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L. INTRODUCTION

Recently [15, 161 a thecrem of the alternative has been stated for
generalized systems and it has been shown how to deduce, from such a
thecrem, krnown optimality conditions like saddle-point one, "regularity
conditions, known theorems of the alternative and new ones; furthermore
connections among optimality cenditicns, duality, penalty functions have
“been shown. Some of these new ideas have been deepemedﬁby oﬁher pebple
and new interesting results have been obtained [6, 22, 26, 27, 28, 29 1.
The aim of this paper is to deepen this unifying approach in such a way
to give a survey of fthese recent studies and, at the same time, to ob-

~tain some new results.

2.THEOREM&(H?THEAJJERNAT“HEANDﬁE?ARATKHJFUNCTK»E

Assume that we are given the positive integers n and v, ‘the non-

‘ n : .
empty sets H ¢Iﬂv, £ < IR , and the real-valued function F: X+RY .We

want to study conditiohs for the generalized system
{1} F(x) el , xeX

to have (or not to have) solutions.

To this aim we introcduce the following
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Degindtion T.1: wo: R’ + R is called weak éepamdt&nuﬂéunczémiiff< )

W
T

(2a) lev>o W

s: R' =R is called sthong separation functien LT

{(2b) | 1ev>O 8

n
=

The following theorem holds:

Theorem I{I

Let the sets H, X and the function F be given..

1) The systems (1) and (3a)

{3a) w(l(x)) =0 , wxeX

are not sgimultaneocusly possible, whatever the weak separation func-

tion w might be.

ii) The systems (1) and (3b)

{3b) s(F(x)) <0 , wxeX

are not simultanecusly Impossible, whatever the strong separation

function s might be.

- Ir p is a real-valued function p: Hf1+ﬂ%, we set lev>0 Q:*{nyIRn;

p(y) »0}. Sets lévzop’ 1ev<op, levsop are defined in a similaz=way!



Procg: i) If (1) is possible, there exists X ¢ X such that F(X)eH;
from (2a) we have w{(F{%)) >0 so that (3a) is false. ii) If (1) iis im-
possible, i.e., if F(x}e H, vx ¢ X then (2b) implies s(F(x)) <0 #wxeX
so that (3b) is true. This completes the proof. = '

Let us note that the dmpossibility of (1) is not equivalent. to the
possibility of (Ba)¢@x%3b)).For-this reason we say that weak (strong)

alternative holds between (1) and (3a) (or(3b)).

When the possibility of (3b) implies the impossibility of (1) we
say that afteinative holds between (1) and (3b). Set K = F(X); it dis
obvious that system.il) is impossible iff Kn H = @. Thus, if we refer
to R’ as the image space, the Impossibility of (1) is equivalent to the

disjunctiocn between K and H in the image space.

When K ¢ 1ev<ow, that Is (3a) is possible so that (1) is impossi-
ble, we say that affeanative holds between (1) and (3a) or, equivalent-.

ly, that w is a weak separation function which guarantees alternaiive.

In this order of ideas two impertant gquestions éonsist in choog=-
ing, for any given triplet (F,X,H), an appropriate class of weak sepa-
ration functions and in finding, in this class, an element, 1f one ex-
Ists, which guarantees alternative. These questions will be analyzed

for a wide class of systems,

From now on we suppose that H 1s a convex cone, gatisfying the fol-
) .
lowing property( /

(4 H+clH=H

For instance, (4) is verified in the following cases: a) f is open

2
{") ¢l A denotes the closure of set A



: 3
or H is closed; b)-cl H is pointed, i.e. (el H)n (-cl H) = {0} and( )
H = (el H)\{0}; c¢) H is the Cartesian product of two convex cones Hl’

Hg with Hl and/or H2 satisfying a) or b).

Consider now the condc extenstion of K with respect to ¢l H, i.e.,

the set E A K - ¢l H.

The following lemma holds:

Lemma 1.7 System (1) is impossible iff En H £ 0.

Proof: Suﬁgieienag: HnEt =@ =KnH = 0 = (1) impossible. Neces-
s4Ly: assume that (1) is impossible and that EanH # @. Then there ex-
ist X e X, hecl H such that F(x) - heH that is F(X)e(clH)}+ H = H and
this is absurd. =¥

The reason of iIntrcducing E is based on the fact that E can have
some properties which are not valid for K; for instance T fturns out to
be convex. even if K is not. £ is a key set in further analysis and -we
will see that its properties are very important in order to study op-

timality conditions, duality, regularity and so on.

As regards to the convexity of E, the following lemma holds:

Lemma 1.2 Let X be convex. The following conditions are eguivalent:

")

i) F is (el H)-convex-like

ii) E = B(X)~-cl ffl is conveXx.

) A\B = {aeA: aéBl.

v Let Ccﬂfs be a convex cone, and Xgﬂfl a.convex .set. A funétion
F: X +IR® 1g C-convexlike iff wx, yeX, there exist ze¢X such that
Flz)-(1l-0)F(x)-aF(y)eC, wael[0,1].



Proof: We have

i) <= wx,yeX, ¥0el[0,1], (l-a)F(x)+aF{y)eF(X)-cl H
= ¥X,¥eX, vpl,pgeclt{, vouel[0,1]
(l—u)(F(X)-p1)+a(F(y)—p2)E(P(X)—cl He= 1i). ==

Lemma 1.1 shows that the impeossibility of (1) is equivalent to the
disjunction between E and H in the image space; when F is convex it is nat-
ural to study this disjunction by means of the class of 'linear func-

_ _ 5.
tionals W = {w: E@)+E{, weH ™} ( ?.

The following theorem of the alternative holds:

Thechem 1.2

Consider system (1)
(1) , o Fix)e#H , xeX

and suppose that ¥ is (cl H)-convexlike. Then 1) and ii) hold:

1) if (1) is impossible then

(5) For e #® 2 WF(X)) <0, wxcX

ii) 4if (5) holds and moreover

{XxeX: #(F(x)) = 0} = @ when W ¢int H ,

then system (1) is impossible.

(°) A" denotes the pofar of AcTR® , i.e. the set A ={1cBR> : <a,y> >0
¥y ¢ Al where< ,> , denotes the scalar prcduct.



Proog: 1) According to Lemma 1.2 and Lemma 1.1, E. is convex -and
EnH = @, Since ri Enri(el H) = Q(GD there exists a hyperplane which
separates € and ¢l H properiy, that 1s there exists a'lineariﬂﬂmtimﬁi
w such that 1ev20ﬁ'2c1 H, 1evéoﬁ 2E. The first inclusion implies ﬁgg*
and bthe second the inequalities w(F(x)< C ¥¥ e X. 1i) IFf W eint H*( )
then w(h) >0 ¥h ¢ so that w is a weak separation function and the
thesis follows by Theorem 1.1. Suppose now w §int H* and that there ex
ists ¥ ¢ X with F(X) ¢ H so that W(F(E) >0; then by (5), w(F(X))=0, and

this is absurd. ==

Consider now the following important particular case of (1):

v=8+m , H = (int-T) xV
(6)
s X'+ﬂ2£ , g: X~ , Fixy={f{x),g(x)

where ‘the positive integers £ and m, the closed convex cones Ucﬁgﬁtﬂfi

with int U # @ (otherwize fi

13

), and the functions £, g are given.

The generalized system (1) becomes

ey f{x} ednt U , g(x) eV xeX

H

Let Wi the class of functions

. 2 m ‘
le{w;ﬂ% x TR %ﬂ%:w(u,v,e,h):<8,u>+<x,v>,@eU*,AeV*}.

It is easy to show that w er i a weak separation funetion when

6 . . .
(") ri A, int A denote, respectively, the relative interior and the
interior of A. A

£



6 e UNI0}. We may show that 1t is possible to chcose W'ewl in such a way

that it guarantees alternative for a wide class of systems (7).

As a consequence of Thecrem 1.2 we have the following Corcllaries.

Corollary 1.7 Let F(x) = (f(x),g(x) be cl H-convexlike. Then 1} and
1i) hold:

i) if (7) is impossible then:

(8a) 35 U s =5 eV with (5,;) # O such that

(8p) <, f(x)> +<a,glx)> <0 , ¥xeX

1i) if {(8) holds and moresover

(¥ eX: £{x) eint U, glx) eV , <3,g{x)>=0} = @

when g = O, then system (7) 1s impossible.
Proeg: Similar to the one given in "heorem 1.2. I
7
Conollany 1.2 Let X be convex, f be a U—function( ) and g be "a V-

furection. Then i) and ii) hold:

7 . ‘ - .
(") Let C be a convex cone. F is said to be a C-function on a convex
set X, iff +x, y X

FL(l~=a)x+tayl-(1l-a)F{x)~aF(y)eC ,  vaelO,11.

Note that a (Eﬁ?)-function ig a concave function and a (Hf})—func~
fion is a convex function.



i)  if (7)) is dimpossible then:

(9a) 38y, 3Ixev' , with (8,%) # 0 such that

(9b) ' <8,f(x) > +< a,g(x)> <0, wxeX

ii) suppose that (9) holds and morecver

{xeX:f(x) eint U , g(x)eV , <r,g(x)»=01=¢

when 8 = 0. Then system (7) 1s impossible.

Proof: Tt is sufficient to.note that F(x) = (f(x),g(x)) is (cl H)~-

convexlike., =

Some sufficient conditions for the convexlikeness of pairs of two

functions can be found in Ref.12.

As outlined in Ref. 16, when U = Eﬂj, Corollary 1.2 becomes Theo-
rem 1 of Ref. 5%; if, in addition f and g are concave in the ordinary

sense and V = H{E, then Corollary 1.2 becomes Thecrem % of Ref. 15,

Further instances of how theorems of the alternative can be derived

from Corollary 1.2 are found in Ref. 15, 16,

3. WEAK ALTERNATIVE AND OPTIMALITY CONDITIONS

In this section we will see how weak alternative can be used ta

study optimality conditions.

Consider the following extremum problem

(10) ' P: min ¢(x) , xeR 4 {(x eX:g(x) 20}

where X ¢ Eﬁi s 1 X+R., g X + R,



A feasible sclution X ¢R is optimal .for problem (10) iff the system
A -
(11 flx) = o(x) - ¢(x) >0 , g(x) 20 , xeX

hags not seolutions.
Note that (11} is a particular case of (7) and (1).

Taking into account that for 1) of Theorem 1.1, systems(l)and (3a)
cannot be both possible, any assumption which ensures that an element of
a given class of weak separation functions guarantees alternative, be-

comes a sufficient condition for ¥ to be optimal,

In this way we can obtain some optimality conditions such as a gen-

eralized saddle-pcoint condition.

With this aim consider the set of functions

' gl ¢ S r
(12) WQ: {w:IR xR >R, wu,v,s,w)=suty(v,n)}, 020 , v e}

m . ) .
where y: IR + TR and @ is the domain of parameter w» such that:

(13a) ¥0 20 , ¥wel , lev. w2 cl H
=0
lev w = cl f
13b rj >
(13b) 820 ,wef ©
{13c) W<3W2 , k>0 implies kW’éwz

where ¢l H = IR+ XJRT

It 1s easy to verify that the class of linear functionals

(14 wllu,v,0,w) =8ut<w,v> , gell, | welR"
+ +

satisfies properties (13a, b s C).
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The following Lemma shows some connections between the propsrties

of w and vy.

Lemma 2.1 Consider the set of functions W,_. Then (13) 1is equivallent

2
“to (15):
' m
_(15a) ‘ Fwe o, levzoyfaim+
(15b) M lev_ v= &
>0 +
w e
(15¢7) - wo e, ¥h>0 , 33 e:iy(+,5) = ky(+,5}

P@oaﬁ; {(1%a) = (lBaJ

' ' m
(13a) = w(u,v,8,u) 0 wu, 020, wv,we IR

= w{0,v,0,w) =y{(v,w) 20 ¥V, 0 E.]RI_]: = (15a)

(15a) => y{v,w) 20 vv,meﬂff = guty{(v,w) 20 ve,uZO"

vv;msﬂfi = (13a).,

{13b) <= (15b). Suppose that (13b) holds and (15b) dis false.Then }Géﬂﬂ?
such that y(v,w) =0 ¥u ¢ 0 and, consequently, w{(0,¥v,8,w) = y(¥,n) =20
¥8 20, ¥wef so that (0,v) ecl #. Thus v eﬂff and this 1s absurd.
Suppose now that (15b) helds and (13b) +4s false. Then i(ﬁ,?) £ el Hsuch
that o0 + v(v,w) =20 %8 20, vuw e @ and this felation implies 1> O,other-
wise pll +-» when &++ . On the other hand w(i,7,0,u) = v(¥,0)20 % e Q

- .m : L.
so that ¥ eIR  for (15b), and this is absurd.

(13¢) <= (15¢). ¥ «q , ¥k >0 conasider the funetion wlu,v,e,5)=(6/kiu+

+ y{v,w}? Then kw = ou + ky(v,u) eWé iff (15¢) holds. =t

The following Lemma gives ceonditions under which W'EW2 guarantees
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weak alternative betweeh-(l) and (3a) where, now, system (1) is of the

form (11).

m o .
Lemma 2.2 1) When 6 >0 or 8 = O and lev R, ,the function weW

7 07 2
guarantees weak alternative between (1) and (3a), with 72 = J-=,0].

2

_ - ) N
ii) When 6 = 0 and 1ev>oy $ IR{, w guarantees weak alternatcive between

(1) and (3a), with 7 = J-=,0L.

Proog: (i) In the present case, namely K6) with 2 = 1, (2a)becomes

: m
1ev>ow 2 jO,+m[-x]B+ , or

(u,v) €J10,+s [ xiRT’ = guty(v;a) >0

. . . . B m
This relaticnship holds since now we have efither e >0 and lev>oy 22m+,
' m . ‘o
or 8 = 0 and:lev OY'2‘3R+' Thus,. the thesis follows from (1)of theorem
> .
1.1.

(i1) In the present case, namely (M;2)—(5.3§, (2a) becomes:

m
levzow 2 1O,+oo[_><IR+ R

or;
" :
(W, v) € 00, %L xR, = euty(viu) 20
Since 8 = 0, this relationship is an obviouﬁ consequence of (15a).Again

weak alternative follows from (i) of theorem 1.1. This.completes the

procf.

Taking into account Lemma 2.2, it is immediate to interprete i)
of Theorem 1,1 as a sufficlent opbtimality cbnditicn for problem (10);

this is contained in the following:

Conollary 2.1 TIf % e R fulfils'conditibns: (i) X eRy (ii) there

exist 8 ¢R_ and § o, such that |

(16) 0 Lo(E) ~ oG 1+ v(g(X)3B) <0 , ¥xeX ,
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and moreover

{x eX: ¢(x)= ¢(x)g(x) 20 , y(g(x),u)=0}=0

m -
when 9=0 and lev>oy $‘Eh_; then x 1s a global minimum point of (10).

Now, introduce the function
A .
Lix;9,w) = 8¢{x) -y (g(x)su) ,

and let us prove the following:

Theorem 2.1

Condition (i)-(ii) of Corollary 2.1 1s eguivalent to the other one

there exist x ¢ X, a'eﬂi* and w e @, such that

(17) L(R30,w)<l(R38,5) < L(x8,0) , ¥XeX , ¥oecl,

and meorecver

(x eXt ¢(%x) < 6(%X),2(x) 20 ,v(g(x),n) =0}=0 .

. m
if 8 = O and lev>04y¢ ]R+.

Proog: Let us prove that (1)-(ii) of Corollary 2.1 =(17).we0 and

X «¢R imply that v(g(x);5)=0 (sinee leszY Q:BT); aﬁ x =% (16) implies
y{g(X)iu) <0; it follows vy{g(x);w) = O, Hence, (16) 1is equivalent to
the 2-nd of {(17). |

Let us prove, now, that (17) implies i)-ii) of Corollary 2.1. The 1l-st

of (17) implies
(18) v(g(x),w) sy(g(x),n) , vw el

Suppose that g(x)# 0. Then, by (15b) there exists ﬁd}sudzthm:y(gbd,EkC);



l13

hence by (15c¢)

v{g(x),n) <K(g(X),n) ¥K>0 and this is absurd.

Thus g(x) 20 and i) of Corollary 2.1 is proven. Because of (15b)we have
Y(g(i),@).zo. Suppose that v(g(X),3) >0; by (15¢) and (18) we have
v (g(R),D) s% v (g(%),5), 50 thas v(g(X),8) = 0. Account taken of this
equality, 1t is easy to show that the second part of (17)implies (16).
This completes the proof. =+

Now, note that (17) can be regarded as 3z generalized saddle-point
condition and I as a generalized Lagrangéan function.When y(v,w)=<w,v>,
(17) becomes the well-known John saddle-point condlition and [ the

classic Lagrangean function.

Note that, when (16} or (17) holde, from the proof of Theorem 2.1
we have that (X,8) fulfils the generalized complementarity condition
y(g{x),w} = O which collapses to the well-known ordinary one, when vy is

linear and :fET

Now, suppose that X is an optimal solution for problem (10),sc that
system (1) in the form of (11) has not solutions. The impossibility of
(1) does not imply the possiblility of (3a). In this sense,any condition
which guaranﬁees, in a given, suitable class of weak separation func-
tions, the existence of an element w satisfying {(3a) becomes :a neces-

sary optimality condition (besides thé weak alternative).

When € is convex, chobsing the clasg of linear functionals,for (i)

of Corollary 1.1, (16) and (17) hold.

Consequently, when X is convex, -¢, g are concave, (16) and (17)

become necessary otimality conditions too.

When F is nof convex the above mentioned class is not useful since

a linear functicnal doess not guarantee, in general, alternative.

A general approach 1s to consider a transformation .6 the  con-

straints T = (T.,...,T ) such that
1 *m
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20 , ¥y, =20

T oM. ) 20 according to v,
i(vl’ul)*< B i

i
and to choose, properly, w in the class of weak separaticn functions

W where

3!
I

. m |
W5 = {w:lRxR 1R, wlu,v,x,u) = u +iEIAiTi(Vi,pi) -

Nete that T(g(x),u) may have a certain property, for instance con-

cavity, differentiability, which doeg not hold for g.

An appropriate cholce of W, may be the exponential one,that is the

3

case where Ti(vi’ui) =V exp{-n vi) i=1,...,m.By means of this trans-

1 .
formation it has been possible {(Ref.27,28) to characterize a wide class
of problems for which there exists w EWS whioh'guarantees alternative,

i.e. such that (19) hnolds:

(19a) 4,720, (3,7) £ 0 such that
. . - m - : - .
(19b) o (x) - ¢(x) + izlxigi(:ﬂ exp.(-uigi(x)) <0 , ¥X X

Let us note that (16&), (1?),_(19) are global optimality conditions
since X is not speciflied. Some other.results can be obtained by means
of a further analysis of the weak alternative, based on local argumerts
(Ref, 16,2?); in particulaf it is possible to deduce, in a vefy simple
way, the classié necessary conditions of the Lagrange,Ksrush,Kuhn- Tucker
type. With this end, consider a class of weak separation functicns W =

={w(u,v,wu), weal, satisfying the following properties:

(20a) (M) lev  wlu,v,w) = cl H
wefl -

20D : = 1

( ) [‘l lev>ow(u,v,m) int #
[NERY:

It is easy to prove that the class of the linear functionals
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.I_
w(u,v,A,0) = Au +<u,v> ,  AelR , uelR

verifies (20).

The following Lemma plays a fundamental role in the derivation of
F. John conditions, and for necessary conditions of isoperimetric kind
in the célculus of variations (see [171 ). To this end dencte by EGthe
conic extension (in the sesnse of sect.l) of the cone generated by K at
the origin O (i.e. the union of rays having O as common origin and nonr
empty Iintersection with K), and by E; the (non-regative polar) of E

a

Lemma 2.3 TLet W be a class of weak separation functions satisfyving

property (20), and assume that the condition:

EG 7 {0}

is fulfilled. If x is & local minimum point for problem (10),then there

exists W e such that

(21) ‘ 1imsup w(f(x),g(x),u)-w(f{x),g(x),0) <0

XX lx - x|

Remark If w(u,v,w) = 0 when w = 0, Lemma 2.3 hclds with & # 0.

Now we are able to prove fthe following classic theorem:

Theonem 2.2

Let X be a local optimal solution for problem (10) and setIzﬁhgiﬁa=OL

Suppose that X is an open neighbourhocd of X, b1s B i=1,...,4 jeIare -
differentiable at X and gj, 1f J &¢I is continuous at x. Then there ex-

ist

(23a) A20 , 120 , (3,7) # O sueh that

(231) 6y (x) -
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(23c) ' o g (R) =00 isl,...,m

Proo4: The continuity of gj(x) at %, j ¢TI implies that ¥ is a loeal
optimal zolution for problem F! ‘

P': min ¢(x). , g(x) 20 , x eU{x)

where U(x) is a suitable neighbourhood of ¥ such that gj(x)>0<, X U (X

Consider the class of functions

‘ m
W(L'LJV,)\ :.U) = AU H<u,v> 5, 20, U“:IR+

and the Lagrangean function assoelated with P!

(24) L(x,a,m) = ag(x) -<u,g(x)>.
Taking into account that inf sup $Ex)=9 (%) vy (x)] when y 1s differ-
x+X - X|

antiable at Ej.for'Lemma'E.B and (24), there exist 2 20, § =0 such that
1VL(X,%,7)] =0, i.e., yL(%,2,0) = O. Setting Xi = 0, i I, the proof of

the theorem is complete. =

4. STRONG ALTERNATIVE AND OPTIMALITY CONDITIONS

m . . .
Let s: IRxIR >, s(u,v) = u~&(v) be a strong separatiorn functicn

. m . _ . . . .
with ¢: IR +IR. It is easy to show that the condition lev OS cH implies

§(v) 20 wv 20 and §(v) = +o ¥v £+ 0.

In order to avoid this kind of restrictions we will Elve ‘a .more

general definition of a strong separation function than the one givenin

section 1.

Consider system (1) and let K = IR’ be such that K ¢ K, namely
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(25) | th) ek , wxeX

by .. . . . . . LB Y]
K trivially exists since (25) is satisfied by at least K = 1".

We say that s:ﬁmyAJR is 2 sthong separation function ift we'hame:

(26) lev _sn K < H
>0

Let us note that (26) reduces to (2b) when K = R

The following Lemma generalizes ii) of Theorem 1.1.

Lemma 3.1 Let & be a streng separation function. The systems (1) and

the following one:

(27 | s{F(x)) <0

, X e X

cannot be both impossible.

Proog: Suppose that (27) is impossible i.e. there exists X ¢ X such
that s(F(X)) >0; from (27) it results F(%) E1ev>oser ¢ H and thus (1)
is possible.,

Consider now'problem (10) and let E c IR xﬂ#n be such that

(28 (6 (X)-¢(x),glx)) ek

s, ¥XeX

. - 1+m .
For instance we can set K = {-p,p] 1f there exists .a posgitive

real number p such that [¢(x0] €0/2, lg(x)l <o ¥x eX - ori-we can set

¢ m . . ’ :
K= {{u,v) e R xR : usM, v<M} if $(x) <M, gi(x) <M di=1,..,m, ¥x ¢X.

Let

(29) S:{S:]RX]Rm'?IR,S.(u,v,m):u-ﬁ(v,w), w e i}
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. . 1m
be a class of strong separation functions, where 6(:,w): IR +IR and Q

is a set of parameters. For'Lemma‘B.l, the systems (11) and (30)

(30) s(F(x),g(x),0)=¢(X)=0(x)-6{(g(x),u) =0 , vxeX , ¥wcQ

cannot be both impessible, so that the optimality of x implies the va-
1idity of (30). Consequently (30) becomes a . necessary optimality . con-

dition too, when the class § satisfies (31)

(31) L] (Ka lev  s(u,v,w)) = KnH

wefl

The following theorem holds :

Theohem 3.1

Consider the class of strong separation. functions (29) satisfying (31).

Then (30) is a sufficient condition for X to be optimal.

Proof: Suppose that there exists % ¢ X such that g(®) =20, s (&)<o(x).
Then ($(X)-¢(%),2(R%)) ¢ Kn H and, for (31), there exists @ e¢q such bthat

(¢ (x)=-9(%),g(X)) elev>

Os(u,v,&) and. this contradicts (30) for x = %. 3t

Consider now the case K = R x R and suppose that the class (29)

satisfies the following properties:

(32) : S{v,w) = +o , wv O , ¥ e
(33) ‘ L_]lev>os(u,v,w):int H
we s

The following Lemma holds :

Lemma 3.2 Conditions (33) and (34) are equivalent

(34 ¥v >0 , inf §(v,w) = O
wek
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Proog: (33) = (34). Ab absurdo, suppose that there exists v>0 such

that inf §6(¥,w) = & >0. Let 1 be such that Ox< T<2. We have U-6(v,n) <0

w . - - . .
vwel and thus (4,v) élev> s(u,v,w) ¥wel with (U,v) ¢int # and this

O
contradicts {33).

(34) == (33). The condition lev> s ¢ H dmplies 6(v,w) 20 ¥V >0, Vwed

O

By definition and from (32) we have L_Jlev}os ¢ int H, and thus it is
well .

gsufficient to show that int # gL_Jlev>Os.

t
Let (G,7V) eint H. Since inf §(¥,w) = O, there exists & such = fthat

! 1]

0=<¢6{v,n)< 03 conseguently (U,v) elevios(u,v,é)and‘uﬁﬁ“ﬁmﬂie$._int H <
c v lev>os. =+ '

*

Consider again problem {10) and set  R® = {x eX: g(x) >0} , R =

(X eR:o(X) = min o(x)7.
XeR

The following theorem gives a necessary and sufficient condition

for X to be optimal which is weaker than the one stated in Theorem 3.1.

Theotem 3.2

Consider problem (lO) and assume that ¢ is continuous, R* # &, R® £ 0,

R = ¢l R°. Let S he the class of strong separation functions (29) sat-

isfying (32) and (33). Then i) and ii) hold:

i) ¥ is an optimal solution for (10) iff
(35) | sup sup s{(f{x),g{x),w) <0
wefl NeX

ii} if % is a feasible solution of (10) such that

(36) . $(%) = inf inf [e(x)+6(g(x) , )]
we ¥eX

then % ig an optimal solution for prcblem (10).
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ProO4: i).Neaéﬁéitg: Suppose that ¥ 1s. an optimal solution for
(10). Then (30) holds and this implies (35). Suﬁﬁiaienag. Ab absurdo ,
suppose that there exists % such that g(f) ao,i*¢(i)< 4(X). Since ¢ 1s
continuous at ¥ and R = ¢l R®, there exist a suitable neighbourhbod
U(%) of % and x° ¢ R°n U{%) such that ¢(x°)< ¢(¥). Setting u=¢{x)-¢{(x°)>
>0, ¥=g(x°)>0,we have (I,V)eint trand, frem (33),there exists & gsuch that

g (u,v,w). Consequentiy sup s(f(x)y,g(x),u) >0 and ~this

(ﬁ;@) elev
¥eX

o
contradicts (35),

ii) = Let x Dbe an dptimal solution for (10} and s#%' m

-1

$(xX),8=

¢l R®

I

= Ainf inf (¢ (x)+8(g(x),w)]. Since ¢ is continuous at ¥ and R
wef XeX .
for every e >0 there exist 2 suitable neighbourhood U(Xx) of X and

xd‘eROr\Uii), such that ¢(x°) <¢(X) + ¢ = m + e. From (34) there exists

w such that 0<6(g(x°),w)< ¢ and, consequently, 2 <inf (s{x)}+5(g(x),u)<
] XgX
<¢p(x°)+8{g(x°),u) <m + 2e¢ and this implies 2 <m.

On the other hand, since §(g(x),w) 20 %X eX, ¥w e We have m=g. It

follows 2 = m. =+

5. LANGRANGEAN PENALTY APPROACHES

Penalty approaches are a natural extension of the original Lagran-
gean method and aim to get an optimal sclution of a constrained extrems

um problem by solving a sequence of uncenstrained ones.

More exactly, exfterior penalty function methods usually solve prob-
lem (10) by a seqguence of unconstrained minimization‘problems whose op -
timal solutions approach the soluticn of {10) cutsdde the feasible set
so that thé seguence of unceonstrained minima converges to a feasible
point of the constraired problem that satisfies some sufficient opti-
mality conditions. On the contrary, interior penalty function methods
golve (10) through a sequence of unconstrained optimization problems
whose minima are at points in the interior of feasible set; staying in

the interior is ensured by formulating & barrier function by which an
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infinitely large penalty 1s Imposed for crossing the boundary of the

feasible set from the inside.

Tn this section it will be shown that these apprmﬂﬁﬁs can be viewed
in terms of weak and strong separation functions. To thisend consider
problem (10), with X = ﬂgl and the continuous functions pr: Bfl + R
o= 1,2,.. such that '

pr(v) =0 if wv=zO0j pr(v) >0 if v %0

(37)
P viep (v) 5 limp (v) = += if v3$0
=+
The funection w(u,v,r) = u—pf(v) is, for any r, a weak separation

function and, moreover, it is easily seen that

(38a) w(-,r) 1s continucus for any r

(38b) 1ev>ow(-,r) :lev}o wi-,r + 1)

(38¢) & | H

3ce, l:& lev>ow(-,r) =

(%8d) ¥vh e, 3K(h) >0 such that w(h,r)=2K(h) wr

The following theorem holds (Ref.16).

Theorem 4.1

Let W be a class of weak separation functions satisfying (38).Then sys-

tem (1) is Iimpossible iff

(39) inf  sup w(F(x),r) <0
r XeX ‘
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3ince wlu,v,r) is, for any r, a weak separation function, i) of

Theorem 1.1 can be applied and (3a) becomes
(40) ¢ (F)-4(0)-p_(a(x)} <0, wx el ,

and is a sufficient condition for the feasible X to be optimal . Such

a cordition can be weakened by applying theorem 4.13; (39) becomes

(41) 1im  inf Lé{x)+p {(g(x))] 2 0 (%)
pote xeRD r

and is a sufficient condition weaker than (41). Denote by @P the infi-

mum  in (41). From (37) we deduce

A . N
(423  <é_ < .,...=d = inf o(x)
’ XxeR

Assume that 3r such that ®f > = , and that there is a proper xreRn
guch that Ce(xt) = @r, ¥r>P. If X is any 1limit point of sequénce
{Xr}5 then condition (41) is fulfilled and theorem 1.1 gives the opti-
mality of X. The construction of sequence {Xr}-by solving the infimum
problems in (#1) is the well- known exterion penafty method and pris said
a penalily function; if.the above cohvergence'can be ensured aftér a fi-
nite number of steps, i.e. if 37 such.ﬁhat (40) 4is fulfilled at r = ¥,
then pr ig said exact penalify {function (Ref.20). Hence, the conditions

for a penalty function to be exact can be regarded as conditions which

ensure {(40) instead of (42).

A particular case of (38), corresponding to a well-known penalty

funcetion is

m .
w(u,vir,e) = u-r I (~min{0,v.})u s ozl
i=1 1
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A more generalclasé of functions satisfying (38) is contained in
Ref. 20, where the cage of both equality and inequality constraints is
considered. The latter requires only formal changes in the above res-
soning. In fact, if the constraints of (10} are g(x) = 0, it is enough

to replace in (7) v = Eﬁ? with V = {0}, so that now f{:{(u,V)e]Bl+m:ux}

>

- v=0}.

In such a case a weak Separation funection is for instance the follow-

ing one

w(u,v,k,r)=u+%k,v>—p<v,v>, with  xelR, , reR

which corresponds to the so-called zugnmented Lagrangean approach (Ref.

31).

It follows that exterdion penatiy approach can be formulated in Zeims

of weak separation.

Now, consider again problem (1C) and assume that 4, £ are  conti-
*

nuocus, R = ¢l R°, R # @.

Let {pk} be a sequence of real numbers tending +to infinity such

that, for each k, k = 1,2,,., >0, Hierl >uk..Assume that, for each k,

%
problem (4%) has a solution

) . 1 ’
{43y min [¢(x) + — &{g(x)]
’ XeR° uk .

where § is a2 continuous function such that s{g(x)) =0 g(x) > 0 ;
s(g(x)) = +=« if g(x) }0. Interior penalty function methods solve, for
each k, problem (43) ocbtaining the peint X, 3 any 1imit point of the se-
quence {xk} is a solution to problrm. (10). This procedure corresponds: to

find a feasible solution % satisfying (37).

It follows that {nterion pénaizg approach can be {formulated in temms

0f sThong separation.
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In this section it is shiown that a dual problem naturally arises

when optimality is studied through alternative. In this way some gener-

alizations are easily achieved.

Assume that X is an optimal sclution for problem (10)and,moreover,

that a constraint qualification holds.

Consider the class of weak separation functions (12) . satisfying

(13), with 8 = 1, and the class of strong separation functions (29).

'Since wWif(x),g(x),w) = 6 (x) ~ d(x) + y(g(x),0),it results w(f(x),
8(X),0) = ¥(2(X),6) 20  wuen, so that |

sup wi(f(x),g(x),u) >0 L
XeX

or, equivalehtly,

¢(X) 2infl¢ (x) - vig{x),e)]  wyeq.

XeX
It follows
(44 ¢{X) 2 sup irflé(x) - y{g(x),w)]
weil XeX

In a similar way we can use'strong alternative:sinee Sﬁﬁ??;gﬁdgﬁ)Z.

= $(X) - s(x) - 6(g(x),w) , it results s(f(ﬁ),g(i),m)=—6(g(i),m) < 0

¥w e 2 80 that inf s(F(x),g(x),u) <0 ¥w e . It follows
Xek

(45) $(X) <inf infle(x) + S{g(x),w)]
wefl XeX

Set

D@0 v (@(0,e) 1 L (x,0)=e () e (20x) )
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and assume; for sike of simplicity, that any infimum (supremumn) which

appears in (44), (45), is achieved as a minimum (maximum) .

Then two news problems can be associated to P:

Dy max min L(x,uw) ; D :min min L (x,u)
s s
wefl xXeX Wwe XeX

Problem D is called the generalized Lagranglan dual an it reduces to the
usual Lagrangian dual when v is linear. We refar to D and D srespectively,

as the weak duaf and the strong duaﬂ of the primal problem P

Relation (44) is known as the weab duality theorem. The dlfference
A Detween the left~hand side and the right-hand 51de of (44) is the du-

ality gap.

The following theorem is a general formulation 6f the so-called

strong duality thecrem.

Theorem 5.7

Consider the pair of problems. P and D. Then 4 = O irf there exists ﬁewz

which guarantees alternative,

Proof: A = 0= ¢(%)< max min T(x,w)
wed ¥WeX

= 35en: ¢(%) <min (6 () =y (g(x),a)
xeX

= Fweq: ¢(§)—¢(X)+Y(g(x),5) =0 , wxeX

or, equivalently, iff the function wiu,v,s) = yu- v(v,u) 1is 2 weak sepa-

ratlion function which guarantees alternative. H=

Let us note the striet conneetlon between the strong duality the-
orem and the necessgary optlmallty conditicns -, g this end note that
Ny eondition which guarantees the validity of a necessary optimality

condltwon is also a condition which ensuresto be zero the duality gap ,
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when the same classe 0of weak separation functions is adopted. As 3 con-
sequence, the results obtained in section 2 can be used to characterize

classes of problems having a4 = 0.

For instance, when P is convex and a constraint qualification holds,
if we khoose. the class of linear weak separation functions wlu,v,w) =
= Wt <w,v> , that is L{x,u) = (%) —=w,zg(x)> s 1t results A = 03 when
P 1s the linear fractional problem or when the objective function b is
concave and g is affine, if we choose the class of exponential weak sep-

aration functions w(u, VyAau) = ou o+ 2 Ai GXD("UiV:), that is L{x,n,u)=
. l = . ol

=b(x) - z AL exp(~u.g.(x)), 1t results 4 = 0 (Ref.28).
1-174 i=i

Consider now problem D in the case where L{x,w) is the usual La-
grangean function. It results, in general, A >0, In the image space the

duality gap can be easily characterized.

m
For u e R and o ¢ TR let us set

'H(H.,Ot) %= {Clﬂ.,V) gIﬁ’\x:ﬂ:{m;ru +g—ujv> <a}
- _m _
A = {q ¢« R_J/ ﬁpgjm+; Hi{p,a) o £}

o, = inf A if A£G

The following theorem holds (Ref. 29)/

Theorem 5:2
1) If A =0, then A = 4w, i1) If A £ ¢, then A = e

Working in the image space it is pessible to establish an upper

bcund for a.

Setting v’ = max min L(x,w), it results (Ref.29)
wed | xeX

(46) v zF(~a{g)) - p(¢)
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where I' ig the perturbétion funetion
oA |
Fle) = min ¢(x) , xeR = {x eX: g(x) =e}
[

and old), olg) are, respecti?ely, the lack of convexity of function ¢

and the lack of concavity of function .

As a particular case of (46) we have, when g is concave,
(h7y _ O<sasple)

Now, consider again the strong dual .DS and set

6 (u) é,min[¢(xl + 8(g(x),u)].
KeX

We refer to (45) as the strhong duality theohrem .

The difference between the right-hand side and the left-hand one

of (45) is called $thong duatity gap.,

As an obvious consequence of Theoren 5.1, we have the following :

Theorem 5.3

Congider the pair of problems P and DS and assume that the class of

sbrong separation functions (29) satisfies (31). Then, the strong dual-

ity gap is zero.

7. REGULARITY

Lo section 2 we have pointed out that,ir w(E (%) ,g(%),8,1)28(4(%)-
o (xX)+ <,z (x)>  is g weak separation function which guarantees altep-

rative, then
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(48) 6($(X)=0(x)) +<1,2(x)> <0 . ¥X eX

becomes a sufrficient condition for X to bé optimal for problem (10).For
this optimality condition and any other which involves Lagrange milti-
pliers the problem of regularndity arises, that is the problem of finding
conditions which guarantees that 0 is different from zero. . When such
conditions‘involve only the canstiraints, they are referred to as oon-
strnadint quatifications. Now, we will see how the image spaee' suggests

some simple ideas coneerning conditions under which o £ 0.

Let us note that the validity of (48) ig equivalent to state the
existence of an hyperplane I ¢ R = R- which separates E and Hythat ds,

- +
Ecl , He? where

r :{(u,v)aRXJRm:§u+ <X;v> g@} R

+ m = -
I ={{u,v)eRxR :gu+ <Asv> 20}, r =7 ar

From a geometrical point of view, a regularity condition fop (48) s
equivalent to the one which ensure that 1 does not contsgin the line
r={{(u,0: uemR}.:

Consider now the simplest case where E is conﬁex, that is the func-
tion F(x) = (f{x),g(x)) is ¢l —convexlike and let . be the +tangent
8 -

cone of £ at the origin. Tt is easy to show that I separates F and

8 — : - . i
(") Tne Cangent cone T(h) to A ab h e A is defined as the set of h for
which there exist gz sequence {h¥} c 4 and g positive sequence{q } c
[, . : R - — . r
= R, , sich that lim n' = B, 1im 4 (n"-f) = h - §.
P> teo r-++ew
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H Iff I' separates T and H. The reason of introducing T ig given by the
fact that we can characterize-regularity' in terms of disjunction be-

tween T and int U ={(u,0) e Rx®": u » 0.

The following theorem holds (Ref.16).

Theocrnem 6.1

Consider problem (10) and_zssume that F(x) = (f{x),g(x)) is ¢l H -con-

vexlike. Then (48) is fulfilled with 5 # o iff

(hg) | ' Tnint U = ¢ .

Let us note that, in the convex case, constraint qualiffications are
sufficient conditions ror (49) to he satisfied. Cendition 49y it given
in the image space and it is equivalent to the following one given in

the original space (Ref.ES).

. r . s
Condition 1. For CVery sequence {x } ¢X and for every positive .se-

+
quence {ao } «¢IR , we have
AMEICE r AE ave

(50) lim o (£(x'),g(x")) # (U°,0), u eint Uy
IP+teo T

er_such a limit dees not exist.

In the case where E is not convex, (49) becomes s necessary con-
dition to have regularity. Conditions under which (49) 'is sufficient
too, and some other regularity conditions rop the differentiable case,

can be found ir Ref.25.
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Theorem 6,9
Consider problem (10} and assume that (U48) holds. Theh (48) s fulfilledq
with & # 0 ifp :

(51) Enint U = @

9y .
wherg( ) E = cliconv(con E)).

S.ﬂHEﬂWAGE(HhA(I»GTRAHHH)PROBLEM

In this section we will see how the image Space. can be used in order
to find necessary and/or sufficient conditions under which an optimal

solution for a constrained extremum problem exists.

With this end let p and h be pogitive integers;'assume'wearegﬁvml
n m .
X ek, ¢: X>IR, g: X>IR » and let V ¢ ﬂfn'be a closed convex cone ,

containing the origin 0 of I,

We consider the following constrained extremum problem:

(P) min ¢(x} ; xeR 2 {x e Xig(x) e V) .

and we assume that R # @.

Note that, when Vv = I{f, (P) collapses to (10).

(*)  con A denotes the cone generated by A.
conv B denoteg the convex hull of B,
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Given a point stR Wwe set f (%) = o(%) - ¢ (x) and FE(X)=(ff(x) S
g{x)), so that F X-+ﬂ%xﬂi . Moreover we define K_ = {(u,v)eR xB"
u = fi(x), v o= g(x); X X} and we call image of problem (P), with re-

spect to the point X, the problem:
A
(PE) | - max (u) s.t. (u,v)eRi = {Cu,v)eKﬁ:vEV}

Set E_ = Ki - el ff, we shall call extoended &mage of problem (P) ,
with respect to the p01nt ¥, the problem:

(e) : ' (e) a

(Pg ) . max (u) , s.t. (u, v)cR :{(u,vJeEi :v=0},

The sets K_ and [_ g2 and therefore the problens rP ) and (P >) y

obvicusly depend on the cholice of ¥ in R; even ir such dependence ig of

a very particular kind. Indeed, if R ¢ R, it is easily seen that:

K, - Ke +{(6(2)-4(%),0)} ; Ee = Ex +1{e(R)~4(X),0)}.

Moreover, it can be easily verirfied that, If X, 2 ¢R, problem (P_)

(e) (e)

[or (P )1 has an optimal solution, iff (PEJ [respect, (P } 1 does

have

For this reason, when we consider properties which hold independ-
ently on the choice of % over R, we shall drop ¥ from the corresponding

notation.

We shall now give- some general results which should be of some
help in analyslng the relations that hold between a congtrained extrem—

um problem and its (extended) image.
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Lemma 7.1 The.following.equalities hold:

$ (%) ~inf ¢(x)= sup (u) = éup (o) (u) = sup (u) ,
xeR (u,v)eR (u,v)eR (u,v)eE
v=0

where the imapge and the extended image are considered with respect to

the point X ¢R.

Proof: The first equality follows easily, observing that x ¢ R =
= (ﬁ(i)—¢(x),g(x)) e K and (U,v)e K = 3 xen sueh that U= 9{X) -¢(x),
v = g(x). To prove the other equalities, note frirst of all that, since

(u,v) &R = (W, 0)=(u,v)-(0,v) ¢ E, we have sup {u) =  sup (u).

(u,v)eR (u,v)et
v=0
From the inclusion {{u,v)e £ :v = 0} = R<e), we then get  sup  (u) <
‘(u,v)eE
‘ v=0
g sup (e) (u). Cbserve finally that, ror every Cu,v)eR(e)5there must

(u,v)eR

be, by definition or £, a point (4,v)eR with u s>y, From this we get

sup - {u) = sup (W), and this is the last inquality needed . to
(u,v)er(e) {u,v)er

complete the proor. +

Theorem 7.1

The following conditions are equivalent:

(1) problem (P) has a global minimum point;

(ii)  problem (P) has a global minimum point

(31) problem (P<e)) has a global minimum point.

Moreover, if one of the above conditions is verified, and if theimages

are censidered with respect to %, we have:
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(u).

(52) min ¢ (x) = ¢ti) = max  (u) =¢(X)- max

xeR (u,v)eR (u,v)eR(e)

Prood: (i)« (ii). Let 2 eX, 4= £(2), ¢ = g(X). We have ReP,iff
(0,7) eR. Let now % eR, U= £(%),, ¥ = g(X), we then have ¢ (%) < ¢ (%) ,

iff @ >14. The thesis follows easily from the above remarks. (ii) =(31).

It is a consequence of lemma 7.1 noting that R ¢ R(e).
(31) ==(21). Let (4,¥) eR(e) be such that 4 = max (©) {u),"then there
' (u,v)eR

exists (ii,¥) ¢ R, such that 4 >4, hence the thesis follows 'from - lemma
7.1. The second part of the theorem is & consequence of the first part

and of Jlemma 7.1. H=

Now we shall study the existence of the minimum of problem (P), by

. . . 3 . . , e
means of its relationships with the extended image problem (P( )).More
preclsely, we shall give some sufficient condition, one of which gener-

alizes the well~khown Weierstrass condition (or semlicontinuity of func-

First of all observe that, as an easy consequence or Theorem 7.1,

we get the following:

Theornem 7.7

Problem (P) has a global minimum point, iff the seb D=En{(u,v)elR x" :
LrGobiem ———omn Point, Iff the set

v=0} is closed and one hag D # ¢ and sup (U)x +oo,
{u,v)eD

whereas, account taken op Lemma 7.1, the assumption sup (u) <+ ig

equivalent to inf ¢(x) > - e (u,v)eD

xeR

From this proposition we get immediately the following:
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Conollary 7.1 Let D ¢# 0 and sup (u) <+ e, Then, ir E 1is closed ,
el Sl s 22 BoLS cloged
‘ L (u,v)eD
problem (P) has g global minimum point.

This corcllary allows us to ¢laim that, once sure that D # g and

sup  (u) <+ ®, eVery condition ensuring the closure of E, o »of a
(u,v)eD

subset containing D, ensures also the existence of the minimum or (P) .

Sufficient conditions for the closure of E can be found in Ref.7,8,33 .,

The following theorem holds (Ref.33).

; .
Theorem 7.3

Let R # @. Then, if X is compact and F = (f,p) is (cl.Hjuupper semicon-
Y =2 —* 4 1S compact and =

tinucus, problem (P) has a global minimum point.

+ .
Note that, when v :IET, and, therefore ci H :,mi m,ithls result

collapses to the well-known Welerstrass condition.

Some other necessary and/cr sufficient conditions can be found in

Ref.33,

—_—
9. CONCLUDING REMARKS

ditions of the saddle-point tyre, exterior benalty method and weak diy -
ality can be deduced and/or Interpreted by weak alternative (see Table

1). Furthermore, we have seen that strong alternative (see Table Dpro-

turn out to be g further deepending of weak analysis and are' haged on
local arguments).: Connections among the teépics which appear in the fingt

(second) column O table 1 are shown,
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The general approach consists in introducing the image space, 1in
studying a certain question on it, and then, when a result has been ob-
tained on the image space, to obtain its counterimage, namely the cor-

responding result in the original space.

Other kinds of problems, which can be reduced to the above scheme
are combinatorial problem, discrete optimization problems, variational
~inequalities (Ref.16). This general scheme can be also extended to vec-

tor extremum problems (Ref.9) and to multifunctions.

TOGTCAL * CORRESPONDENCE

WEAK STRONG
ALTERNATTVE ALTERNATIVE
SUFFICIENT [ NECESSARY
OPTIMALTITY OPTIMALITY
CONDITIONS CONDITIONS

[ TMAGE OF AN
EXTREMUM
PROBLEM
EXTERIOR INTERIOR
PENALTY PENALTY

STRONG DUALITY

WEAK DUALITY

REGULARITY

TABLE 1
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