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INTRODUCTION

There are various decision problems that give rise to a 1li-

near program with an additional quadratic constraint.

Such a problem arises for instance when in a linear model the
optimization is further restricted by a nonlinear constraint
which can be approximated sufficiently well by a quadratic
constraint. On the other hand, such an additional gquadratic
constraint may arise in a natural way. This is the casge in
portfolio theory when the expected return is maximized subject
to a bounded varlance cof the return.

Similarly in stochastle linear programming certain determini-
stic equivalents give rise to a linear program with an addi-
tlonal quadratic constraint that involves the variance of cceffl-
clents [3].

Morecover, it was shown in [7,8] when defining the dual of a qua-
dratle-linear fractlional program that such a dual reduces to a
linear programs with one guadratic constraint.

In fact 1t was the analysis of fractional programs and their duals
which motivated the resezrch In this paper.

We point out that the problem under consideraticn can alsc be
viewed as the reciprocal of a quadratic program [4] in which the
guadratic constraint has changed place with the objective funec-
tion.

Our solution procedure iz parametric in nature. The guadratic
constraint Q(x) =0 is relaxed to Q(x)=s E where £z 0 1s a para-
meter.. There are other methods for our problem that are parame-—
tric as weil, however the parameter introduced in such algorithms

is used differently, see for example [5,9].



1. SOME THECRETICAIL RESULTS

Consider the problem
T A n
P: max ¢ X, xe R ={xe R : Axs b Q(x)=0, xz 0}

where ceIRn, be Iﬁl, A is a real mxn matrix and Q(x) is a
strictly convex quadratic function, that is @{x) & 1/2 xTox +

+ qTx+qO, where @ is a symmetric positive definite matrix of or-
der n.

The aim of the paper is to establish a sequentlal method for
solving problem P in a finite number of iterations.

For this purpose we state, first of all, some theoretical re-
sults.

Consgider the related linear programs

A
PL: max ¢ x, XEJRL 2{xeR : Ax b, x2z 0} ,

We will asgsume that degeneracy does not occur.

We introduce the following ncotations:

S° the set of optimal scolutions of problem P,

SE the set of optimal sclutiong of the linear problem PL,

A n

K {xeR : Q(x)=s 0},

il

K(¢) S {xeR : Q(x)st} , £ e R

The following thecorem holds:

THEOREM 1.1. 1) We have R = § or $° # f.



ii) If Sir K # @, then SEer = 82,

iii) Assume R # @. If SE = § or Sier = @, then problem P has a

unique optimal solution X which is binding at the quadratic con-

straint, i.e. Q(X) = O,

Proof, 1) It is sufficient to note that R is a compact set since

Q(x) 1is strictly convex.

ii) Sinece R ¢ RL, we have
(1.1) max ¢ x £ max c'x
xeR X € RL

Any Xe SEm KcR satisfles (1.1) as an equality so that x°e 3°,
and thus SEﬁ Kec 3°. On the other hand, X< 3° implies, necessarily,

X e SEer, otherwise (1.1) holds as a stricet inequality and this

is absurd.
(1)

ii1) If T 8°na int X ,» then X e 8° which contradicts our assum-

ption., Hence 8° & fr K. Suppose now that x(l), x(g)e

(1) (2),

18 convex, the segment [x s

X = ax + (1-a

S°. 8ince R
c 8°n K so that there exists

» a€{(0,1), such that £¢ 8°nint X. However
this 1s not pessible since S°c fr K.

This completes the proof.

Consider now the parametric problem:

P(g) max e’ x
€ RLnK(E)

it
(1) Let A be a subset of R ; int A and fr A denote the interior and the
frontier of A, respectively.



and let T be an optimal solution of P(&) with Q(X) =& . The

Karugsh-Kuhn-Tucker conditions applied at X establish the exi-

mn .
stence of multipliersxe B, uwe R _, with (r,u) # 0 such

that:

ni-+n (1) _
(1.2a) c = 3 A, a + pv@R(x)

i=1 +
(1.2b) A.((agl))'ri -b.)y =0, i=1,...,m

i i _
(1.2¢) Am+j ij =0, j=l,...,n
(1.24) w(Q(X)=g) =0
(1.2e) AR sb , (X)s¢ , 20
. ny

where a(l), i=1l,...,m and a(m J), j=1,...,n, denote the transpo-

se of the i-th row of A and the transpose of the J-th row of ma-

Erix - In’ regpectively.
The fellowing theorem holds:

THEOREM 1.2, Let X be an optimal solution of P(g), with Q(T) =¢.

Then there exist A€ ZBT+H R

p>0 satisfying (1.1), 1f conditions

i) or ii) heold:

S Eri 0 .
i) X¢SL 5



Proof. Suppose that X ESE. If ccnditions (1.2) are true for

u = 0, then X satisfieg the Xarush-XKuhn-Tucker conditions for
the linear prcblem PL’ so that Xe SE, but this contradicts our
assumption. On the other hand, if X 1s the unique solution of

PL’ then X 18 necessarlly a vertex of RL and we have

(1,3) c= 3 % oa9 50 wied
jeg 3

where J 1is the set of indices assceciated with the active con-

straints at X.

With respect to the binding constraints at T, (1l.2a) reduces to:

(1)

(1.4) ¢ = % A a + wva(x)
Jed J
Let us note that (1.4) 1s true for A, = X. and u= 03 we will

_ J
show that there exist Aj; 0, Jed and n>0 satisfying (1.4).

(3)

Since a s J€&dJ are a basis of Ifl, fthen there exist aj’ jed,
such that: vQ(X) = Z a. a(J). Thus we have:
jed J
(1.5a) c = I (A_+u,a,)a(3)
Jed J dd
(1.5b) A, = AL+ ua. 1 e J
J 3 UJ s dJ

A .
Set J1 ={jed : aj; 0} s the following cases arise:

I) I = @3 then (1.4) is satisfied for any u>0 and ijzxj—uaj,
Jed.



11) Jl Z f; set

(1.6) 7= min A./a, & X /o
jed Kk
J 1 3
A‘ — ~
Then (1.4) 1s satisfied for p = — and A.=A=-pa., Jed.
&k J J J

This completes the proof.

REMARK 1.1 Takling into account Theorem 1.2, condition (1.2a)

can be egulvalently rewritten in the form

1 . 3 _— m+n (1) N
(1.7) A o= vQ(X) 151 A& > A

2. BASIS THEORETICAL RESULTS FOR THE ALGORITHM

Consider the linear prcblem PL. Suppose that ¥ 1s the unique
solution of P, (the other cases will be discussed in Section 5).
If X satisfies the gquadratic constraint, then X is optimal for
problem P, Otherwise we conslider the parametric problem P(f),
with Ee[O,E], Ex Q{X). The idea of the sequential method that
we are golng o desecribe is to generate a finlte sequence of
ick) where E(k) is an optimal solution for P(Ek) (see flg. 1
pag.”?6). An optimal solution corresponding to gk = 0 is then
an optimal solution of P.

With this aim in mind,(;?nsider problem P(gk), Eke [0,£] and

its optimal solution X



Let Bx = b be the system of linear equatlons corresponding to
the set of the constraints binding at E(k), foe. BEW b,
where B i1s a k xn real matrix of rank k. We suppose k<n; the
case k = n will be analyzed in Remark 3.1.

From the Karush-Kuhn-Tucker conditilons applied to problem P(Ek),

taking into account Thecrem 1.2 and Remark 1,1, we have:

(2.1a) Qx + BT a= e = a
(2.1b) Bx = b
that is
X c -q
. = + =
(2.2) H(x) %(o) (b)
@ BT
where H =
B ¢

Since B has full rank, the matrix H 1s non singular so that,

from {(2.2), we obtalin

<

(2.3a) X=x U+
(2.3b) =ia U+ ¥
where u 2 (1:1) - gt (c) and v 2 (Y)= gt ('9) .
u 0 v b
Consider now the quadratic constraint in the parametric form:

(2.4) 1/2 x"Qx + q"x + a, =& . Eel0,g 1



and substitute (2.3a) in (2.4); we obtain the fcllowing second

order equation:

2 -
(2.5) 1/2 oA * BA ty -& = 0

where

(2.6) = 07Qh 5 6= UTAV+qTds y=1/297QF+q T+ .

Set(z)

/2 '
(2.6) A (g) = -3+ VR —euy-+2a5

QO (44

We are Interested in decreasing the value of £, starting from

B s
k
of problem P(g). To this end, let us note that AO(E) is an in-

in such a way that X(E)zho(g)ﬁ+§ is the optimal solution

. . . . ;7 A
creasing function so that‘ E<E, implies AO(E) <a = AO(EK).
Then A, plays the role of a parameter in (2,3) and we can study
the stabllity of the sclution of problem P(Ek) with respect to

AO. In other words we want to find the values of Aoe [O’io] which

(2) Let us note that equation (2.5) must have, for E = Ek a positive root
since problem P(£ ) has optimal solutions; on the other hand, (2.1la)
collapses to the Karush-~Kuhn-Tucker conditions applied to problem
min ch; xe {xe R, Ex;g, Q(x) = Ek} so that (2.5) has also a negati-
ve root.
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not only guarantee the nonnegativity of X(lo) and A(AO) in (2.3),

but also the feasibility of x(ho) with respect to the constraints
BEx <b which are nonactive at X(K)

a B~ w Amom
Set: 4 = Bus ¥ = b-BV;

J ={J:V, «0}s; T ={J:7,< 0} T . ={i:0.<0
1=t VJ <0} 5 £ 3 } 3 {J VJ }

The following theorem holds:

THEOREM 2.1 The vector X(lo) ié the optimal solution for the

problem P(&)}, £=Q(X(AO)), for any AOE [Az;ioj ,» Where

* _ .
(2.7a) AO = max E%I,AOQ,ACS} H
V.
max - =% , 1if J1 £
/iea Yy
(2.7b) A .= 1

7
max - :i it J. # 0
. u 2
/JeJ2 J
2. =
(2.7¢c) Ao,y \
0 otherwise ;
7.
max - Ti if J_ #£ 8
. ol 3
//JGJB J
(2.7d) A =

03
\\\O otherwise
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‘Proof. From the Karush-Kuhn-Tucker conditions applied to pro-
blem P(Ek)’ taking into account of (2.3), X(lo) is optimal for
P(E), E:Q(X(ho)), ir 1), ii), 1ii) hold:

1 = 0+v = 03 11 = U+v 2z 0y 1id B A =
) x(lo) Aou Tz 03 1i) A(lo) Aou T2z0; 1ii) B{x( O))

Now we will show that 1) holds for any AOEIZhOl,iO]. If ¥.20

A L

and U,z 0, then x,(A )2 0 for any » 2 0. If ¥,> 0 and U, < 0,
J J 0 o J . J

' - (k) | .
then Xj(lo)z 0 is true for any Aog - 3 since x( ) is opti-

mal for P(Ek)’ then 1) is satisfiled for AO = Xo’ so that

2

- and thus X_(%Q z ( for any Aog io' Consider now the

J J
case ¥, 203 since x(a )
J 0

A

IA

G

et

v

0, necessarily we have ﬁj >0, so that

t

_ J
X, AA )z0 for any » z- =~ ,
J( o’ 0 JoA G,
As a consequence 1) i1s satisfied for any AOeIZA01,iO].

In a similar way we can prove that 1i) and iii) held for any
AOE [AOZ,AO] and for any Aoe [AOB,AO], respectively.
Obviously, all the conditions 1), ii) and iii) are satisfiled for

5 -
any )Lo ¢ [ko, XO].

This completes the proof.

We have Just seen that starting from the optimal solution E(k)

k
of problem P(£ ), we have found a new optimal solution i(k+l):

_ % _ _(k‘f“l)
-X(AO) of problem P(g ), =Q(% ). If Ek+1> 0, we must

k+1 ic:k+1
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t
stlll decrease the value of the parameter £ in order to reach
the value zero. This will be analyzed in the next section.

Some special cases wlll be studied in the following theorem.

THEOREM 2.2. Tet xi be the value defined by (2.7a).

i) If hgto and Q(x(0))> 0, then the feasible region of problem

P is empty.
ii) If Q(X(li)) = 0 then x(li) is an optimal solution of problem P.

11i) If Q(x(ki))< 0, thereux(io) is the optimal solution of pro-

blem P, where XO is the positive root of the equation Q(X(AO)):O.

Proof. 1) From the Karush-Kuhn-Tucker conditions {1.2) and taking
into account of (1.7), Az = 0 implies that x(0) is the optimal
sclutlion of the problenm

min Q{x) , X e RL

Since Q(x(0)) > 0, the feasible region of the problem P is empty.
ii) Obvious.

iii) Since Q(x(io))> 0, the optimal solution of problem P is
binding at the quadratic constraint (see Theorem 1.1 1iii)); on
the other hand Q(X(Az))< ¢ implies the existence of 106‘[l§,ioj
such that Q(X(KO)) = 0, then io 1s necessarily the positive root
of the equation Q(x(lo)) = 0,

This completes the proof.
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3. ADDING AND DELETING A CONSTRAINT

i(k+1)

Consider again the optimal sclutlon X(lz) = of the pro-

blem P(g ), & . = gz <"

ﬁ(kJrl)

K1 41 } and suppose tha Ek+1> 0.3ince
is not optimal for P, we must generate a new optimal sc-

lution of P(£), corresponding to a value of & lower than €k+l'
Let us note that, for AO = A:, one of the componentsg of the

vectors X(AO), A(AO), éx(lo)ug becomes zero, so that the set

of the actlve constraints changes with respect to the parame-

ter £. More precisely, if A =4 or A% =2 s an active con-
o} o1 0 o2

straint must be deleted, while if A; = Aog one new constraint

must be added to the set of active constraints. Thus we are

interested to update system (2.3) in order to find the new value

of Ag and repeat the procedure.

ADDING A CONSTRAINT

Suppose that &' x =B becomes an active constraint, then system

(2.1) can be updated in the following way:

Qx + BYA +ar = Aoc - q
(3.1) Bx =D
o x = B

where A is the multiplier assoclated with o'x =8 .

System (3.1) can be rewritten in the following way:
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where H' = | —~——qeo—w , h7 = (a",0)

It 1es easy to show that the inverse of H' can be obtained from

H"l by the following formula:

- - -1
I e S L6 -
1 hTH 1 i hTE L
TS DING: 1 Rl S — dmmm oo
|
R .
 nTr S e

By means of the new inverse, it is easily possible to update

(2.3).

DELETING A CONSTRAINT

Suppose that the constraint o'z =g must be deleted from the
set of the active ones; we can assume, wilithout loss of genera-
1lity, that the matrix and the right-hand side in (2.1b) are of
the form:

~

B b
B = , b =
a’ B
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80 that system (2.1) reduces to

(3.42) Qx + BTX = !
(3.4p) Bx = b
that is

]

x c ~q Jle BT
H'(~ = AO( + . J > where H' =1
A C b B 0

It 1s easy to show that the inverse of H' can be obtained from

cC 14
n——ﬁ——- by the following formula:
a1 a

g~ 4

(3.5) (B = o - % (a-d47)

REMARK 3.1. When, in system {(2.1), B 1is a square matrix of

order n, (2.3) reduces to

(3.6a) x = %
(3.6b) A= ;koﬁ + 7
where ¥ = 5“15; 0 = (E'T)“lc; 7T = - (E'T)—lq - (ﬁQ_lﬁ T)—lE s

so that, starting from the optimal solution of the linear pro-

- ==1=
blem PL X =B b, we must only choose, by means of (2.7¢), the
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constraint that must be deleted. Let us note that when in

(2.7¢)

since,

on = 0 the feasible reglon of problem P 1s empty,

from (1.5}, ¥ is the opbtimal solution of the problem

min {Q{(x)}: x=< RL}

. THE

ALGORITHM

The theoretical results, established in the previous sections,

allow us to suggest the fcllowing algorithm to sclve problem

P, when the linear problenm PL has a unigque solution.

STEP.D

STEP. 1

STEP. 2

STEP, 3

(Not iterative). Solve problem PL and let X be the uni-

que solution of PL' If Q(X)= 0, STOP: X is the optimal
=(k)
X

solution of P; otherwlise set T = and go to step 1.

Let B (B) be the matrix associated with the active (non

—{(k
active) constraints at X( ). Calculate A ,i , X and
O1 02 O3
%

A- If Ai = 0 go to step 7; otherwise xiktl) = X(Ag)

becomes the current sclution; go to step 2.

_{(k+1)

kt+1
( )) STOP: X is the opitimal solution

If Q(XF

=

0,
o (k+1) i
of P. If Q(X ) <0, then go to step 6; otherwise go

to step 3.

If A: # Aol g0 to step 4; otherwise a nonnegativity



STEP. 4

STEP.5B

STEP. 6

STEP, 7
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constraint 1s deleted (see procedure "deleting a con-

straint"); set k = k+1 and go to step 1.

If Ai = A, go to step 53 otherwise She constraint
corresponding to the multiplier which becomes zero is
deleted (sece procedure "deleting a constraint™); set

k = k+1 and go to step 1.

A new constraint is added (see procedure "adding a con-

straint"); set k = k+1 and go to step 1.

Calculate io and X(XO), STOP: x(ﬁb) is the optimal solu-

tion of P.

I Q(x{0))> 0, STOP: the feasible region of P is empty.
If @(x(0)) = 0, STOP: x(0) is the optimal solution of

P; otherwise go to step 6.

5. SPECIAL CASES

Let us note that the sequential method which we have described

in section 4 is based on the rollowing assumptions:

1] Problem,PL has an optimal solution T;

2] The Lagrange multiplier assoclated with the guadratic con-

straint in problem P(t), ¢ = Q(X), 1s strictly positive.
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Thus in order to establish a sequential method for solving
problem P in the general case, we must analyse what happens
when 1] or 21 do not hold.

When the objective, funetion of the linear problem PL is not

bounded from above, we solve first the problem:

(5.1) max c¥x 2

=c'x
Q(x)s0
and then the problem
v, A T
(5.2) max ¢ x = ¢ x¥

T
¢c x sc x°, xeR

This allows us to find a feasible level £¥ = Q(x*) of the qua-
dratic function, in such a way that we can apply the sequential
method, described in section 4, starting from the problem P(e*).
When the linear problem PL has alternate optimal soluticns, 1%
can happen that the only Lagrange multiplier v, satisfying
(1.22), is zero, so that we cannot start with our procedure.
In this case the ides 1is %o perturbate the objective Ffunction
in such a way that the new linear problem has a unique optimal
sclution and to apply the sequential method of section & until
we can restore the original objective function.

More precisely, let ¥ bhe an optimal solution (not unique) of

PL and consider the problem

P : max (c+ec')x
£
X&R
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(3)

where c' 1s such that the linear problem

(5.3) max (c+ect) x

XERL

has the unique solution %; (2.3) becomes

(5.43) X = Ao(ﬁ+sﬁ) + 3%
(5.4b) A= xo(a+sE) + 7
ﬁ c!
where h é _ = H_l
h 0

Let us note that (2.7) ecannot be applied since the coefficients
of % depend on e, for this reason we consider the following

set of indeceg:

Iy =43: u,=0, h, >0, ?rj< C}s J! =1{j: ©,=0, h,> cC, 7, <0}

Bh.

il

where ﬁ

Theorem 2.1 can be reformulated in the following way:

n : ,
(3) A suvitable choise for c¢' may be ¢' = 3 a(l), where a(l) denotes the
i=1
gradient of the i~th linear constraint binding at %.
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THEQREM 5.1. The vector X(Ab) is the optimal solution for the

t
:

problem P_(£), £= &(x(A_)), for any Aoeziéé,iokq', where

= t t ]
(5.5a) X max{ A , loz’ Aog}
7,
max - =% , 1f J! # ¢
' h, 1
Jedq J
¥ =
(5.5b) l01‘ \\\
0 otherwlse
V.
max - = , 1f JY # ¢
h, 2
Jedy

(5.5¢) A=

G otherwise

0.
_d '
lmaX ol s, 1f Jé 7z 7
J e Jg J
' = :
(5.54) 103 \\\\
0 otherwise .

Proof. It is sufficlent fo note, taking into account of the
v,
arbitrarity of ¢, that mex — —d 18 reached when ﬁj = 0.
JjelJ i, +eh,
O
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COROLLARY 5.1. If Xo = 0, then x(xo) is the optimal solution
for problem P(g), &= Q(x(lo)), for any kOeElz,E)].

Proof. The statement folliows immediately from Theorem 5.1 and

Theorem 2. 1.

REMARK .1. If Xo >0, we must add or delete a constraint accord-
ing to io = xga or not (see Section 3). As a consequence of
Corcllary 5.1, 1f % = 0, then we can set e= 0 and rezstore

problem P(E).

6. NUMERICAL EXAMPLES

EXAMPLE 6.1, (PL has a unigque solution).

Consider the problenm



2P

hag the unique solution ¥ = (8,7), which is not optimal for P
sinece Q{X) = 88> Q0.

The constraints which are active at ¥ are x_< 8, x.2 7, so

1 2
that we have
(2 01 o] (0 ol o]
| I
| 1
0 240 1 1 o olo 1
R R e .
1 0}0 0 1T 0Fk2 0
\ I
| |
C 1})0 0] 0 1]0 -2 ]
Hence (2.3} turns out to he:
X, = 8
Xy = I
A1:AO—16
A2 = 2AO - 14
Since x(ho) = (8,7) is indipendent from AO, we have Jl = J3 =

80 that'hi :\)02: max{ 16, %;]—= 163 as a consequence the con-

atralnt xlg 8 assoclated with the multiplier Al must be deleted.
We apply the procedure "deleting a constraint™ and find the

new inverse

1/2 0 0
r_l_
(H") = 0 0 1 A {(2.3) becomes
0 1 =2
L i
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X, = 1/2AO
X2 = 7
7\2=2AO-11L

With respect to the nonnegative constralnts we have:

-1 0
) N -3 -1/2 -3
B = , b = ;0= A
0 -1 —2 0 5
So that A =03 2 =7, » =6 and 2¥ = a2 = 7 implies
(o3} Q2 03 G 02

(1)

that the current sclution is X = (7/2,7). Since

Q(i(l)) = liS >0, the value of lo must be decreaged, the con-
straint x., £ 7 associated with the multiplier X_. must be deleted.

2 2

The new 1lnverse is

o, w2 o
(H'") = and (2.3) becomesg:
0 1/2
Xl = 1/2 lo
X2:: %

Regarding the nonactive constraints we have
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10 8 1/2 8
B=|[-1 0 ;3 b o=]-3 ;3 4= |-1/2 ;T =1-31:
0 -1 =2 1 -2
sc that »a = 03 A =03 A =6 and X =2 = 6 gives the
o1 02 03 o 03
-(2) _ . =(2), _
solution X = (3,6). Since Q(% ) = 20> 0, the value of A

must be decreased; the constraint —Xlé -3 must he added. We

apply the prccedure "adding a constraint" and we find the new

inverse:
0 0 -1
(H')—l = 0 1/2 O and {(2.3) becomes:
-1 0 -2
Xl = 3
= A
X2 0
A= X 4+
1 &} 6

E=|0 -1 b= |-z st o= -1 ;5 9= -2
so that A =20, » =0 ; - ® _ s .
o1 . 5 kos 2 and AO Aos 2 implies

that the current solution is E(B) = (3,2). Since Q(i(3)):—12<0,
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then, for Theorem 2.2 iil), we calculate the positive root of

Q(x(ko)) = Ai - 16 = 0, so that iﬁu) = (3,4) is the optimal

solution of problem P.
The follewing pilcture outlines the finite sequence of optimal

(4)

level solution generated in solving the problem by means of

the sequential method

A (1) S
X =) -~

2 X (7/2:7)< . ~ §=(8,7)

§(2)=(3,6) / _ ~-
v
=M _(3,4) |
3(3,2)
“k-.
e - - c
\\ . Xl’
= fig. 1
Optimal trajectory §-+i(1)+-i(2)+ E(3)+ X(M).

—(k
{4) Let X( ) be the optimal solution of problem P(£, ); we refer to i(k)
as as optimal level solution. k
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BXAMPLE 6.2. (The feaslble reglon of P is empty).

Congider the prcoblem:

max (xl + 2x2)
P 3§Xl§8,2§x2§8
2 2
Alx) = Xl + X2 - 120

Since the linear problem,PL agsociated with P is the same as

the one of example 6.1 and the quadratic function differs from
the previous one only in a consgtant, the same calculation of
example 6.2 are valld until we reach the optimal level sclu-
tion §(3) = {(3,2).

At 2(3), we have Q(i(3>

)> 0. Since Ai = A, » the constraint

—xgé -2 must be added. We apply the procedure "adding a con-

straint"and we [ind the new inverse:

r0 0 =1 0
-1 0 0 0o =1

(H') = and (2,3) becomes

-1 o =2 0

Xl = 3
x2 = 2
J\l:-xo+6
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With respect to the nonactlve constralint we have

Q)0

(3)

so that A = A = A = 0. Since h§=0and Q(x°"’) >0, the

1 0z 03
feasible region of P is empty.

EXAMPLE 6.3. (P, has alternate optimal solutions).

L
Consider the problen

BN
‘QKX)%Xl—X2_831+12'§O

In this case the linear problem

has alternate optimal solutions, one of which is T = (0,43
taking into account that the ccnstraints binding at X are

~x, % 0, ng L, we consider the problem



Y-

max (=-ex, + (1+5)X2)

1

P nglglh ngggh

2
+ - + 12 s
X X, 8x1 12=0

Now the linear problem assccilated with P€ (¢ >0 arbitrarily
chosen) has the unique soclution ¥ = (0,4) so that we can
apply the algorithm of section 4. Since Q(X) = 28 >0, ¥ is not
optimal for PE.

The constraints which are active at ¥ are ~x_. 20, x2§ b so

1
that we have:

[ 05-1 0 [0 01 -1 0
| |
- 1
H = O"""—""E--{-_E)"___} a,l’ld H l = -—O————O—-d——o—————
-1 o} o o -1 0 i—g 0
§ |
[ c 1} 0 0 c 11 0 -2 |

Xl =0
X, = 4
J\1=a}\0—8
A, = (1+e)r -8
2 0
Since x(ho) = (0,4) is independent of AO, we have Ji = Jé =g,
30 that ko = Aéz = §; as a conseguence the constraint —xlé 0

must be deleted. We apply the procedure "deleting a constraint®
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and find the new inverse:

1/2 0 0
(H')-l 0 0 1 ;s (B.U4) becomes:
0 1 =2
X, = =1/2ex + 4
1 0
X, = 4
Ay = (1+E)xo - 8

With respect to thenonactive congtraints, we have

1 0 it -1/2 0 0
B = ; = (.:) ; h = s Vo= 5 U =(r
0 -1 0] 0 4 0

so that Ji = J! = J! = ¢; according to Remark 5.1, we can set

2 3

e = 0 and restore problem P. We have:

(w2

and with respect to the nonactive constraints we find J. = @.

3
. 1
Since A; = A = 8, X( ) = (4,4) is the current solution,with

02
(1)

) = 12 >03 the constraint x_= 4 must be deleted; the new

QX 5 S
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inverse is

/2 7 a
(H'}-l = and {(2.3) becomes
0 1/2
Xl = 4
x2 = 1/2Ab .

With respect to the non aective constraints we have

R N 0 0 4
B = 1 0 3 b =14 5 4 = 0 3 v =10 s
- 0
0 -1 0 1/2
80 that A = A = = A% = 0. The current solution is
01 02 03 0

=20 2 (4,0) ana a(z‘?) - -y
we calculate the posltive root of Q(x(lo)) = l/ﬂli - 4 =

g0 that i(g) = (4,2) 1s the optimal solution of P.

EXAMPLE 6.4 (PL has no optimal solution).

Consider the problemn

Qﬁx)?x

2.2
I+x2+<‘3xl+2_x2f-8 <0

<0, then, for Theorem 2.2 1iii),
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The corresponding linear problem

has not optimal solution, so that we solve first The problem

whose optimal solution is x° = (-4,4) and then the problem:

max X2
< < =
0 _xl__H, X, 2 0
x° 4+ x° + 8x. + 2x. - 850
1 1 2
<
X2==4
The linear problem max {x2: 0 §x2zgh, 0 =x, =4} has alternate

optimal solutions, cne of which is X = (0,4); taking into
account that the constraints binding at X are —%q £0, X, 8 4,
we conslder the problem

max ~ex. + (l+e)x

1 2
L £X S b, 0=sx. g4

(]
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ﬂThe linear problem assocliated with PE (e >0 arbitrarily
chosen) has the unigue soluticn X = (0,4), so we can apply
the algorithm of section 4. Since Q(X) = 16 >0, ¥ is not

optimal for Pe . We have

2 0o -1 0 0 0 =1 0]
H = 0 2 0 1 and H_l = 0 0 0 1 3 hence
-1 0 0 0 -1 c =2 )
0 1 0 0 0 1 ¢ =2
(5.4) becomes:
Xl = 0
X, = i
= +
?\1 e}\o 8
kz = (1+€)AO - 10
Since X(AO) = (0,4) is independent of ho, we find Ji = Jé =0
and io = loz = 103 as a consequence the constraint X2§ 4 must
be deleted.
The new inverse is
0 0 -1
-1
(H") =| 0 1/2 0 and (5.4) becomes



- 33 -

Xl = 0

X2 = (1/2 + s/Z)lO -1
= +

ll EAO 8

With respect to the non active constraints, we have

1 0
~ ~ f14 Lo 0 LA L 0 . s _{0O
ol ) ) s () )

30 that J} = J} = Jé = @3 according to Remark 5.1, we can

set e = 0 and restore the problem. We have

Xl =0
X, = 1/2;\O -1
Al =8

g0 that AO1 =2, J2 = ¢ and, with respect to the nonactive

constraint we findg J3 = f. The current solution is E(l):(0,0)

1
with Q(i( )) = ~8< 0. We calculate the positive root of the
equation Q(x(ho)) = (1/2AO~-1)2 + 2(1/230-1) - 8 = 0, that 1s

(o]

A = 3/2 and we find the optimal solution of P, namely §(2)=(O,2).
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