector, where complex
documents require specialized processing. The literature highlights the use of NLP
in tasks like sentiment analysis, risk assessment, and forecasting, illustrating how
these techniques have transformed financial document analysis by offering insights
in settings where structured data may be scarce.

This paper is structured as follows: in the section 2 we first provide a historical
and technical overview of text representation techniques, then discuss methods
specifically for long-text representation in the section 3, and finally in the section 4
examine NLP applications in financial document analysis. This organization offers
both a foundational understanding of NLP advancements in text representation
and a focused review of their impact in finance, setting the stage for exploring
NLP’s broader potential in alternative data analysis.
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2 Natural Language Processing
Natural Language Processing (NLP) involves enabling computers to understand
and process human languages, such as English or Italian. While natural languages
are intuitive for humans, they pose significant challenges for computers due to
ambiguities, context dependencies, and the lack of rigid formal structures. NLP
encompasses a wide range of applications. For instance, machine translation
requires a program to read a sentence in one language (e.g., English) and generate
an equivalent sentence in another language (e.g., Italian) that preserves the original
meaning [54, 68].

Another significant application of NLP is automated summarization, which
condenses lengthy texts into brief summaries, preserving essential information
[1]. This application is widely used in journalism and academia to distill lengthy
articles or research papers into concise summaries, allowing readers to grasp main
points quickly. In finance and macroeconomics, NLP algorithms analyze news
feeds, economic reports, and earnings statements to gauge market and economic
sentiment, aiding in investment decisions and policy evaluations. By extracting
insights from these large datasets, NLP helps analysts understand market trends
and economic indicators, providing valuable input for both financial forecasting
and macroeconomic assessments [9, 19, 4, 5].

Information retrieval systems play a crucial role in extracting relevant informa-
tion from vast datasets, as seen in search engines, recommendation systems, and
digital libraries. NLP techniques such as query understanding, semantic search,
and relevance ranking allow IR systems to interpret user queries accurately and
rank results by relevance [84].

Another innovative task is Text-to-Speech (TTS) that converts written text into
spoken language, widely used in accessibility tools, virtual assistants, and customer
service. TTS leverages NLP to capture natural prosody and intonation, producing
lifelike speech output. Advanced models, including Tacotron [91] and WaveNet
[88], are often used to ensure the speech sounds authentic and adaptable to various
tones and expressions [96]. In social sciences, NLP is applied to analyze large
datasets of social media posts, helping researchers study social trends, behaviors,
and public health issues [87].

In any NLP task, a critical first step is determining the type of text to use
as input, as document types can vary widely based on task requirements. For
instance, in macroeconomic forecasting, financial news articles might be aggregated
at a chosen time frequency (daily, quarterly, etc.), whereas more detailed analyses
might focus on reports such as government economic reviews or industry-specific
briefings. Similarly, earnings reports, corporate filings, and policy documents
each offer unique insights that are relevant for specific downstream tasks, such as
sentiment analysis, economic indicator prediction, or trend analysis.
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After defining the input text type, it typically cannot be used directly in an
NLP model. Instead, a sequence of preparatory steps is required to make the
text suitable for machine processing—a process known as the NLP pipeline. This
pipeline encompasses everything from initial text preparation to the generation
of final predictions, ensuring that input data is appropriately structured and
preprocessed to optimize model performance.

In the next sections, we first details the whole NLP pipeline by introducing the
steps that are usually involved. Then, in last two sections, we focus on a crucial
step of the pipeline: how to obtain a vectorial representation of the words and the
text.

2.1 The NLP Pipeline

Human 
Readable

Text
(PDF)

Text Extraction 
&

Text Cleaning 
Text Preprocessing Task-Specific

NLP Model
Prediction

Pre-Trained
Representation Model

Task-Specific
Readout Model

Deep Learning Approach

Figure 1: A sketch of the NLP pipeline. In the dashed circle, we represent the
current approach based on DL.

The NLP pipeline (see Figure 1) begins with extraction and cleaning, where
text document from diverse formats (such as PDFs, HTML, or Word documents) is
converted into a raw text, with unnecessary elements like HTML tags and special
characters removed. Following this, pre-processing aim to prepare the text for
the subsequent NLP model. The pre-processing can include different steps such
as remove punctuation and extra spaces, normalize it by converting to lowercase,
and tokenize it by breaking the text into individual words or phrases. During the
pre-processing we an also filter out non-informative words like "the" or "is" (these
are called stop words), or non-informative grammatical roles, i.e. parts-of-speech
(POS). Further, stemming and lemmatization can be applied to reduce words to
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their root forms, enhancing consistency across variations like "running" and "run".
It is worth highlighting that the choice of the pre-processing steps that should be
applied depdends on the NLP model we aim to apply.

The final step, NLP modeling, is tailored to the specific task and, in the deep
learning era, is generally divided into two phases. First, a pre-trained representation
model—such as BERT or GPT—is applied to obtain rich, task-independent semantic
embeddings of the text. These embeddings are then fed into a classifier or regressor
based on the task, whether it’s sentiment classification, named entity recognition,
or prediction. This approach of using a general representation model followed by a
task-specific model enables a versatile and effective pipeline, allowing NLP systems
to handle a wide range of applications with enhanced accuracy and semantic
understanding.

2.1.1 Text Extraction & Text Cleaning

Often, the documents of interest are not machine-readable. One of the most used
format for document is the PDF 1. The goal of the PDF format is to present
documents—including text, formatting, and images—in a consistent manner, in-
dependent of software, hardware, or operating system. Built on the PostScript
language, each PDF file contains a complete description of a fixed-layout document,
including text, fonts, vector graphics, raster images, and all necessary information
for accurate display. While PDFs can also include additional elements beyond basic
text and graphics (such as logical structure, interactive annotations, form fields,
layers, and multimedia), these aspects fall outside the scope of this discussion.

There are two types of PDF textual document:

• native PDFs are the ones that were “born digital”, i.e. the PDFs were created
from an electronic version of a document (for example, by using a word
processor program);

• scanned PDFs are obtained from printed documents:the pages of the document
have beeen scanned and stored in PDF file.

Scanned documents are the more challenging to extract since the PDF file
contains only images. To extract the text, it is necessary to employ an Optical
Character Reader (OCR), i.e. a computer program which is able to convert images
of typed, handwritten or printed text into machine-encoded text. The result of the
conversion are highly affected from the quality of the input images.

Nevertheless, also the text extraction from native PDFs is not straightforward.
Since the PDF format focuses on the appearance of the documents, it usually lacks

1Portable Document Format (PDF) is standardized as ISO 32000 and developed by Adobe in
1992.
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of explicit structural metadata, such as headings, paragraphs, or the semantics of
tables. This absence complicates the identification of different content types and
the understanding of their hierarchy and interrelationships. Moreover, each PDF
file can have its own layout, that can differ from page to page; for example, some
pages can be formatted into a multiple-columns layout, while other can contain
tables or an image.

The output of the text extraction is the so-called raw text, where all the
information about the appearance (e.g. the font information, the position in the
page, etc..) are discarded. The only information left in the raw text is the sequence
of characters, stored according an encoding schema such as ASCII or UTF-8.

2.1.2 Text Preprocessing

Before applying any algorithm, raw text must be transformed into sequences of
linguistic features, commonly referred to as tokens in NLP. Let D be a document,
we represent it as:

D = (w1, w2, . . . , wN) ,

where wi is the i-token of the document, and N is the number of tokens in D. The
transformation of a raw text in a sequence of tokens is called pre-processing.

The steps required in the pre-processing depend on the application domain and
the NLP model involved. For example, in the field of economics, the standard pre-
processing typically involves tokenization and stemming. This standard approach
has been extensively covered in prior works (e.g., [63, 48, 45, 6].

Nowadays, with the advent of the Transformers era, the usual pre-processing
comprises only the tokenization. However, it is worth highlighting that the final
performances are affected from the quality of the raw text. Thus, it always
recommended to provide the raw text as clean as possible (e.g. removing urls).

Below, we outline several key techniques used to clean preprocess text data,
thereby eliminating noise and enhancing the extraction of meaningful features.

Tokenization is a foundational preprocessing technique that segments a text
stream into smaller units, such as words, phrases, or symbols, known as tokens.
The primary objective is to break down a sentence into its constituent words
for further analysis. Tokenization is a critical first step in both text classifica-
tion and text mining, providing the parser with a structured input for down-
stream tasks. For example, Don’t you hate that? What? Uncomfortable si-
lences! can be transformed in Do”, n’t”, you”, hate”, that” ?”, What ”,
?”, Uncomfortable”, silences”.” by leveraging the tokenize function of the
Python-based Natural Language Toolkit (NLTK) [16].
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Stopwords Removal. In many classification tasks, common words such as arti-
cles, conjunctions, and prepositions (e.g. "a", "an", "the", "and", "but", "or") provide
little value for the learning algorithms. Stopword removal is a standard preprocess-
ing technique used to filter out these words, thereby reducing dimensionality and
focusing the model on more informative tokens.

Case-folding, often achieved by converting all characters to lowercase, is a
standard approach in text normalization, helping match terms like "bank" with
"Bank" or "apple" with "Apple". This strategy enhances consistency across large
corpora and simplifies search queries when users input lowercase, like typing
"amazon" for "Amazon" (the company). However, full case-folding can blur essential
distinctions, especially for proper nouns and acronyms that rely on capitalization
to convey unique meanings, such as "Fed" (Federal Reserve) vs. "fed" (past tense of
feed) or "US" (United States) vs. "us" (pronoun).

Selective case-folding offers a more flexible approach by converting only certain
tokens, such as sentence-initial words or fully capitalized titles, to lowercase, leaving
mid-sentence capitalization intact to maintain key distinctions. Machine learning
models, known as truecasing, use contextual data to improve these decisions,
identifying where capitalization carries specific meaning. Exception handling,
including slang and abbreviation tools, can further manage ambiguities in context.
Nonetheless, given users’ tendency to type in lowercase, full lowercasing remains
an efficient solution in many scenarios [63].

Slang and Abbreviation often are included in the informal text, particulary on
social media, that can hinder accurate interpretation. For example, abbreviations
like ASAP (for as soon as possible) or slang phrases like spill the tea (meaning "reveal
gossip") add complexity to natural language processing. During preprocessing,
these informal expressions are typically converted into their formal counterparts to
improve model comprehension and consistency.

This conversion step is crucial because models trained on standardized language
often struggle to interpret less formal or context-specific expressions accurately.
By translating slang and abbreviations into more universally understood terms,
preprocessing enhances the model’s performance, aligning the text data with a
consistent and structured feature space, thereby improving interpretation and
analysis outcomes.

Parts-of-Speech (PoS) tagging is a fundamental task that assigns a gram-
matical category, such as noun, verb, adjective, or adverb, to each word in a
text. By capturing the structure and semantics of phrases, PoS tagging enhances
machine understanding of human language, allowing for more accurate language
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Figure 2: Example of POS tagging using CoreNLP.

analysis. This process acts as a bridge between raw language data and machine
comprehension, aiding in the correct interpretation of the phrase’s meaning and
structure.

For example, consider the phrase: Remember this: "Be it a rock or a grain of
sand, in water they sink as the same." Applying PoS tagging yields the output
in the Figure 2, where each word is assigned a grammatical category, such as
VB (verb), DT (determiner), NN (noun), JJ (adjective), PRP (pronoun), CC
(conjunction), and IN (preposition).

Noise Entities Removal in text data, such as extra punctuation marks, special
characters (e.g., , #, $), and other irrelevant symbols, can hinder the performance
of classification algorithms. For instance, hashtags (#BlackLivesMatter) or excess
punctuation (!!!) may add unnecessary complexity without contributing to the core
meaning. Removing these elements during preprocessing streamlines the feature
set, enabling the model to focus on meaningful linguistic patterns rather than
extraneous details. This step helps improve classification accuracy by ensuring that
the model prioritizes essential information within the text.

Spelling Correction is essential for improving NLP accuracy, especially in user-
generated content where misspellings are common. Techniques for error correction
often involve checking each word against a dictionary, flagging any words not found
as potential errors, such as "recieve", which can be corrected to "receive". Edit
distance algorithms like Levenshtein and Damerau-Levenshtein measure [39] the
minimum edits needed to align a misspelled word with known terms, suggesting
corrections with minimal differences. Context-aware approaches further enhance
accuracy by using surrounding words to refine choices, as with their vs. there.
Additionally, Trie structures allow efficient lookup by grouping words based on
shared prefixes, enabling quick correction. Together, these techniques improve data
quality and ensure consistency, enhancing model performance across NLP tasks.

Lemmatization is the process of identifying and reducing different word forms to
a common root, or lemma, regardless of surface-level variations. For example, "am",
"are", and "is" are all lemmatized to the root "be", while "walking", "walks", and
"walked" are reduced to "walk". This approach facilitates the consistent recognition
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of a concept across its various morphological forms 2.
In practice, lemmatization simplifies complex sentences to their essential com-

ponents while preserving their core meaning. For instance, the sentence "The
saddest aspect of life right now is that science gathers knowledge faster than society
gathers wisdom" would be transformed to "The sad aspect of life right now be that
science gather knowledge fast than society gather wisdom." This structure retains
the sentence’s essential meaning, enabling more effective analysis by focusing on
root forms. Lemmatization is particularly advantageous in contexts requiring high
precision, as it groups words based on shared meanings despite surface differences,
supporting a more accurate and cohesive text representation.

Stemming is a straightforward technique in morphological analysis that reduces
words to their base form by removing final affixes, such as suffixes and prefixes.
Unlike lemmatization, which often relies on complex algorithms to find the precise
dictionary base form of a word, stemming is a simpler, albeit cruder, method. For
example, stemming transforms "studies", "studying", and "studied" into "stud",
and "running" and "runner" into "run". This process helps group different word
forms, improving consistency in text data. One popular stemming algorithm is
the Porter Stemmer [76], which systematically chops off suffixes based on specific
linguistic rules, making it effective for English text. While this approach is less
precise than lemmatization (which would convert better to good based on context),
it is computationally efficient and widely used for tasks that benefit from simpler,
faster preprocessing.

2.1.3 Build the Model

Once we have a clean representation of the input document as a token sequence,
we are ready to apply ML to solve the task we are interested in. Early approaches
in NLP (such as probabilistic language models and the Naive Bayes) were based on
the estimation of the tokens co-occurancies. When humans read text, they don’t
perceive it as a sequence of isolated tokens. Instead, they interpret each word in
relation to others, extracting meaning from the text as a cohesive whole. Therefore,
any effort to distill text into meaningful data must similarly account for complex
grammatical structures and the intricate relationships among words [45].

2An example in Italian is the noun "amico" (meaning friend), which changes based on gender
and number. It appears as "amico" for a male friend (singular), "amica" for a female friend
(singular), "amici" for male or mixed-gender groups (plural), and "amiche" for female groups
(plural). Lemmatizing these variations to the base form "amico" allows for consistent recognition
of all references to friend, regardless of gender or number, facilitating a more accurate analysis of
social connections in various contexts.
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With the rise of the Deep Learning era, the focus of NLP shifted to answering the
question "How do we represent the meaning of a text?". This allows to decompose
almost all the NLP tasks in two subtask (as we have already highlighted in Figure
1):

1. transform the text into a fixed-size representation which captures its meaning;

2. learn a readout model (e.g. a classifier) that solve the task starting from the
vectorial representation of the text.

This approach is often denoted as representation learning since we move most
of the effort in learning a meaningful representation of the input data. Clearly,
learning a representation for text is very challenging: even the definition of the
meaning of a text is ambiguous and it depends on the task we are solving. However,
there are a lot of characteristics that are task-independent: for example, the lexical
properties of words, or the relation among words in a sentence. If we succeed to
obtain a representation that can capture this task-agnostic characteristics, we can
use it as a good starting point to solve any task we are interested in.

Nowadays, to solve a NLP task, we heavily leverage pre-trained models, i.e.
model that have been trained on a large amount of data to build good text
representation. Then, we use our data (which can be relative small) to train only
the readout model. For example, in order to solve a text classification model, we
could employ (1) a pre-trained Transformer model such as BERT to obtain a good
text representation, and (2) a Random Forest to predict the correct label starting
from the BERT representation.

In this chapter, we mainly focus on the models that can be used to produce tex-
tual representations. However, before going into these details, we breifly introduce
some models that can be used as readout to solve NLP tasks.

Readout Models aim to solve the NLP task starting from a textual representa-
tion (usually a fixed size vector, as we will show later in this chapter). For the sake
of simplicity, we consider a sentiment classification task: given a text as input, we
would like to predict the sentiment (negative, neutral, positive). Given a pretrained
model that maps the input text into a fixed-size vector of feature, we can employ
any classification model as a readout (e.g. Random Forest, Support Vector Machine,
Logistic Regression, etc...). To train the readout model, we employ a dataset of
pairs {(hi, yi)}, where hi is the representation of the i-th input text obtained from
the pretrained model and yi is the sentiment that we use as supervision. In this
scenario, the pretrained model is used as a fixed function that map the text into a
vector space. This approach is often sub-optimal because the representation is not
optimized for the task we are considering. For example, it could be that positive
and negative adjective can have similar representations even if they encode opposite
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sentiments. To mitigate this drawback, it is possible to train the representation
model jointly with the readout. This approach is usually denoted as fine-tuning.
The idea is to move a little bit the parameter of the pretrained model in such
a way the classifier can better distinguish between the output labels. To apply
the fine-tuning, we need to choose a readout model that can propagate back to
the representation model information about the errors: common choices are the
Multi-Layer Perceptron or the Logistic Regression.

2.2 Words Representation
A simple way to represent a word is by considering it as an index in a vocabulary
list V . Usually, the vocabulary V contains only the words that appear at least
once in the corpus we are considering. By using this representation we are just
considering words as lemma, i.e. a sequence of characters; indeed, a word is more
than that since it carries (at least) one meaning.

For instance, some words share similar meanings (e.g., car and vehicle), while
others are opposites, such as bright and dark. Additionally, certain words carry pos-
itive connotations (success), whereas others convey negative connotations (failure).

Vector semantics has become the standard method in NLP for representing
word meaning, allowing us to model various aspects of semantics effectively. The
foundations of this approach trace back to the 1950s, when two major ideas emerged.
First, Osgood’s 1957 [71] concept proposed representing a word’s connotation as
a point in three-dimensional space. Second, linguists like Joos (1950), Harris
(1954)[50], and Firth (1957)[44] introduced the notion of defining a word’s meaning
based on its distribution in language use. According to this distributional hypothesis,
words that frequently appear in similar contexts or with similar neighboring words
tend to share similar meanings [52].

Vector semantics aims to represent a word as a point within a multidimensional
semantic space, constructed based on the distribution of neighboring words. These
vectors, known as embeddings, serve as mappings from one structure (word meanings)
to another (the vector space). While the term embedding generally refers to any
word representation, it is sometimes reserved specifically for dense vector models
like Word2Vec (see Section 2.2.2); in this work, we refer to embedding as any vector
representation of words (both sparse and dense)..

The main advantage of building a vector semantic is to have all the tools from
vector spaces to manipulate the concepts. For instance, the similarity between
two words can be quantified by using a metric that measures the closeness of their
embeddings. The most widely used metric for this purpose is the cosine similarity,
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which calculates the cosine of the angle between the vectors representing the words:

cosine(v, w) = v⊤w

|v||w|
, (1)

where v, w ∈ R|V | are the vector representations of two words.
The cosine similarity ranges from 1 for vectors aligned in the same direction,

through 0 for orthogonal vectors, down to -1 for vectors pointing in opposite
directions [52]. A "good" vector semantics should be able to capture the relations
between words by the meaning of their representation: two words that are synonyms
should be mapped to embeddings that have a cosine similarity near 1; On the
contrary, antonyms should be mapped to embeddings with a cosine similarity near
-1; a cosine similarity of 0 indicates that the word are not related (as two orthogonal
vectors).

In the next sections, we deepen three different vector semantics which are based
on the distributional assumption. The first one is based on counting how many
times a word appears near another one. Then we move to a neural approach which
allow to obtain a static dense vectorial representation of words. Finally, we move
to the state-of-the-art approach based on Transformers architecture where words
are represented by contextual dense vectors.

2.2.1 Words as frequency vectors

The easiest way to represent the distribution of the context of a word is by computing
the empirical distribution on a corpus. The context could be the document, or
more commonly, it is a window around the word (for example, of 4 words to the left
and 4 words to the right). Let w be a word, its representation is a vector xw ∈ N|V |

such that its i-th value indicates how many times the i-th word in the vocabulary
appears in the context of w in all the documents in the corpus. We denote this
representation as frequency embeddings.

For example, we report in Table 1 the co-occurrence matrix in the Wikipedia
corpus. Such a matrix has size |V | × |V | and the value in the i-th row and j-th cell
indicates how many times the j-th word in the vocabulary appears in the context
of the i-th word. For example, the word computer appears two times in the context
of cherry, while the word pie appears 442. Thus, each row of the matrix represents
a vector representation of a different word in the corpus. By observing the reported
values, it is clear that the word cherry is similar to the word strawberry since they
have a similar context. On the contrary, cherry and computer appear in completely
different contexts; thus, they have different meanings.

The frequency-based representation does not take into account that there are
words that appear more frequently in a language. For example, it is very likely
that the word "and" appears in the context of almost all the other english words:
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. . . computer data results pie sugar . . .

... ... ... ... ... ... ... ...
cherry . . . 2 8 9 442 25 . . .

strawberry . . . 0 0 1 60 19 . . .
digital . . . 1670 1683 85 5 4 . . .

information . . . 3325 3982 378 5 13 . . .
... ... ... ... ... ... ... ...

Table 1: Co-occurrence vectors for four words in the Wikipedia corpus [52].

thus, the count of how many times the word "and" appears in the context of w
does not bring any information about the w. A common approach to overcome this
limitation is the introduction a weighting function which allows us to put more
emphasis on some words. Positivie Pointwise Mutual Information (PPMI) [32] has
been introduced for this purpose and it is defined as:

PPMI(w, c) = max
(

log2
P (w, c)

P (w)P (c) , 0
)

, (2)

where w and c are two words, and P (w, c), P (w), P (c) are probability distribution
that can be estimated by frequencies. The denominatore of PPMI allow us to take
into account what is the probability that c appears in the context of w by chance,
e.g. only because c is very frequent word in the considered language.

While the frequency embeddings can capture some aspects of the words, we are
not taking advantage of the whole vector space. For example, the cosine similarity
between frequency embeddings cannot be negative (it ranges from 0 to 1); thus, we
cannot represent antonyms with vectors pointing in opposite directions (i.e. with
a negative cosine similarity) as we would expect. Another key limitation of this
vector semantics is the size of the embeddings since it scales with the vocabulary
size |V |. Usually, |V | can take values of the order 10k-100k; moreover, this value
depends on the corpus considered during the counting. Despite their size, the
frequency embeddings are sparse, i.e. most of their entries are equal to zero. This
sparse vector representation may fail to capture the similarity between two words
that have synonyms in their context. For example, the embedding of a word
with "teacher" as a neighbor will differ from the embedding of a word that has
"instructor" as a neighbor, as the dimensions representing synonyms like "teacher"
and "instructor" remain distinct, despite their related meanings.

13



2.2.2 Words as fixed neural embeddings

With the advent of the Deep Learning era, seminal work such as [13, 14, 35]
returned the focus to modelling words by means of neural language models. These
works tackled the problem of building neural language models3 by introducing the
self-supervision. The revolutionary intuition is that we train a classifier that predicts
the next word without any hand-labelled supervision signal: the supervision is
given by the text itself. The self-supervision paved the way for the birth of neural
models that produce dense vector representations of words, such as the word2vec
library [65].

Word2vec embeddings are static embeddings, meaning that the method learns
one fixed embedding for each word in the vocabulary [65]. The intuition of word2vec
is that instead of counting how often each word w occurs near, say, apricot, we
instead train a classifier on a binary prediction task: “Is word w likely to show
up near apricot?” [52]. At first, we assign two random vectors to each word: one
represents the word as a context, and the other as a target; we denote by wi and
ci, the target and the context representation, respectively, of the i-th word in the
vocabulary. Our goal is to compute how likely is that a word appears in the context
of another target word. The intuition behind word2vec is to model the probability
of a word j appearing near a target word i based on vector similarity: word j is
more likely to occur close to the target i if its context vector cj closely resembles
the target embedding wi. To measure the similarity between these dense vectors,
word2vec uses their dot product, which is an un-normalised version of the cosine
similarity:

P (+ | wi, cj) = sigmoid(c⊤
j wi), (3)

P (− | wi, cj) = 1 − P (+ | wi, cj). (4)

To learn these dense representations for all the words in the vocabulary, we
need a dataset. The dataset is obtained by decomposing the raw-text in a corpus
into a set of positive and negative samples. A positive (negative) sample (wi, cj)
indicates that the word j appears (does not appear) in the context of i in the
corpus we are considering. It it worth highlighting that, even if we are solving a
supervised task, we do not need of external supervision to determine if a couple of
words is a positive or negative sample. Indeed, this information is already in the
text; this is why this approach is called self-supervised learning.

At the end of the training procedure, the embedding of a word i is obtained by
summing its context and target vector, wi and ci. The word embeddings obtained
in this way are not specific to solving a particular NLP task. On the contrary, they

3A neural langua model is a neural network that learned to predict the next word from prior
words.
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capture words’ meaning that should be useful for any downstream task. For this
reason, we usually talk about pre-trained word embeddings.

Numerous extensions of word2vec have been developed to enhance its capabilities.
For instance, fastText [18] tackles the challenge of representing unknown words

—those appearing in a test corpus but absent from the training corpus— by using a
subword model. In this approach, each word is represented by itself plus a "bag" of
its character n-grams. For instance, the word “penguin” could be represented as the
sequence <penguin> along with its character 3-grams: <pe, pen, eng, ngu, gui, uin,
in>. An embedding is learned for each of these n-grams, and the word “penguin”
is then represented by the sum of all its n-gram embeddings. This approach allows
unknown words to be represented solely by the sum of their constituent n-grams.
FastText is an open-source library 4, which includes pretrained embeddings for 157
languages.

Another widely used static embedding model is GloVe [72], short for Global
Vectors, as it captures global statistical information from the corpus. GloVe
operates by calculating ratios of probabilities from the word-word co-occurrence
matrix, combining the strengths of count-based models like PPMI (see Section
2.2.1) while also capturing the linear relationships that methods like word2vec
leverage.

Interestingly, these kinds of dense embeddings have an elegant mathematical
relationship with sparse embeddings such as PPMI; they can be understood as
implicitly optimizing a shifted version of a PPMI matrix [57]. Another popular
properties of these embeddings is their ability to capture relational meanings by
means of the parallelogram model [80]. For instance, given the analogy apple : tree
:: grape : ?, where apple is to tree as grape is to ?, the model predicts the answer
(vine) as the nearest word to the point ⃗tree − ⃗apple + ⃗grape (see Figure 4).

In Figure 3 we report some example of relations in the GloVe Model.The
operation ⃗king − m⃗an + ⃗woman produces a vector close to ⃗queen, while ⃗Paris −

⃗France+ ⃗Italy results in a vector near ⃗Rome. This suggests that the embedding model
is capturing representations of relationships such as MALE-FEMALE, CAPITAL-
CITY, or even COMPARATIVE-SUPERLATIVE.

However, there are certain limitations. For instance, in word2vec or GloVe
embedding spaces, the closest vector identified by the parallelogram method is
often not b∗ but one of the three input words or their morphological variants (e.g.,
for the analogy cherry:red :: potato:x, the output might return potato or potatoes
instead of the expected brown). To address this, input words and their variants
must be explicitly excluded from the results.

Moreover, while embedding spaces perform effectively for analogies involving
frequent words, small vector distances, and certain relationships (such as countries

4The library is available at FastText.
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Figure 3: Relational properties of GloVe vectors in a two-dimensional projection.(I)
⃗king − m⃗an + ⃗woman is close to ⃗queen. (II) The offsets appear to capture patterns

in comparative and superlative morphology. [72]

Figure 4: The parallelogram model for analogy problems.
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with capitals or verbs/nouns with their inflected forms), the parallelogram approach
often fails for other types of relationships [83, 43]. [74] further argue that the
parallelogram method may be too simplistic to fully capture the cognitive complexity
involved in human analogy formation.

Nevertheless, the main limitation of static neural embeddings, such as Word2vec,
GloVe, and FastText, is their inability to adapt based on context, assigning each
word a single, fixed representation. This one-to-one mapping overlooks the nuanced
meanings a word can carry in different contexts, often resulting in inaccuracies.
For instance, consider the word "Apple" in the sentences, "Apple Inc performed
well this year" and "Apple fruits are exported to various countries." In the first
sentence, "Apple" denotes the technology company, while in the second, it refers to
the fruit. Static embeddings, however, assign the same vector to "Apple" in both
contexts, disregarding these distinct meanings [66]. This limitation emphasizes the
need for context-aware embeddings to accurately capture varied word meanings,
especially in applications where semantic precision is crucial.

2.2.3 Words as contextual-aware embeddings

In 2018, researchers at the Allen Institute for Artificial Intelligence introduced
ELMo (Embeddings from Language Models) [73], an advanced word encoder that
generates contextual embeddings using a deep bidirectional language model (biLM)
pre-trained on a large corpus of text. Unlike traditional static embeddings, ELMo
produces dynamic, context-sensitive representations by taking into account the
surrounding text for each instance of a word. This means that the embedding for a
word like "bank" will vary depending on its usage in phrases like "river bank" versus
"bank account," addressing the limitations of previous encoders that produce a single,
fixed embedding regardless of context. Additionally, ELMo incorporates character-
derived embeddings to handle out-of-vocabulary words, drawing on morphological
patterns to improve representation quality, especially for unfamiliar or complex
tokens [66].

Nowadays, state-of-the-art contextual word embeddings are obtained from
bidirectional transformer models. As for the static ones, these architectures are
trained by self-supervision. In the next paragraphs, we introduce the most widely-
used version of such models called BERT, which stands for Bidirectional Encoder
Representations from Transformers [40].

BERT Architecture. The goal is to map a sequence of input vectors (x1, . . . , xN )
to a sequence of output vectors (z1, . . . , zN) of the same length. Here, the input
consists of a sequence of words, and the output is a sequence of contextual word
embeddings. The idea is that, through multiple layers of Transformers [89], progres-
sively richer contextualized representations of each word’s meaning are developed.
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At each layer, to compute the representation of a word w, we combine its rep-
resentation from the previous layer with information from neighboring words’
representations. This approach, known as self-attention, is the central innovation
in Transformer models, enabling the model to capture context dynamically for each
word in relation to its surrounding text.

Self-attention is derived from the attention mechanism, which aims to
selectively choose from an input set of concepts, the most relevant ones for a
specific query. Formally, let the input set of concepts we can retrieve be a set of
couples of d-th dimensional vectors {(k1, v1), . . . , (kN , vN )}, and the vector qi ∈ Rd

the query, the attention mechanism computes the vector answer z ∈ Rd as:

z =
N∑

i=1
αivi, αi = σ

(
q⊤ki√

d

)
, (5)

where σ is the sigmoid function, and αi ∈ [0, 1], ∀i ∈ {1, N}, are denoted as
attention weights. Thus, the answer z is obtained as the weighted average of all
the values in the input set. The weight αi measures how much the i-th concept is
relevant for the query: the relevance is proportional to the similarity between the
query vector q and the key vector ki.

In self-attention, we do not explicitly have either the query or the set of concepts.
Instead, we build them for each element of the input sequence x1, . . . , xN :

qi = W Qxi; ki = W Kxi; vi = W V xi, (6)

where qi, ki, vi are the projection of the input vector xi into its specific role as a
key, query, or value, respectively. The projection is obtained through the weight
matrices W Q, W K , and W V . In this case, the vector result of the query qi is:

zi =
N∑

j=1
αijvj, αij = σ

(
q⊤

i kj√
d

)
(7)

The vectors {z1, . . . , zN} represent the output of the attention layer. The
attention weights αij can be interpreted as a measure of how much the j-th word
is important to determine the meaning of the i-th word. It is worth highlighting
that the approach described in Equation (7) is called bidirectional since we are
considering both words on the left and on the right of the i-th word to determine
its representation. On the contrary, transformer-based language models consider
only words on the left (i.e. αij = 0 if j > i) to mimic a generative auto-regressive
process. This other approach is usually referred to as masked attention since we
are masking the contribution of the words on the right.
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Figure 5: Example of the BERT training [52]

Usually, the transformer layer applies the self-attention multiple times (with
different weights). This is called multi-head attention. The computation can
be carried out in parallel, taking full advantage of the modern hardware such
GPUs. Then, all the attention results are concatenated and linearly transformed
to obtain the output of the layer. The cost to pay for such expressiveness is that
the computational complexity scales with the square of the sequence length since
we have to compute all the attention weight αij.

Training of BERT is performed by self-supervision. However, the task is
different from the one considered by word2vec. Instead of predicting the probability
that two words appear near each other, in BERT we use solve a task called Masked
Language Modeling (MLM) [40]. Masked Language Modeling (MLM) utilizes
unannotated text from a large corpus, where a random sample of tokens from each
training sequence is selected for prediction tasks. Each chosen token is processed
in one of three ways [52]:

• it is replaced with the special vocabulary token named [MASK];

• it is replaced with another token from the vocabulary, randomly sampled
based on token unigram probabilities;

• it is left unchanged .

Figure 5 shows an example of training step. The input sentence "So long and
thanks for all the fish" is first tokenized with a subword model, then transformed into
vector representations via an embedding matrix E and combined with positional
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embeddings. To expedite training, the embedding matrix is often initialized
with pre-trained static word embeddings. After passing the input through the
transformer layers, the model generates vector representations for all the input
tokens, but only some of them are used for the training. In the example, we have
masked the words "long" and "thanks", while we have replaced the word "the"
with "apricot". Thus, we use only the vector representation associated with these
tokens (i.e. z2, z4, z7) during the training. In particular, we use them to produce
a probability distribution over the vocabulary by using the softmax function5; by
minimisng the cross-entropy loss, BERT learns to predict the correct word in each
position.

2.3 Text Representation
The meaning of a text, whether it is a sentence, a paragraph, or an entire document,
depends on the meaning of the words in it and how they relate to each other. In this
section, we deepen the approaches that are mainly used to represent text. Without
any surprise, the goal is to obtain a vectorial (possibly dense) representation of the
whole text we are considering.

The first approach we discuss represents a document by simply counting how
many times a word appear in it. Then, we move to neural approaches that are
able to process text as a sequence of token. Finally, we discuss how we can employ
current transformer based architecture to obtain a representation of the text.

2.3.1 Bag of Words

In a Bag-of-Words (BoW) representation, text is converted into an unordered
collection of words, disregarding word position and order. For instance, in the
example in Figure 6, rather than preserving the sequence in phrases like "Alright,
the Answer to the Great Question of Life, the Universe and Everything.." and "..is
Forty-two, said Deep Thought, with infinite majesty and calm," we simply record
that the word the appears 3 times, while word like and appears 2 times or the
words like calm, deep appear once across the text. This approach captures word
frequency while omitting syntax and structural details.

5The softmax function is a generalisation of the logistic function over K dimensions. Let
x ∈ RK , the output of the softmax is:

zi = softmax(x)i = expxi∑K
j=1 expxj

.

The output vector z lies on K − 1-simplex and thus represent the parameters of a categorical
distribution wiht K possible outcome. In fact, softmax is used to solve classification task with
more than two classes.
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Alright, the 
Answer to the 
Great Question.. 

Of Life, the Universe 
and Everything..

Is Forty-two, said 
Deep Thought, with 
infinite majesty and 
calm.

Figure 6: Representation by Bag-of-Words

More formally, the BoW representation of a text d is a vector xd ∈ R|V | obtained
by:

xd,v =
∑

n

I(wd,n = v),

where the function I(p) is the indicator function which returns the value 1 if and
only if the predicate p is true.

The BoW representation is strictly related to the Naive Bayes, a probabilistic
classifier that predicts the most likely class for a given input (a document in this
case) by applying Bayes’ rule. The classifier estimates the class ĉ that maximizes
the posterior probability P (c | d), where c is a class and d is the document. This is
transformed using Bayes’ rule into P (d | c)P (c), which simplifies classification by
ignoring P (d) since it remains constant across all classes.

Naive Bayes makes two simplifying assumptions:

1. Bag-of-Words assumption: The order of words doesn’t matter, so we only
consider word frequencies and ignore their positions.

2. Conditional independence assumption: The features (e.g., words) are
conditionally independent given the class, allowing the joint probability
P (w1, . . . , wN | c) to be expressed as the product of individual probabilities
P (w1 | c)P (w2 | c) . . . P (wn | c).
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The final equation for Naive Bayes classification is:

ĉNB = arg max
c∈C

P (c)
N∏

i=1
P (wi | c), (8)

which is usually computed in the log space6 to avoid numerical errors
The BoW representation is strictly related to the frequency embedding of words

introduced in Section 2.2.1, and they share the same limitations. First, BoW
representation results in a large number of columns, as the vocabulary size |V | can
reach tens of thousands, even for small corpora. Second, the vector xd is sparse,
with most vocabulary terms absent from any given document. This means xd,v = 0
for nearly all v ∈ {1, . . . , |V |}[6].

The NB highlights another limitation of Bow: the order of the words is com-
pletely ignored. To mitigate this aspect, we can count n-grams7. This representation
is sometimes denoted as Bag-of-n-grams. However, Bag-of-n-grams are even more
sparse than BoW since the number of n-grams scales with O(|V |n).

2.3.2 Recursive Neural Networks

Recurrent Neural Networks (RNNs) are extensions of simple Multilayer Perceptron8

suitable for analyzing sequential data rather than fixed-size vector inputs. The
main idea of RNNs is to recursively process the input sequence by applying the
following computation at each time-step t:

h0 = 0, (9)
ht = fθ(ht−1, xt), (10)

where (x1, . . . , xT ) is the input sequence (where xt ∈ Rm), and (h1, . . . , hT ) is the
sequence of the hidden vectors (where ht ∈ Rd). The role of the hidden vector
ht is to store all the useful information contained in the sequence up to the t-th

6By applying the logarithm, we obtain:

ĉNB = arg max
c∈C

log P (c) +
N∑

i=1
log P (wi | c).

This makes Naive Bayes a linear classifier, as it uses a linear combination of input features.
7An n-gram is a sequence of n adjacent symbols in particular order. For ex-

ample, given the input sentence "the sky is blue", the bi-grams (n = 2) are:
{(⊥, The), (The, sky), (sky, is), (is, blue), (blue, ⊥)}, where ⊥ is a symbol to denote the start and
the end of the sentence.

8A Multilayer Perceptron (MLP) refers to a modern feedforward artificial neural network
composed of fully connected neurons with nonlinear activation functions, arranged in at least
three layers. It is particularly notable for its ability to classify data that is not linearly separable.
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time step. The state-transition function fθ is realized through a single-layer neural
network with parameters θ = {W, Q}:

ht = σ(Wxt + Qht−1 + b), (11)

23



where σ(·) is a non-linear activation9. The parameter matrices W and Q are the
same at each time step, by highlighting the recursive nature of the process.

In practice, training RNNs for tasks that require information from far back
in the sequence is challenging [52]. Although RNNs have access to the entire

9In neural networks, three popular non-linear functions f() are commonly used: the sigmoid,
the tanh, and the rectified linear unit (ReLU). The sigmoid function is:

y = σ(z) = 1
1 + e−z

The sigmoid has several advantages. It maps the output into the range (0, 1), which helps
squash outliers toward 0 or 1. Moreover, it is differentiable, which is beneficial for learning. Let’s
walk through an example to build intuition. Suppose we have a neural unit with the following
weight vector and bias:

w = [0.2, 0.3, 0.9], b = 0.5

And suppose the input vector is:

x = [0.5, 0.6, 0.1]

The resulting output y would be:

y = σ(wT x + b) = 1
1 + e−(0.5×0.2+0.6×0.3+0.1×0.9+0.5)

= 1
1 + e−0.87 = 0.70

In practice, the sigmoid is not commonly used as an activation function. A similar but almost
always superior alternative is the tanh, which ranges from −1 to +1:

y = tanh(z) = ez − e−z

ez + e−z

The simplest activation function, and perhaps the most widely used, is the rectified linear
unit (ReLU). The ReLU function is defined as:

y = ReLU(z) = max(0, z)

These activation functions have different properties that make them useful for different appli-
cations or network architectures. For example, the tanh function has the advantage of being
smoothly differentiable and squashing outlier values toward the mean. On the other hand, the
ReLU function is close to linear, which brings some favorable properties.

One issue with both the sigmoid and tanh functions is that very high values of z saturate the
output, resulting in y values close to 1. This saturation leads to derivatives close to 0, which
can cause problems during learning. As described in the section, training networks involves
propagating an error signal backwards through the network by multiplying gradients (partial
derivatives) across layers. Gradients close to 0 can cause the error signal to diminish, a phenomenon
known as the vanishing gradient problem.

In contrast, rectifiers like ReLU do not suffer from this issue since the derivative of ReLU for
large z is 1, rather than close to 0.
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preceding sequence, the information encoded in their hidden states often remains
fairly localized, more relevant to recent parts of the input and recent decisions.
However, long-distance information is essential for many language applications. For
example, consider the sentence: The books recommended by the teacher were out of
stock.

Assigning a high probability to were following teacher is straightforward, as
teacher provides strong local context for singular agreement. However, assigning an
appropriate probability to were is more difficult—not only because the plural books
is relatively distant, but also because the singular noun teacher appears closer in
the context. Ideally, a network should retain the distant information about the
plural books until it is needed, while accurately processing the intervening parts of
the sequence.

One reason RNNs struggle to carry critical information forward is that the
hidden layers—and the weights that determine their values—are tasked with dual
roles: they must both provide information useful for the current decision and
simultaneously update and retain information necessary for future decisions.

A second challenge in training RNNs is the need to backpropagate the error signal
through time. Since the hidden layer at time t influences the loss at the subsequent
time step, it participates in every calculation along the sequence. Consequently,
during the backward pass, hidden layers undergo repeated multiplications based on
the sequence length. This often leads to gradients diminishing toward zero, known
as the vanishing gradients problem [52].

Long Short-Term Memory Networks (LSTMs) are popular recursive models
which address the vanishing gradient problem by introducing a more complex
definition of the state-transition fucntion fθ [51]. The key idea is to divide the
challenge of context management (i.e. which information should I store in ht)into
two parts: removing outdated information and adding relevant information likely
to be needed for future decisions. Rather than hard-coding a fixed strategy, LSTMs
address this by introducing an explicit context layer in addition to the usual
recurrent hidden layer, along with specialized units equipped with gates. These
gates dynamically regulate the flow of information into and out of each unit,
enabling adaptive context management by learning which information to keep or
discard. The gates achieve this by applying additional weights sequentially to the
input, previous hidden layer, and context layers, allowing the model to adjust in
real-time based on the sequence data [46].

Gates in LSTMs follow a common design pattern: each gate comprises a
feedforward layer, followed by a sigmoid activation function, and then an element-
wise multiplication with the layer it is modulating. The choice of the sigmoid
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function is intentional, as it drives outputs toward 0 or 1. When combined with
element-wise multiplication, this structure acts like a binary mask: values aligned
with 1 in the mask pass through almost unchanged, while those aligned with values
near 0 are effectively removed.

The first gate, the forget gate, is responsible for delete information in the
context that is no longer needed. It computes a weighted sum of the previous
hidden state and the current input, which is then passed through a sigmoid function
to produce the mask. This mask is then multiplied element-wise with the context
vector, selectively removing outdated information. This element-wise multiplication,
denoted by the operator ⊙ (also known as the Hadamard product), produces a
vector of the same dimension as the inputs, with each element i being the product
of element i in the two input vectors:

ft = σ(Ufht−1 + Wfxt) (12)
kt = ct−1 ⊙ ft (13)

This mechanism enables the LSTM to dynamically manage the flow of information,
selectively retaining relevant details while discarding what is no longer useful.

The next step involves determining the specific information to extract from the
previous hidden state and current inputs. This process follows the core computation
used across recurrent networks:

gt = tanh(Ught−1 + Wgxt) (14)

Next, we create the mask for the add gate to determine which information
should be added to the current context.

it = σ(Uiht−1 + Wixt) (15)
jt = gt ⊙ it (16)

After that we combine this with the modified context vector to produce the
updated context vector.

ct = jt + kt (17)
The final gate is the output gate, which determines what information is needed

for the current hidden state, as opposed to what should be retained for future
decisions:

ot = σ(Uoht−1 + Woxt)ht = ot ⊙ tanh(ct) (18)

LSTMs have higher computational and memory requirements than traditional
RNNs. Variants such as the Gated Recurrent Unit (GRU) [29] offer simplified
architectures with reduced computational overhead.
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2.3.3 RNN in NLP

The combination of (possibly deep) RNNs, especially LSTM architecture, with dense
pre-trained word embeddings such as wrod2vec, was the state-of-the-art approach
before the Transformers era to process raw text in almost all NLP tasks, from
sentiment analysis to machine translation. Let d = {w1, . . . , wN} be a tokenized
raw-text, the first step to apply RNN is to build the input sequence of vectors
(x1, . . . , , xN . Here the static word embeddings come into play: the vector xt is the
word embeddings of the token wt. Note that here we do not aim to learn new word
representations. On the contrary, we leverage the word embeddings pre-trained
on a different (usually big) corpus. We hope these embeddings have captured
most of the words’ meaning that then are processed by the RNN to generate a
representation of the whole text. There are different ways to generate a vectorial
text representation by using RNNs, according to the task we are considering.

For example, in sentence classification tasks such as sentiment analysis, the
last hidden state hN is used as a text embedding. This is not surprising since, by
definition, the last hidden state should somehow contain all the useful information
to solve the task. During the training, the RNN should learn which information
should be propagated (or not) in the last hidden state. While in theory this is
feasible, in practice it is quite difficult due to the vanishing gradient. Even if we use
LSTMs, we need to truncate text (i.e. sequences) that are too long. This method
takes the name of Truncate BPTT (TBPTT): when we truncate at the token i, the
information of the error afterwards the token i does not flow anymore to the tokens
backwards. A possible solution is to capture more context in RNN is to process
the input sequence along both forward (from left to right) and backward (from
right to left). This approach takes the name of bidirectional RNN: a different set
of parameters are used for each direction; then, hidden state of a token is obtained
by combining the hidden representation of the forward and backward RNN.

In more complex tasks, using only the last hidden state to represent the input
text can be an information bottleneck. For example, in Machine Translation,
the standard architecture is the encoder-decoder: the encoder aims to build a
representation of the input text in the source language, while the decoder aims to
generate a corresponding text in a target language. Clearly, the generation process
of the decoder must be conditioned on the representation generated by the encoder.
If we use an RNN as the encoder, we can take its final hidden state to represent the
input text. However, this representation creates a bottleneck, as it must encapsulate
the entire meaning of the source text—being the only information the decoder
has about the source. The attention mechanism, previously introduced in 2.2.3,
addresses this bottleneck by allowing the decoder to access all the encoder’s hidden
states. Attention constructs a fixed-length vector that dynamically represents the
input text by taking a weighted sum of all encoder hidden states. These weights
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emphasize (or “attend to”) the part of the source text most relevant to the token
the decoder is currently generating. This way, attention replaces the static context
vector with a dynamic one derived from the encoder’s hidden states, adapting with
each token during decoding.

2.3.4 Transformers

The advent of the Transformer architecture revolutionized the NLP field. Unlike
RNNs, Transformers are capable of processing entire sequences of text in parallel,
utilizing mechanisms like self-attention to capture long-range dependencies. This
shift has paved the way for developing state-of-the-art language models like GPT
and BERT, marking the beginning of the "Transformers era" in NLP.

We have already discussed the Transformers architecture in Section 2.2.3, where
we have deepened its role to obtain contextual word embeddings. Here, we focus on
how Transformers can be used to obtain a vectorial representation of a whole text.

Unlike RNNs, in Transformers no a vector is responsible for the whole sequence.
Let (x1, . . . , xN ) the input sequence, Transformers-based models produce an output
sequence (h1, . . . , hN ), where ht is a contextual representation of the token xt. The
most straightforward way to condense the contextual word embeddings into a single
vector is by taking their vector. However, in tasks like sentence classification, the
common approach is to add a special token [CLS] which acts as the embedding
for the entire text. This token is added to the vocabulary and prepended to the
beginning of all input sequences during both pre-training and encoding. The output
vector associated with the [CLS] token in the model’s final layer represents the
entire input sequence, serving as the input to the final classifier.

As in RNN, in more complex tasks such as machine translation, we would like to
compress the information of the source text into a fixed vector. Instead, we would
like to have a dynamic representation which different for each token in decoding.
This mechanism takes the name of cross-attention since we would like to compute,
for each output token, a different representation of the input text. In practice,
cross-attention is structured similarly to the multi-head attention discussed in
Section 2.2.3. However, while the queries are derived from the previous layer of the
decoder, the keys and values are sourced from the encoder’s output.

The main limitation of Transformers is that we need to fix in advance the
sequence length. While this is negligible in many tasks, it is not when we deal with
very long documents. In Section 3, we discuss this aspect in detail.
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3 Models for Long Texts
This section introduces how long text can be managed within NLP by starting
with a classification of documents across varying levels of scope. A text can be
analyzed at four distinct levels, each with a unique focus on document structure:

• Document level: At this level, the algorithm classifies an entire document,
identifying the relevant categories based on the document’s overall content
and structure [15].

• Paragraph level: The algorithm narrows its analysis to single paragraphs,
categorizing each as a unit within the document. This allows for a more
nuanced understanding of sections within a larger context [36, 2].

• Sentence level: Focusing further, the algorithm identifies relevant categories
for individual sentences, interpreting each sentence as a coherent unit within
paragraphs and capturing more localized meanings [20].

• Sub-sentence level: At this granular level, the algorithm extracts categories
for specific sub-expressions within a sentence, allowing for fine-grained analysis
of clauses or phrases that may carry unique significance within the larger
context.

By employing these hierarchical levels, NLP techniques can process and man-
age long texts effectively, selecting the appropriate scope for each analysis and
accommodating the complex structure of extensive documents.

Our objective is to analyze the document at the document level, yet a critical
challenge remains: determining whether the document in question falls into the
category of long or short text. This distinction fundamentally shapes our ap-
proach, as long documents demand techniques that account for complex, extended
dependencies, whereas short texts typically require less intricate processing.

3.0.1 What is a (Long) Document?

A document is a core concept in information science, typically defined as a recorded
piece of information intended for communication or reference. It can take multiple
forms—such as written texts, images, or digital files—and serves various purposes
in conveying knowledge. The definition of a document can shift based on context,
often highlighting its role in information retrieval and management [24].

This broad definition encompasses a variety of document types—tweets, reviews,
research papers, and financial reports—and it not helps distinguish between short
and long text. We can say that short texts typically lack the depth and long-
range dependencies found in more extensive documents and contain fewer words.
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Conversely, long texts feature intricate structures and dependencies that extend
across the entire content.

Despite this differentiation, no universal definition exists for "long text" or "long
document." The literature often categorizes specific genres of text as "long" or
"short" based on practical usage rather than strict criteria. For example, short
texts like tweets and brief reviews are consistently categorized as "short," while
research papers, financial documents, and books are usually classified as "long"
[56]. However, certain types, such as news articles or research abstracts, are often
arbitrarily assigned to either category.

To further illustrate these distinctions, [56] argue that short texts are generally
brief, structured, and fact-driven, with limited long-range dependencies or causal
links. These characteristics make them more manageable for NLP models, which
highlights the complexity of defining long documents through purely quantitative
metrics. Even long texts may vary in processing complexity, depending on structural
and thematic features.

For the purpose of this section, long documents include types such as research
papers and financial document (10-K or Business Plan). Research papers, frequently
ranging between 3,000 and 10,000 words [17], are widely employed in NLP tasks
[33, 97, 12]. Financial documents, which range from 70,000 to 150,000 words (only
one section of 10-K is in average 13,000 words [94]), and large-scale document
datasets such as arXiv [33], are also relevant in this category.

Based on these references, a “long document” consists of documents with an
average word count of at least 2,000 words, extending up to 150,000 words or more.
Additionally, each document should maintain semantic continuity, where context
and entity relationships can span across multiple paragraphs and sections. NLP
algorithms designed for long documents must therefore accommodate both the
relatively large average size and instances that significantly exceed this average.
Moreover, they must capture and analyze dependencies and contexts that persist
across extensive sections of text.

Datasets tailored for long-text analysis are essential for exploring the com-
plexities inherent in processing extensive documents. Resources like LongForm,
LongFin [64], and 20NewsGroups provide documents with substantial average word
counts, which allow models to capture nuanced relationships and thematic elements
across extended content. These datasets are frequently employed in long document
analysis due to their capacity to support the study of long-span dependencies and
intricate content structures.

3.0.2 Key Challenges in Long-Text Processing

Algorithms for long document analysis face a variety of challenges due to the
inherent complexity of their input. While some of these challenges are common to
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general text processing, others are unique to handling lengthy documents. Here is
an overview of the primary obstacles:

• Curse of Dimensionality: As vocabulary size expands, the number of possible
word combinations during testing grows exponentially, while the training
dataset remains limited [14]. This results in an increased likelihood of
encountering unseen sentence patterns, particularly in long documents, which
complicates generalization and reduces inference accuracy.

• Polysemy: Words can carry multiple meanings depending on its context. For
instance, the word "dish" might refer to a plate or a food course. The models
need to learn to differentiate a word’s intended meaning by analyzing both
the local context and the broader global context

• Homonymy: Homonyms, which share spelling or pronunciation but differ
entirely in meaning, add another layer of complexity. Unlike polysemous
words, homonyms lack any inherent semantic connection (e.g. "bark" might
refer to the sound a dog makes or the outer layer of a tree).

• Figurative Language: Sarcasm, irony, and metaphor present challenges for
NLP systems, as the intended meaning often differs from the literal one [53].
This issue is more pronounced in long texts where figurative language may
extend across sections.

• Unstructured Text: Long documents, such as novels or academic papers, often
exhibit complex, evolving structures, making it difficult to maintain coherent
meaning across large sections [92]. This challenge is particularly acute for
financial documents, such as Business Plan, due to non-standardized and
complex structure (as we will discuss in4).

• Limited Foreign Language Data: There is limited availability of training
content for less commonly used languages beyond the most popular ones
(e.g., English, French, Spanish). Since both word embedding networks and
task-specific NLP models are usually trained on a single language at a time,
the lack of extensive datasets in languages like Italian can lead to suboptimal
embeddings and, subsequently, reduced performance in downstream tasks. For
example, Italian, despite being a widely spoken language, has comparatively
fewer comprehensive datasets, making it challenging to achieve the same
accuracy in NLP tasks as in English.

31



Table 2: Comparing of Transformer-based models by model complexity and input
tokens limit.

Name Year #Parameters Input size (#tokens)
BERT [40] 2019 110M 512

BART [58] 2019 140M 1024

GPT [77] 2018 120M –

GPT-2 [78] 2018 1.5B 1024

GPT-3 [23] 2020 175B 4096

PaLM [31] 2022 540B 3072

LLaMA [86] 2023 7B to 65B 2048

GPT-4 [70] 2023 Unknown 128,000 (as written)
Gemini [85] 2023 1.8B 30,720 (as written)

3.1 Common Mitigation Strategies for Transofmers
Processing long-text is particularly challenging for transformer-based architectures.
These models such as BERT are often constrained by token sequence length limits
(usually 512 or 1024 tokens, see Table 2). The limit on the number of tokens
is necessary to reduce the time complexity (and the number of parameters) of
transformers: due to the self-attention mechanism (see Section 2.2.3), they require
a number of operations that scales quadratically with the input size.

A naive approach could be aggressively selecting tokens during inference; how-
ever, this result in performance degradation on longer texts since the model may
inadequately capture dependencies that span large sections of text[37].

Thus, ad-hoc mechanisms are required when we need to apply transformers
architectures on long text. These strategies can be divided into four macro strands:

Feature Selection approaches reduce the length of the input text by discarding
elements in it. The aim is to discard as much text as possible while minimizing
the information loss.

Hierarchical aggregation solutions split the input document into segments that
adhere to the Transformer’s input size. Then, a separate Deep Neural Network
(DNN) is employed to aggregate the representation obtained for each segment.

Sparse Attention proposes to modify the self-attention mechanism in the Trans-
formers to reduce the computational cost of computing the attention weights
from quadratic to linear (w.r.t the input size).
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Figure 7: Taxonomy of Transformer architectures for long text.

Recurrent Transformers incorporate recurrence to go beyond the fixed input
size. The input text is still segmented into chunks, but each chunks is
processed by considering also a global context.

The first two approaches adhere to the Transformer token input limit, while
the last two modify the Transformer architecture to support much larger token
limits, as shown in the figure 7.

3.1.1 Feature Selection

The aim of feature selection approaches is to reduce the length of the input document
by discarding part of it. We briefly discuss two example of feature selection methods,
one suitable for document with a fixed and known structure, and one more general
based on information retrieval algorithms.

Text sampling is the simplest way to reduce the input text length. Instead of
using the whole text as input for the Transformers, we use only part of it. If we
have some prior knowledge on the input text, we can use the part of the text that
is more informative. For example, in a research paper, we could take the abstract
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or the introduction to obtain a short-text with (almost) the same meaning. If the
input text is not structured, we can sample the text by following a combination of
user-defined rules and random chance.

Information Retrieval approaches to feature selection allow the selection of
the blocks of the input text that hold the largest semantic significance; these can
then be fed to a computationally demanding DNN such as BERT. For example,
the method proposed in Zhu et al. [99] relies on local query-block pre-ranking;
the segmentation of the document into blocks is accomplished using the CogLTX
[41]. CogLTX is a dynamic programming segmentation approach that prioritizes
segments containing punctuation marks like periods (" . ") and exclamation points
(" ! "). This method enforces an upper limit on tokens per block, creating a
manageable and consistent structure. Each block is ranked based on its Retrieval
Status Value (RSV), calculated either by the BM25 ranking function—a commonly
used metric in search engines [60]—or by cosine similarity.

3.1.2 Hierarchical Models

Hierarchical architectures aim to address the large input size of long texts by
appropriately building upon original Transformers, rather than modifying them.
As before, these architectures are task-agnostic and generic.For our purposes, we
concentrate on models that divide the input document into chunks matching the
Transformer’s input size. The network (e.g., BERT) then generates embeddings
for each segment. A separate DNN combines these segment embeddings to predict
the document label. We divide these approach according to how the segments are
combined:

Sequence-based approaches treat the embeddings generated by the Transformer
for each chunk as a sequence. Thus, they are processed by employing a DNN
for sequences such as LSTM.

Tree-based approaches combine the chunks in a hierarchical way by gradually
obtaining an embedding of the whole text, e.g. "sentence" embeddings are
combined to obtain "paragraph" embeddings that are in turn combined to
obtain "section" embeddings, etc.

Graph-based approaches combine chunk representations in a graph-like structure.
Here the aggregation must be carried out by employing graph-specific DNN.

FETILDA [94] proposes and implements a deep learning framework that pro-
cesses long documents by splitting them into chunks, and utilizing pre-trained
transformer models to generate vector representations for these chunks. This is
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followed by attention-based sequence modelling to extract valuable document-level
features.

Particularly, the generation of the chunk embeddings is carried out by using
advanced language models such as BERT and FinBERT. The focus is on generating
contextual embeddings for each chunk, which are then pooled to create effective
chunk embedding vectors. To combine these vectors, they employs a Bi-LSTM (see
the 2.3.2) model with attention to obtain a document representation. Thanks to the
attention, it is possible to to determine which chunks contribute more significantly
to the overall document representation.

During the training, the document feature vector is passed through fully con-
nected layers to predict a target numeric variable.

Hierarchical Attention Network (HAN) [25] is a tree-based model which
splits the input document into paragraphs that are truncated to fit into BERT.
The paragraph embeddings obtained are combined by the succeeding Hierarchical
Attention Network (HAN) into a single output. The end result is an increased
ability to handle long texts by exploiting the natural partitioning of documents
into paragraphs.

The initial attempts to create a Hierarchical Transformer architecture were
built upon standard BERT. In this approach, the input document is divided into
paragraphs, each truncated to fit within BERT’s input limit. BERT then generates
independent embeddings for each paragraph, which are subsequently combined
by a Hierarchical Attention Network (HAN) to produce a single output. This
architecture enhances the model’s capability to handle long texts by leveraging the
natural structure of documents divided into paragraphs.

A similar method was later applied using models such as BERT and RoBERTa
[61], demonstrating competitive results on long-text [25].

Another variation, presented in[55], also relies on BERT, but replaces the HAN
with a LSTM architecture. This configuration achieved the best performance
among hierarchical models. .

Hi-Transformer [93] is another tree-based hierarchical model which employs a
hierarchy of Transforemrs to produce a fixed-size document-level representation.
Initially, a Transformer functions as a “Sentence Encoder” (SE), aggregating and
transforming individual word embeddings from the document into sentence-level
embeddings. After each sentence has been processed by the SE, these sentence
embeddings are ordered using positional embeddings and passed to a subsequent
Transformer known as the “Document Encoder” (DE). The DE outputs a context-
aware document embedding, which is then fed back to the next SE, along with
the original sentence embeddings. This iterative process ensures that sentence
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embeddings are enriched with global document-level context. This sequence of
encoding is repeated through multiple stacked layers, culminating in a pooling
layer that generates the final document embedding. According to [93], stacking
two such layers is often sufficient to surpass Sparse Attention Transformers in
long-text tasks due to the effective capture of global context. Importantly, as the
SE complexity grows linearly with the number of sentences, computational demands
remain comparable to sparse attention methods. Interestingly, the Hi-Transformer’s
performance has been observed to improve with longer documents, as it captures
increasingly relevant contextual information.

Hierarchical BERT-based dynamic fusion [69] is a graph-based method
proposed by for handling extremely long documents. It involves integrating hierar-
chical information through nodes that capture nested relationships and semantic
structures within the text. It utilizes contextual information from pretrained
Transformer models like BERT, along with a novel dynamic fusion technique. This
dynamic fusion merges outputs from earlier stages with an external model to
improve overall performance.

HeterGraphLongSum [75] aims to learn a heterogeneous graph structure for
long text summarization. Specifically, we model an input document with three
types of nodes: word, sentence, and passage nodes, as a heterogeneous graph, using
a Graph Attention Network (GAT) [90] to capture information relations among
these nodes. The creation of a heterogeneous graph that includes word, sentence,
and passage nodes. The passages are formed by concatenating a fixed number of
sentences, which is a hyperparameter tuned during validation. The model focuses
on specific edge types, such as word-to-sentence and word-to-passage, while avoiding
redundant connections like passage-to-word. Sentence nodes are updated based
on their neighboring word and passage nodes, allowing for effective information
propagation. This mechanism enhances the contextual understanding of sentences
by leveraging relationships among different types of nodes. After that the sentence
selector layer, which extracts document representation from the hidden states of
passage nodes.

FLAG [98], which stands for Financial Long Document Classification via AMR-
based Graph, utilizes the Abstract Meaning Representation (AMR) to create
document-level graphs from sentence-level AMR graphs, thereby enhancing semantic
understanding [8]. It employs specialized transformer-based word embeddings
tailored for the financial domain to initialize nodes in the constructed graphs. The
approach consists of three main phases: (1) the document is split into sentences,
and an AMR graph is built for each of them; (2) all the graph sentences are
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combined into a single document graph by introducing sentence and document
nodes; (3) a Graph Neural Network (GNN) model [7], specifically GATv2 [21], is
applied to generate document representations for classification tasks.

3.1.3 Sparse Attention Transformers

Due to the quadratic computational complexity of Transformer-based models and
their extensive application in recent years, numerous efforts have been made to
reduce these computational costs. These approaches seek to attain linear complexity
with respect to input size by limiting attention to a small, fixed-size window of
neighboring tokens around each input token, rather than considering all n tokens of
the sequence within each self-attention head. However, this optimization inherently
reduces the model’s capacity to capture long-term dependencies, which is essential
for effectively processing lengthy texts.

Sparse Transformer [28] seeks to reduce the asymptotic complexity from O(n2)
to O(n

√
n). This reduction is accomplished by using sparse factorizations on each

self-attention matrix calculated by the Transformer during inference (see Section
2.2.3). These matrices represent the current attention weights of each input element
with respect to the others in the sequence and are separately computed for each
self-attention head at every layer. Reducing the computational and memory costs
of this operation is crucial, and the sparse attention mechanism accomplishes this
by replacing full attention with multiple smaller, optimized attention operations
that collectively approximate the original process. In essence, each token attends
only to a subset of the input sequence. Further optimizations, including efficient
sparse attention kernels and refined weight initialization, enhance the architecture’s
efficiency, allowing it to manage longer sequential inputs. The Sparse Transformer
is a flexible model suitable for a range of tasks involving lengthy input sequences,
from image compression to document analysis.

Longformer [12] is another approach that achieves linear asymptotic complexity
and is tailored specifically for natural language processing (NLP) tasks involving
long documents. Its self-attention mechanism can be seamlessly integrated into
other Transformer models and leverages a dilated sliding window approach, which
is an enhanced version of the classical sliding window method for local attention
[81]. In typical use cases, the Longformer offers substantial improvements in
computational efficiency for processing long sequential inputs.

Each token’s attention window includes D surrounding tokens, with D
2 tokens

on either side. The core idea is that a token’s semantic context is largely influenced
by its immediate neighbors, achieving a computational complexity of O(N × D).
This mechanism bears similarity to the local receptive fields found in Convolutional
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Figure 8: Comparison of the standard full self-attention pattern with the specialized
attention configurations utilized in the Longformer model [12].

Neural Networks (CNNs), where stacking l Longformer layers progressively increases
the receptive field, allowing tokens far away from the query to be attended to in
the deeper layers. As in CNNs, it is also possible to specify a dilation factor K
at each step which controls the spacing between adjacent window positions. By
introducing "gaps" in the attention pattern, we can increase the receptive field
without adding new layers.

Since windowed and dilated attentions alone may not capture an optimal
sequence representation, specific positions within the full self-attention matrix
are designated as global context. These global tokens can both attend to and be
attended by the entire sequence, but their number is kept limited to maintain a
computational complexity of O(n).

The [CLS] token is a typical candidate for selection as a global token, as its
representation is intended to summarize the entire sequence. Thanks to these
innovations, the Longformer has been successfully applied to sequences of up to
4096 tokens (in comparison to BERT’s limit of 512 tokens).

Figure 8 illustrates a comparison of full, sliding, dilated sliding, and global-
dilated sliding window self-attention patterns.

Bigbird [97] can be viewed as an extension of the Longformer, designed to
handle significantly longer input sequences by reducing the complexity of self-
attention from quadratic to linear. Like the Longformer, it utilizes a sliding window
mechanism, as in many NLP tasks, the semantic meaning of a token is largely
determined by its neighboring tokens. However, instead of using dilated sliding
windows, BigBird introduces a random token selection method to capture distant
tokens and incorporate broader context. This approach complements the global
attention and sliding window attention mechanisms borrowed from the Longformer.
It has been mathematically proven that this modified sparse attention mechanism
preserves several key theoretical properties of full attention, such as universal
approximation and Turing completeness. However, BigBird often requires more
layers to maintain accuracy comparable to traditional full attention models.
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3.1.4 Recurrent Transformers

A complementary direction in state-of-the-art research is to enable the Transformer
to learn and capture long-term dependencies by employing recurrent mechanisms.
The long document is split into a set of independent, consecutive segments which
are then processed recursively.

Transformer-XL [38] introduces recurrence into the Transformer model, thereby
incorporating the RNN concept of retaining hidden states across segments. These
hidden states are passed within the Transformer from one segment to the next,
effectively transferring previously established context and enabling the model to
capture long-term dependencies across sequences. Unlike the recurrence mechanism
in RNNs/LSTMs, where each layer’s state is passed to the next time step within
the same layer, Transformer-XL shifts the transmitted states upwards through the
layers. For instance, at layer l, we take into account two output sequence obtained
from the previous layer: one is computed on the current segments, while the other
is computed on the previous segment. By stacking more layer, we can increase the
receptive field of the network.

This mechanism ensures a computational cost of O(n × l), where l denotes the
number of layers, leading to significantly faster inference compared to the baseline
Transformer. This efficiency stems from reusing representations computed for earlier
segments, as opposed to recomputing them for each new segment. Additionally,
Transformer-XL supports varying input sequence sizes between the training and
inference stages. Overall, Transformer-XL achieves competitive performance on
extremely long document analysis tasks while being far more efficient than the
baseline Transformer.

ERNIE-Doc [42] build it upon Transformer-XL defines an enhanced recurrence
mechanism which goes downward between layers; at layer l, we take into account
(1) the output sequence obtained from the previous layer on the current segment,
and (2) the output sequence obtained from the same layer on the previous segment.
This mechanism allows a much larger receptive field as long as the segments from
the input document are twice fed as input. These two phases are called skim
and retrospective. Figure 9 shows a comparisono between Transformer-XL and
ERNIE-Doc.

Additionally, a novel document-level task for self-supervised pretraining is in-
troduced, termed the Segment Reordering Objective (SRO). This involves randomly
splitting a long document into m segments, shuffling them, and allowing the Trans-
former to reorganize them to learn their interrelations. After pretraining on both
the masked language model (MLM) task and the SRO, ERNIE-Doc demonstrated
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Figure 9: A visual comparison between the recurrent mechanism employed by
Transformer-XL and ERNIE-Doc [42]

strong performance across several long document analysis datasets for various tasks
such as classification, question answering, and key-phrase extraction.

Sparse attention, hierarchical, and recurrent approaches currently dominate
the field of long document analysis using Transformers. Yet, several challenges
persist. In Sparse Attention Transformers, often it was experienced accuracy
limitations, as they rely on a limited number of global tokens to capture the entire
document context. Moreover, Hierarchical Transformers are particularly prone to
context fragmentation. Segment embeddings in these models may be derived with
insufficient local context or without access to the full document context [37, 93].

There remains no consensus on the best-performing approach or an empirical rule
dictating the optimal architecture for specific tasks. Each method presents unique
strengths and limitations, which may vary depending on the domain. Consequently,
up to now, the literature recommends that users select architectures based on their
specific application requirements. However, at a broader level, hybrid algorithms
and recurrence-based methods appear promising for advancing long-text analysis.

4 Unstructured Data and Natural Language Pro-
cessing in Financial Documents

In recent years, there has been growing interest within the research community in
extracting insights from unstructured data, including financial documents, through
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methods such as document analysis, sentiment analysis, patent classification, and
behavioral economics [62, 67, 59, 47, 49, 27]. Large volumes of unstructured
data are generated from a wide variety of financial documents such as annual
reports, Securities and Exchange Commission (SEC) filings, earnings call transcripts,
financial statements, business plan, press releases, and even auditor reports [10].
These documents contain valuable information in the form of text, figures, and
tables that organizations and researchers alike seek to analyze for gaining insights
into corporate performance, market sentiment, and economic trends.

In response to these challenges, NLP, is emerging as a key solution to automate
the processing and analysis of vast quantities of financial documents [10].

In the literature, many authors have applied NLP on annual reports. However,
while most textual analysis techniques typically treat an entire document as a
single data instance, here the focus is usually in detecting the changes of these
documents through time. In NLP, the task of measuring the similarity between
two documents is often referred to as Semantic Textual Similarity (STS).

For instance, [3] examine how variations in managerial involvement and effort
across firms influence the creation and presentation of public disclosures, such as
10-K filings and conference calls. They highlight differences in who writes these
disclosures and the impact on their structure, style, and tone, offering insights
into how internal processes shape public communications. Moreover, Cohen et al.
apply a similarity measure to quarterly and annual filings of U.S. corporations from
1995-2014, demonstrating that changes in 10-K filings can predict future earnings,
profitability, news announcements, and even firm-level bankruptcies [34]. On the
contrary, Brown et al. study the opposite direction, i.e. which are the economic
changes in a firm that lead to modification in the Management Discussion and
Analysis (MD&A) disclosures submitted to the SEC[22].

In all cases, the documents are represented using a BoW representation (see
Section 2.2.1) that clearly is not sufficient to capture all the meanings concealed in
documents.

If we move our attention to static neural embeddings (see Section 2.2.2), [79]
employs word2vec, GloVe and fasttext embeddings to build document represen-
tations which are then used to detect changes in 10-k documents. Similarly, Li
et al. create a corporate culture dictionary using word embedding models and
analyze earnings call transcripts to score five cultural values—innovation, integrity,
quality, respect, and teamwork [59]. They show that innovative culture extends
beyond traditional measures like R&D and patents. Moreover they find strong
correlations between corporate culture and business outcomes, such as operational
efficiency, risk-taking, earnings management, executive compensation, and firm
value, with the culture-performance link being more pronounced during downturns.
Additionally, corporate culture is influenced by major events like mergers and
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acquisitions.
Recent literature explores advanced NLP models, specifically transformers, to

manage long financial documents effectively. For instance,Xia et al. introduced the
FETILDA framework to extract information from specific sections of 10-K reports,
such as the risk factors and management’s discussion sections[94]. FETILDA
addresses lengthy text by segmenting it into chunks, generating embeddings for each
with advanced language models (e.g., BERT, Longformer), and then combining these
with a neural network (Bi-LSTM) for a final, weighted document representation.
This framework was tested on predicting key performance indicators (KPIs) for
U.S. banks and stock volatility.

In a related approach, Zaki et al. proposed a graph-based model for creating
document-level embeddings for long financial texts [98]. Their method builds
document-level graphs from sentence-level graphs, applying deep learning to predict
target data from extensive documents. Experiments on quarterly earnings call
transcripts and S&P 1500 companies demonstrated the model’s effectiveness, with
results showing improved prediction of stock price movement trends over various
time horizons.

In another study proposed by Sautner et al., it has been shown that firms’
climate change exposures can effectively predict key outcomes related to the net-
zero transition, such as job creation in disruptive green technologies and green
patenting, and reveal valuable information that is reflected in options and equity
markets [82]. However, they do no employ a vectorial representation of the input
text; instead, the rely on a probabilistic method is developed to extract desired
keyword from them.

Other studies investigate the relationship among topics and performance of
firms. [11] develop a measure of innovation by applying Latent Dirichlet Allocation
(LDA), a topic modeling technique, to the textual analysis of analyst reports for
S&P 500 firms. Using this text-based approach, they are able to identify innovation-
related themes within the reports, providing a robust measure of innovation that
can forecast firm performance and growth opportunities for up to four years.
Importantly, the value implications of this measure hold just as strongly for
innovative firms that do not engage in patenting, demonstrating the model’s broad
applicability across different types of innovation-driven firms.

Also [26] provide large-scale evidence of anticipatory effects, showing that firms
are impacted by proposed regulations long before they are finalized. By analyzing
over 43,000 rule proposals from U.S. federal agencies since 1995, the authors develop
a firm-level measure of exposure to the regulatory pipeline using machine learning
to extract topics. The findings reveal that firms exposed to more proposals tend to
increase overhead costs, reduce capital investments, and report lower profits.

Another valuable source of economic insights comes from newspaper articles and
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social media. For instance, Aprigliano et al. demonstrate that newspaper articles
can effectively forecast economic activity [5]. They develop two high-frequency
indices for Italy based on 1.5 million articles from four major newspapers, utilizing
an Italian economic dictionary. Forecasting tests show that these indices enhance
short-term predictions of macroeconomic aggregates, particularly during recessions,
and improve the accuracy of a weekly GDP tracker across various economic cycles.

On the social media front, Angelico et al. [4] use Italian tweets to create real-time
measures of consumer inflation expectations. Keywords identify tweets discussing
prices and inflation, and daily indicators are generated using Latent Dirichlet Allo-
cation (LDA) combined with a dictionary-based approach, incorporating manually
labeled bi-grams and tri-grams. These Twitter-based indicators show strong corre-
lations with monthly survey-based and daily market-based inflation expectations,
effectively capturing consumers’ forward-looking inflation sentiments.

A summary is provided in the table 3.
Although NLP algorithms have significantly advanced, they still face limitations

in fully replicating the complexity and contextual understanding required for
in-depth analysis of financial documents.

Paper Representation Documents
Amel-Zadeh et
al. [3]

Bag-of-Words 10-K and Conference Calls

Cohen et al. [34] Bag-of-Words 10-K and 10-Q
Brown et al. [22] Bag-of-Words 10-K (7 **)
Rawte et al. [79] Static Embeddings 10-K
Li et al. [59] Static Embeddings Earnings Call
Xia et al. [94] Contextual Embedding 10-K (1/1A ** and 7 *)
Zaki et al. [98] Contextual Embedding Quarterly Earnings Call
Sautner et al.
[82]

Bag-of-n-grams Financial Reports

Bellstam et al.
[11]

LDA Analyst Reports

Chang et al. [26] LDA Rule Proposals
Aprigliano et al.
[5]

Bag-of-n-grams Newspaper

Angelico et al. [4] Bag-of-n-grams Social Media

*

The Item 1/1A regards Risk Factors section. ** The Item 7 is about the
Management’s Discussion and Analysis (MD&A).

Table 3: Summary of Textual Representation and Document Types in Financial
Text Analysis.
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4.1 Different types of financial documents
Due to the increasing interest in the application of NLP in the finacial context, in
this section we discuss various types of financial documents that could be used as
input texts. These documents, although differing in structure and purpose, serve
as critical tools for investors, stakeholders, and analysts in assessing a company’s
current status, potential risks, and future performance.

Financial documents, encompassing a broad spectrum of types and formats, are
integral to the industry, containing crucial information that influences market trends,
investment strategies, and regulatory compliance. However, these documents differ
significantly in their structure, content, and the specific challenges they pose for
NLP applications. More in deep, we have several types of financial documents:

Annual Reports are comprehensive documents produced by companies to provide
shareholders and the public with information on their financial performance
and strategies over the past year. These documents are often dense, featuring
not only financial statements but also qualitative descriptions, including man-
agement discussions, risk assessments, and future outlooks. The structured
data, such as financial tables, coexist with unstructured narrative sections,
making it a complex source for NLP applications.

Earnings Calls Transcripts are quarterly teleconferences where company execu-
tives discuss the financial results with analysts and investors. The transcripts
of these calls are rich in qualitative data, reflecting the tone, sentiment, and
subtle cues about the company’s performance and future expectations. NLP
tasks here often focus on sentiment analysis and speech recognition to extract
insights from the spoken word, capturing nuances that are critical for investor
sentiment.

Regulatory Filings, such as the 10-K and 10-Q forms submitted to the Securities
and Exchange Commission (SEC) in the United States, are standardized
documents that provide detailed information on a company’s financial health,
risk factors, and management’s discussion. These documents are highly
structured and follow strict formats, making them suitable for rule-based and
machine learning-based NLP techniques. However, the legal and technical
jargon present in these filings poses unique challenges for accurate information
extraction and analysis.

News Articles and Analyst Reports are external documents that provide in-
dependent assessments and commentary on financial markets, companies,
and economic conditions. These sources are highly unstructured, written
in natural language with varying styles, and may contain bias or subjective
opinions. NLP applications often focus on extracting entities, detecting
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sentiment, and assessing the relevance of the information to specific financial
contexts.

Social Media and Forums: in recent years, social media platforms and financial
forums have become increasingly important sources of real-time financial
information and sentiment. The informal and often abbreviated language
used in these platforms, along with the rapid pace at which information
spreads, presents a distinct set of challenges for NLP. Techniques like sentiment
analysis, entity recognition, and trend detection are commonly applied, but the
unstructured and noisy nature of the data requires sophisticated preprocessing
and filtering techniques.

Business Plan: forward-looking documents that outline a company’s strategic
objectives, financial projections, and growth plans. Typically prepared by
startups or companies seeking investment, they provide a detailed roadmap
that encompasses market analysis, operational strategy, and financial forecasts.
These plans are instrumental for venture capitalists and investors to evaluate
the viability of a business and assess its potential for success. They often
contain qualitative descriptions of business strategies, which are complemented
by quantitative financial models projecting future revenue and profitability.

Among the various types of financial documents, business plans stand out as a
critical resource for entrepreneurs, investors, and financial analysts. These docu-
ments provide a comprehensive roadmap of a company’s goals, strategies, market
analysis, financial forecasts, and operational plans. However, their unstructured
nature and varied content present unique challenges for NLP applications.

4.1.1 Business plans

A Business Plan (BP) typically encompass a wide range of information, often
structured into several key sections:

1. Executive Summary: The executive summary provides a concise overview
of the business, its mission, and its objectives. This section is crucial for
capturing the attention of investors, making it a prime target for NLP tasks
such as summarization and key information extraction.

2. Market Analysis: This section details the market in which the business
operates, including target demographics, market size, trends, and competitive
analysis. NLP can be applied to extract insights on market conditions,
competitive positioning, and potential opportunities or threats.
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3. Company Description: The company description provides information on the
business’s history, structure, and objectives. NLP techniques can be used to
extract entity information, assess the coherence of the business strategy, and
identify key stakeholders.

4. Organization and Management: This section outlines the company’s organi-
zational structure and the qualifications of its management team. NLP can
analyze this section to gauge the experience and competence of the leadership
team, which is often a critical factor for investors.

5. Product Line or Services: Detailed descriptions of the company’s products or
services, including their unique selling propositions, are provided here. NLP
can be used to analyze product descriptions, identify potential differentiators,
and assess the competitive advantages presented.

6. Marketing and Sales Strategy: This section outlines how the business plans to
attract and retain customers. NLP applications can evaluate the feasibility
and innovation of these strategies, compare them with industry norms, and
even predict their potential success.

7. Financial Projections: Financial projections include revenue forecasts, profit
and loss statements, and cash flow analysis. While this section is more
structured, NLP can be applied to align textual descriptions with numerical
data, ensuring consistency and highlighting discrepancies.

8. Funding Request: If the business plan is seeking funding, this section will
specify the amount of capital needed and the proposed use of funds. NLP
can help assess the clarity and persuasiveness of these requests, as well as
benchmark them against industry standards.

In a Nutshell. Analyzing financial documents presents several challenges, primar-
ily due to their length and the specialized language used within financial contexts.
These documents often exceed the token limits of models like Transformers, even
with extended versions such as Longformer and BigBird, which are still often
insufficient for their full length.

Furthermore, financial documents, such as business plans and 10-K reports, are
complex not only in length but in content. Business plans may contain strategic,
abstract language, while 10-K filings mix structured financial data with qualitative
assessments of risks and opportunities. Terms in financial documents, like "equity,"
often carry different meanings depending on the context, highlighting the challenge
of creating accurate, context-sensitive representations.
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Contextual language models (Encoder models), like BERT and its variants,
offer promising solutions by interpreting word meanings based on surrounding
text, which is critical in financial documents where words like "risk" or "return"
have specific, nuanced implications. However, developing effective document-level
representations for such long texts remains a significant challenge.

Another limitation is the generic nature of training corpora used for pre-training
most language models, such as general web content or Wikipedia. These sources
lack the specialized terminology and context of financial documents, reducing
the effectiveness of such models in finance-specific applications. To address this,
recent advancements include pre-training models on financial corpora. For example,
FinBERT [95], trained on financial news and filings, is more effective for evaluating
business plans or analyzing 10-K reports, offering improved handling of domain-
specific language. These domain-adapted models can then be further fine-tuned on
specialized datasets to enhance performance in tasks like financial forecasting, risk
assessment, and market volatility prediction.

Overall, while financial documents provide essential insights for analysis, their
unique structures, terminologies, and length present specific challenges for NLP
models. Addressing these complexities requires developing advanced language
models that can process lengthy texts and adapt to specialized financial contexts.
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5 Conclusion
In conclusion, this paper explores the evolution of NLP text representation tech-
niques, from simpler traditional models to complex, architecture-driven approaches,
in addressing the unique challenges of analyzing long financial documents. Early
techniques, such as Bag-of-Words and word embeddings, laid the groundwork
for transforming text data into structured representations, yet they struggled to
capture nuanced relationships and long-range dependencies within extensive docu-
ments. With the advent of Transformer-based models, including advanced versions
like Longformer and BigBird, NLP has made significant strides in handling the
complexity of financial documents. However, these models often face limitations
in accurately representing long documents due to token constraints, contextual
fragmentation, and scalability issues, which are further compounded by the unique
requirements of financial language.

Sparse attention mechanisms in Transformers have been applied to manage
computational complexity in long-text analysis, though they typically rely on a
limited set of global tokens, resulting in accuracy constraints. Similarly, hierarchical
Transformer models attempt to divide text into manageable segments but are
prone to context fragmentation, as segment embeddings may lack sufficient access
to the full document context [37, 93]. Recurrent and hybrid approaches have
shown promise in mitigating these issues by enhancing the contextual continuity
across document segments, yet a universally optimal architecture for long-text
representation remains elusive. Consequently, the literature encourages users to
select models tailored to specific applications, as each architecture presents distinct
strengths and weaknesses depending on the document structure and analytical
requirements.

The analysis of financial documents further complicates the long-text challenge.
Financial texts, such as business plans and 10-K filings, are not only lengthy but
also dense with specialized, context-sensitive terminology. Financial language often
includes terms with varied meanings based on context, demanding models that
can interpret nuanced financial discourse accurately. While contextual language
models like BERT have advanced this capacity by interpreting words within
their surrounding context, they still struggle to fully accommodate the document-
level representation needs of complex financial texts. Domain-specific models like
FinBERT, pre-trained on financial corpora, provide a partial solution, enhancing
performance by adapting to specialized financial language, but they require further
fine-tuning for tasks such as risk assessment and market prediction to achieve
optimal results.

In summary, while NLP has made notable progress in addressing the challenges
posed by long and complex financial documents, significant obstacles remain. The
current approaches—sparse attention, hierarchical, and recurrence-based mod-
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els—each offer valuable contributions but are yet to fully resolve the demands
of long-text financial analysis. Developing models that can seamlessly manage
both length and domain-specific language remains a priority for advancing NLP
in finance. Future research should focus on refining hybrid and adaptive archi-
tectures that combine sparse, hierarchical, and domain-adapted methods to build
robust, contextually aware representations for long financial documents, ultimately
enhancing the reliability and depth of insights that NLP can deliver in financial
contexts.
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