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bstract

In this pa Tper we analyse the linear fractional program
sup £(x) = [(cTx « cg )/(dTx + dg)1, %S ={ xeRD ; Ax=b,x% 0} with respect to the
variation of the vector (c,cq) . Further an aigorithm to solve the parametric linear

fractional program 2(0) = sup {((c¢ + 8)Tx + cg + Bug)/(dlx + dg)l, xe§ is proposed
for any feasible region (bounded or unbeunded).

Key words : linear fractional program, sensitivity analysis.

1. Introduction

Sensitivity and parameitric analysis for a linear fractional program
whose feasible region is a compact set, is very similar to the linear
program one {1,2,8]. The aim of the paper is to deep the parameiric
analysis to the case where the feasible region is unbounded; in such a
case some difficulties arise in studying the supremum of the problem as a
function of a parameter. These difficulties are poinied oui from a
geometrical point of view by means of the study of suitable cones which
allows us to describe a sequential method to solve a parametric linear
fractional program for any feasible region.

2. Statement of the problem

Let us consider the linear fractional program :
(2.1) sup f(x) = [{cTx + ¢ )/( dTx + dg)}, x€S ={ xeR2 : Ax=b , 120 }=¢

where A is an m X n matrix, c.deR® | beR™ | ¢q, dgeR and d¥x « dg> 0,
vzes.

) The paper has been discussed jointly by the Authors. Cambini has developed
section 3 ; Sodini has developed sections 1-2-4-5-6.



The aim of the paper is to study the function

z(8) = sup [({c + 8u)Tx + cg + Bug)/(dTx + dp)l, xeS;

where {u,up) is a fixed vector of R0+l With this purpose let us note that
for problem (2.1) the following cases arise :

1) there exists an x'cS such that max f(x) = f(x') ; in this case at least a
XeS
vertex of S is an optimal solution;

2) it resuits  sup [(x) =+ je. there exists a vertex x'eS and an
Xes
extremeray Wr={x:x=x+tr, tz0}) W8, suchthat

fim f(x'+tr) =+
SR

33 1) does not hold and it results sup f{x) =L <+ ;ie. there exists a
xes
vertex x'eS and an extreme ray r such that lim f(x+«tr)=L.
-

Clearly only case 1) can happen when the feasible region is
bounded; furthermore fet us notice that linear fractional program and
linear program differ only for case 3), which cannot happen for the linear
case. This fact introduce some difficulties in sensitivity and parametric
analysis of linear fractional program with respect to the linear program.
In the next section some theoretical results concerning this aspect are
considered. '

3. On the variation of vector (¢, cp).

In this section we present some theoretical properties of problem
(2.1} with respect to the variation of vector (c,cg), which allows us to give
a geometrical interpretation of a parametric analysis.

First we introduce the following notation :

- V(8), set of verticesof S ;

(1) In the folfowing, for sake of notation, we identify W, with r.



H

R(xi), set of extreme rays starting from xieV(S);
Clxi) = ((ccp)eR*l: max f(x) = f(xi), xieV(S) };

t

Xe$
- Clrjj) = ccodeRo+1 :sup f(x) = lim fxie t ry) < +o0, xi€V(S), rjjeR(xi)) ;
XeS 1~ 4e0
- C(xi)=Clxi)u( v Clry)):
rijeR(x1)

1

C= u ¢ xi) = {(cepdeRn*l : 3 x'eV(S) : max f(x) = f(x')
xigV(s) xeS

C*= U C*{xi) = {(cepleRo*! : sup f(x) <+ } .
5eV(5) ‘ 365

The foliowing theorem holds :

Theorem 3.1

D Clxi) is a convex polyhedral cone ;

ii) Clry;) is 2 convex polyhedral cone ;

iii) C¥x!) is a cone { not necessarily convex ) ;

iv) Cis a cone ( not necessarily convex );

v) C* isa convex cone ;

vi) C* = R+l iff S is linearly bounded with respect to dTx + dg (2) |

Proof . i) xie V(S) is an optimal sofution iff (*), (**) hold :

(*) I(cTxi + co)/(dTxi« do)]l 2 [(cTxi + co)/(dTxi + dg)}, xieV(S)

(**) [(cTxi+ C(})/(d'fxi +do)lz lim [(cT(xi+t rik) + o)/ (dT(xi + t rjk) + dpll=
1~y o

= (cTrjg/dTe;e) |, XIeV(S), rjxeR(xi) .

Since (*),(**) are linear inequalities then ({xi) is a convex polyhedral
cone; ii) the same proof of i) ; iii) - iv} it follows directly from the
definitions of C*{xi} and C;v) C* is a cone as union of cones; it remains to
prove that C* is convex ; let {¢'c'o){c"¢"p)eC* , it resulis

(2) § js tinearly bounded with respect to dTx + dg if the set Sn(zeR®: dTx « dg=k) isa
compact set for any keR,



sup [(cTx + ¢'p)/(dTx + dg)] = Ly,
xe$

sup [(c"Tx + ¢"g)/(dTx + dg)l = Lz ,
xa$

sup K(Ac' + (1-A)c")Tx + Ac'p + (1-A)¢"0)/(dTx + dg)] =
x5

sup f(AcTx + c'p)+{1-A)c"Tx + ¢"g})/(dTx + do)} s AL+ (1-A)L2, 0 <A< ;

xe&s

vi) (if part) Ab absurdo suppose that C*=Ro+1: then there exists
(c'c'o)eRa+l, xie V(S), rjj eR(xi) such that :

tim [(cT(xi+ try)+ c'o)/(dT(xi+ trj) + dp)l = +m ; it follows that
1 - +00

- dTry; = 0 and dT(xi + t ry;) + dg = dTxi + dg = constant for each t, and this
contradicts the hypothesis .(only if part) Ab absurdo suppose that there
exists xie V(8), rj; €R(xi) such that dT(xi+ try) - constant for each t ; then
it follows that there exists (c'.c'p)eRn+*! such that

lim {(c¢T(xist rjj) + Col/(dT(xi+t l”ij) + do)] = +o0,
1 - o0

The contradiction of the hypothesis is obtained.

Remark

The properties of Theorem 3.1 does not hold for the linear program;
in fact for the linear program it results Cfxi) = C*(xi) ,C=-C* and Cis a
convex cone.

Let us consider the following numerical example :
sup [(x) = ( ¢;x + €% )/{ -X1 +2%2 +7)
(3.2) -2%) +X2s 2 ,X(-X223 X +Xp22,%;1+2%223
Xg, X220

The feasible region is described in fig.1 where x!=(0,2), x2=(1,1), 23-(3,0),
rig=(12), r3=(1.1).
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The cones C(x1), C(x2), C(x3), C, Clryy), Clrzy), C*(x1), C*(x2), C*(x3) and C*
are described in fig. 2. Clearly C(x}), C(x2), C(x3), Clryy), Clrzy), C*( xi),
C*( x2) are convex cones; C*(x3) and C are not convex cones and C*= R2,
Now let us suppose that the numerator of the objective function in (3.2) is
parameterized in the following way : {c1,¢2) = (-3.2) + 8 (7.-3) , 6eR. This
ray, together with the cones C(x1), C(x2), C(x3), Clryy), Clry;) is decribed in
fig. 3.

From the analysis of fig. 3 and with simple calculations, we find that for ;

-9x51/29, the vertex x!-=(0,2)is a maximum ;
- 1/2958 < 4/11, the supremum is obtained on the extreme ray ryj= (1,2)
starting from vertex x!;

-4/11s0 <1, the supremum is obtained on the extreme ray rz;=(1,1)
starting from vertex x2:
-1x6, the vertex x3=(3,0) is 2 maximum.

Notice that the adjacent intervals [1/29,4/11) and [4/1f,1] correspond to
exireme rays starting from the vertices x! and x3 which are not adjacent.
It follows that the study of a linear fractional program as a function of a
parameter in the numerator of the objective function, requires the
capability of going from an extreme ray rjy starting from the vertex xito
a4 new extreme ray riv_starting from the vertex xi which may be not
adjacent to the vertex xt.

In this section a modified version of Martos algorithm is described
[5]. The algorithmcalled MVM, is able to work also when the feasible
region is unbounded.Let us consider the linear fractional program:

max f(x) = (cT + ¢g)/(dTx + dg)
(4.1)
XX = [ xeR2: Ax=b ,x20}

The solution xgeX is said to be an “optimal level solution” if it is an
optimal solution of the following linear program:

1/t max cTx + ¢p
P(tp) :
Ax=b, dfx+dg=8p, 2 20



where §p = dTxg + dy.
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Algorithm MVM differs from Martos algorithm in the fact that the
optimal sofution (if any) is obtained by examining only optimal level
vertices. Let x' be a vertex of X and B, N the sets of indices of basic

variables and non basic variables corresponding to x'.

Set cyT= onT - caTAp!An , d'NT= dyT - dpTAptAN, P =cy - f(x') dy.

Algori \'i

Step 0 Solve problem Py : min dTx + dg, zeX . If the optimal solution
1’ of Pg is unique then go to Step 1; otherwise solve problem
Pi:max cTx+cp, x€X' =Xn{x:dTx =dTx' ) if



sup ¢Tx + ¢g = +« then sup f(3)= += ; otherwise go to Step 1
xeX’ xeX
with x’ equal to the optimal solution of Py;

Stepl Computecy,dy.p =cy-f(x)dy and J={j:p> 0LIf J=¢
then STOP (z' is an optimal solution) ; otherwise select k
such that c'yg /d'ng = max {c'yj/ d'y;), goto Step2;

i€l

Step 2 Compute yk = AgtAxk, If vk<0 then STOP (sup f(x)=cng/d'ng ) ;
otherwise do a simplex iteration with xy; as entering variable.
Let x' be the new basic solution ; go to Step1.

In Step 0 a starting optimal level vertex is determined; condition
max { ¢'yj/ d'y;} in Stepl guarantees that if X' is an optimal level

i€]
vertex also the new vertex is an optimal level vertex.

5. An algorithm for the parametric linear fractional program

In this section an algorithm for the parametric linear fractional
program

2 (8) = supl({c+0u)Tx + ¢4+ Bug)/(dTx + d,)]
PLF(8):
Ax=b . x20

is proposed. The algorithm is similar to that for the linear case
¢(8)= max (c + 6u)Tx
Ax=b ,x 20

where the function ¢(8) is obtained by a vertex following procedure.
Suppose that problem PLF(0) is solved by means of algorithm MVM. Let
Ap the basis at the end of the procedure and 3= Aplb,
c'NT= onT- cgTAptANn , g = ¢p + cgTAglb ,  d'yT= dyT- dgTAptAy ,
d'o= do+ dpTAp b, y=c'o/dg, B'=CN-yd'N.

Clearly x'=(x'g,0) is an optimal basic sofution of the subproblem PL(0)
where



max (¢ + 8u)Tx + ¢cp + Buy

PL(9)
Ax=b, dTx =dTx', x>0 ;
Ap 1 AyK .
and hence there exists a basis A*p = ——~-~:----- such that
dBT 1 de

c*nT=conT-cpTA*p 1Ay <0

If B' <0 then x' is 2 maximum of PLF(0) ; if B’ is not <0 then there
exists an index Kk such that y% = Ag-tAnk < 0 and C'y/d'ne= max
{ onj/d'n , §: By >0) ; in this case PLF (0) has a supremum ( equal to
c'ne/d'ng ) on the extreme ray from x' along yk.

The set of values of 8 such that x' is a maximum or the supremum is
obtained on an extreme ray starting from x' is referred as “the stability

set" of vertex x'. ‘

In order to find the stability set of x' it is necessary to introduce the
parameter 8 in B’, C'n, ¥, C*N, C'o.

It results:
- ¢'g(8) = cp+ Bug + (cg + Bup)TAg-Ib

=Cg+0u’yp, where u'g=ug+uplApib;
-y(8) =c'g(8)/d'g=y+ g (u'g/d'g);
- ¢'yT(8) = {cy + Buy)T- (cp+ Bup)TAp- Ay
=Cc'yT + Qu'yT, where u'NT = uyT- ugTAp1Ay;
-B'(8) =c'N(B8) - y(O)d'y =c'y+Ouy-yd'N-0 (u'g/d'g) d'y
=B +0(u'y- (uo/d'g) d'y)

- C*N--T(B)= C*N'T + 9 u*N.T . Where u*N«T = uNlT - uBnTA*B.-lA*N' .

Let us define:

H(®) ={0eR: p'(0)< 0};
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H'(8) = (8eR: c*y(8) < 0};

clearly H'(8) 2 H(9).

Ifp'<0 then H(B)=¢ and 6cH(p) implies that X' is a mazimum of
PLF(8) with z(0) = y(8) . If the supremum of PLF(0) is obtained along y*
then consider the set :

H"(8) = {0:c'NklB)/d'ng = max { c'\(0)/ d'nj , 1:83>0 1) if d'yg> O ; or the
set

H'(0) = (0:c'Ng(6)/d'Ng = min {c'ni(0)/ d'y;, j:B5>0)) if d'yg<0;

clearly for 6cH'(8)nH(6) the supremum is obtained along y¥ and
2{(0)=C'nk(0)/d'ng .

Let us suppose that H(0)={0:0'<08<0") where it is possible that
9'=-eo or §"=+e , Clearly for 02H'{8) x' is not yet an optimal level solution
and it is necessary to determine the optimal solution of PL{9). If 8'(6") is
finite set 0*=0"-¢ (0*=8"+¢), £> 0 and small and solve PL(6*). The optimal
solution is obtained starting from the basis A*p by one simplex iteration
inserting into the basis the variable 3Iyy  such that c*yv(6')=0
{c*n(8")=0). Let x* be the optimal solution of PL(6*) and A*p- the
corresponding basis. x* lies on an edge of S and is not in general a vertex

of S.
Let us define the set :

E(t) = {t:x*g-+t A%p110, 0, ........ 1T = x*g- +tyeS ).

The set { (x*g- +ty, 0) : teE(t) } is the edge containing x*. Clearly E(t)
can be a segment or an halfline ; in the first case the edge is bounded and
in the second case it is unbounded. If the edge is bounded then E(t) = [ t/,
t" ] and x1=(x*g- +1'y), x2=(x*g" +1"y) are the extreme points of the edge.
If the edge is unbounded then E(t) = (-» t'] or E(t) = [t'+)} and x"-
(x*p~ +t'y, 0) is the origin of the halfline. In the bounded case we go to
the vertex x! (x2) such that [({c+0™u)Txl+ ¢p + 6*up)/(dTxl + dy)b
{((c+0*u)Tx2 + Co + B*u,)/(dTx2 + dg)]  [{(c+0*u)Tx2 + ¢y + B*ug)/(dTx2 + do)] >
[{((c+0*u)Tx! + o + B*u,)/(dTx! + dg)] ) ; in the unbounded case we go to the
veriex x". In this way an optimal level vertex for PLF(8*) is obtained.
The stability set of the new vertex is adjacent 1o the stability set of the
vertex X' while the two vertices may be not adjacent. In this way we can
go from a vertex to another having adjacent stability sets. Clearly this
allows us to describe the function z(8) by a vertex following procedure.

The following theorem states the properties of function z{6).
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Theorem 5.1

z(0) is a convex piecewise linear function.

Proof. The domain of z(8) is the union of adjacent stability sets and hence
is a convex set. z(8) is piecewise linear as a stability set is the union of
sets of type H(8) and H"(8) which are related io the same vertex of S ; it
folllows that for 0cH(8) ( 0cH"(6) )} the denominator is constant and
hence z(6) is a linear function. For the convexity we must show that

AzBy)+ (1-A) z(82) = z(2 8y + (1-1)82), O <Axl .
Taking into account that

2(84) = sup [(cTx + co+ 8; uTx + 0y ue)/{dTx + dp)] ;
£&S

z(01) = sup [(cTx + cp + B2 uTx + B2 ue)/{dTx + dyp)l ;
xeS

Z(A 85+ (1-A)02) = sup [{cTx + o+ (A 81 + (1-A)02)(uTx + up))/(dTx + do)l ;
xes

it results

Z(A 05+ (1-1)82) = sup [( A(cTx + cp+ By uTx + B uy) + (1-AMcTx + cp+ B uTx
xaS

+03ue))/{dTx « do))] < A 2{6¢) « (1-A) 2(B9), 0 <A<l

The proof is completed.

Let us consider the example of section 3 :
sup f(x) = ((-3 +70) 2y + (2-30) x2)/( -x + 2%+ 7)
(6.1) -2%;+X2+3X3=2,%1-%2+X4=3,X1+X2-X5=2 ,X1+2%2-%6=3,
Xy, X2, X3, X4, X5, X2 0

where X3, X4, X5, X¢ are the slack variables. If we solve problem (6.1) for
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8=0 by means of algorithm MVM we obtain the following results :

pusag

1 0 0 0 1000
-11 0 0 1100
B=[2,4.5,6}. N={1,3}, AB= ' AB'"lm s
2 0 -1 0 1 0-10
2 0 0 -1 2 0 0-i

X'B= AB“!b = (2,5,0‘1)1’, C'NT = (1,"2) . d‘NT = (3,-2}), C‘o = 4 d'o =11, y=4/11,
uyNT = (1,3), w'g= -6 , BT = (-1/11-14/11) ; clearly x' = (0,2,05,0,1) is an
optimal solution as B'<0. Itresults H(9) = {8 :0 <1/29} and hence x' is
optimal for 0 <1/29 with z(8) = (4-60)/11 . In order to determine the set
H'(8) it is necessary to solve problem PL(8); it results B'=(2,4,5,6,1}, N'={3},

— o~ — -
1 0 0 0-2 -1/3 0 0 0 2/3
-11 00 1 173 1 .0 0 1/3
Ag=110-1 0 1], A%t=i-1 0-10 1 .
2 0 0-1 1 -4/3 0 0 -1 35/3
2 00 0-1 | -2/3 0 0 0 1/3]

X*g =A*g-1b* = (2,5,0,1,0)T, ¢*y = -4/3, u*y = 11/3 and hence from (-4/3) +
(11/3)6 <0 we obtain H'(6)={0:0 <4/11).For 8 =(1/29)+ €, cy;> 0
and y! = AglAn! = (-2,-1,-3,-5)7 ; it follows that for 1/29 <6 < 4/11 the
supremum is obtained along y! and z(8) = (1+8)/3 . When 0 = (4/11) + €,
c*y(8) > 0 and x' is not an optimal level vertex. A simplex iteration with
X3 as entering variable must be made. It resulis B'=(2,3,5,6,1}, N'=(4),

- — - -
1100-2 0 1 00 1
1000 I 1 3 001

A= 1 0-10 1|, A%'=|0 3-1 0 2| .
2 00-11 0 4 0-13
2 00 0-1 02 0 01
ot p— . -
x*g =A*p-1b* = (7,15,15,21,10)T,

B(t)={t:(7,15,15,21,10)T+ ¢ (1,1,2,3,"1)'1'2(0,0,0.0,0)’*‘ y={t:tz -7} For
t=-7 we obtain the new vertex x1=(3,0,8,0,1,0) which corresponds to the
basis B={3,5,6,1), N=(2,4},
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1 0 0 -2 1200
00 0 1 01-10
Ap - . Agl- . XB-Ag1b- (8,1,0,3)T
0 -1 0 1 01 0-1{
0 0 -] (010 0]

et = (13),dyT=(L1),cy=-9,dy =4, uyT =(4-7), up= 21,
BT = (5/4,21/4) , B'T(B) = ((5/4) - (5/4)8 , (21/4) - (49/4)8) ,H(®) = (B :621 },
H'(9) = (0:0=4/11 }; in Fact it results B' =(3,5,6,1,2}, N' ={4},

1 0 0-2 1 I 53 0 0 1/3

000 1-t 0 w3 -1 0 2/3
A= |0 -10 1 1}, A%1=10 0 0 -1 1 .

0 0-112 0 23 0 0 173

H‘O 0 0 -1 2_‘ “0 -3 0 0 /3]

g =A%p-1b* = (7,15,15.21,10)T , ¢*y = 4, u¥y = ~11, c*yp(0) =4 - 118 .
For 41158 <1 (c'y(8))/dy > (Cya(8))/d'y, : as

yt = AglAy! = (-1,-2,-3,-1)7 then the supremum is obtained along y!
with z(8) = -1+40 . Finally for 9z1 the vertex x3 is optimal and

z(8) = (-9 + 210 )/4.

The function z(6) is the following :

(4-60)/11 . 8<1/29;

(1+8)/3 . 17298 < 4/11;
z(8) = |

~1+48 . 4/11s8 <1;

(-9+«218)/4 B=l.
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