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Abstract

A finite algorithm for the strictly convex quadratic programming problem
is proposed. The algorithm, which is of the binding constraints type, is similar to
that proposed by Houthakker {4], but is more general and uses different
optimality conditions.
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1. Introduction

In this paper we consider the strictly convex quadratic
programming problem :

min z=cTx + ¢Tx + 1/2 37Qx
(1.1)
x€eS={xeR0: Ax>b )

where Q is a symmetric positive definite nxn matrix, cc'eR2 beR™, A is
a mxn matrix. Clearly problem (i.I) is convex and thus any local
minimum point is also global.

Recently [3,5] some non linear programs have been solved
efficiently by means of parametric algorithms. The aim of this paper is
to show that via the parametric approach it is possible to devise a new
finite algorithm for the strictly convex quadratic programming problem.
Many parametric algorithms for the strictly convex quadratic
programming problem have been proposed in the literature [6). The
algorithm proposed by Cambini in [2] solves the strictly convex
quadratic programming problem by generating a finite sequence of
dual solutions. The unconstrained minimum of the objective function is
used as starting solution. In the algorithm, at each step, a different
constraint is parameterized. Houthakker in [4] introduces the parameter
in the right hand side of a constraint of the form Z, Xj < d, deR. When

the constraint Z, %j < d does not appear in the set of the original



constraints a variable transformation must be made in order to obtain
such a constraint. The algorithm of Houthakker is not a general
algorithm, in fact it requires that the point =0 belong to the feasible
region. In this paper a parametiric algorithm, similar to that of
Houthakker, is proposed. The linear form of the objective function is
parameterized as following ¢Tx = §, &€R, and added to the constraints.
Optimality conditions related to the parameter § are studied. The
optimality conditions differ from those used by the algorithm of
Houthakker. The proposed algorithm is of the binding consiraints type
and can use any vertex of the feasible region as a starting point; the
optimal solution is obtained in a finite number of iterations.

2. Optimality conditions

In this section we give some optimality conditions for problem
(1.1). If we add the constraint ¢Tx =& , &€R to problem (1.1) the
following problem is obtained : ' ‘

z(%) = &+ min 1/2 x7Qx + ¢'Tx
P(t): xe$
clx =¢

which is equivalent 10 the problem ;

min 1/2 x7Qx + ¢'Tx
PE): xe8
cTx =§,

Clearly problem (1.1) is equivalent to problem P(t), when £ is the
level corresponding to the optimal sofution of (1.1). Our aim is to
describe a procedure which, starting from a feasible level &, (ie.
Sn{xeRa : cTx=§, }=¢), allows us to verify if &, is the optimal level and, if
not, to find a new level ¢’ such that z(t') < z(&,). Let 2o be the optimal
solution of problem P(§;) and let Mz-h be the equations of the

constraints binding at xp ; we can suppose, without loss of generality,
that M has fuil rank.

Let
(2.1a) x(8) =xp+0a;
(2.1b) pe) = p' <oy,
(2.1¢) po(0) = po+0P;

be the solution of the linear system :



(2.2a) Qx -cpg-Mlp =-¢
(2.2b) clx = £4+0
(2.2¢) Mx =h.

Set H(B) =({0:x(8)eS In(0:p(8) 20 ). As (2.2) are the Kuhn-
Tucker conditions of the parametric problem P'(k)+6) then it follows
that x(0), 8cH(8), is the optimal solution of P'(§;+8). Clearly p(6) and
11o(8) are, respectively, the vectors of Lagrange multipliers associated to
the constraints (2.2b), (2.2¢). Obviously (xq.p',p'p) is the solution of
(2.2) for 6=0 ; hence ', p'y are the Lagrange multipliers associated to
the optimal solution x4 of P'(%g).

Set zp=z(¥g) = &g+ 172 xyTQxg + ¢Txg, Z(8)- z(§y+0)=Ep+ 0 +
1/2 x(6)TQx(0) + c¢'Tx(8). The following lemma gives an explicit form for
the function z(0), 6 H(9).

Lemma 2.1

Suppose H(8)={0] ; then it is :
a) cTa= 1, Ma =0, aTQu=p,aTQxy=p'g - olc’;
b) z(8)= zg+ (pg+1)0+1/2 02,

Proof : a} follows directly by substituting (2.1} in (2.2) : it is
2(8)=1/2(x¢+00)TQ(xg+Bx} +&g + 8 + ¢Txy + 6 ¢Ta and taking into account
of a) we obtain b) ; in fact it results :
2(0)= 1/2 2TQxg + aTQxy 8 + 1/2aTQm B2 ¢ {5+ B+ cTxy + 6 T ;
2(0)= zg-&p-cTxg+ R0 -00aTc+ 172802+ to+0+cTxp+0cT;
2(8)= zog+(p'g+l)0+1/2p02

The following lemma holds.

Lemma 2.2

If po>-11( pp<-1) then the function z(8) is increasing
(decreasing) at 8=0,

Proof : Itis 2(@) = p'g+ 1+ B0 . Hence we have z(0) = p'g+ 1 >0 (< 0 )
according to p'g>-1 (p'g<-1).

In order to state some sufficient optimality conditions for problem
(1.1) we set :

U(e) = H(6)n(-c=,0}, if p'g>-1;



U(6) ~ HOMAIO) , if wo<-1;
8" =-(p'g+ 1)/B.

The following theorem holds :
Theorem 2.1

a) If p'g=-1,then g is the optimal solution for problem (1.1);
b) If 9'eU(8), then x(8') is the optimal solution for problem (1.1).

Proof : a) The equality p'y = -1 implies z{0) = 0 ; since z(8) is
convex a) follows. b) It results z{0') = 0 ; since z(0) is convex b) follows.

Let x4 be a vertex of §; in X, at least n constraints of S are binding
as well as the parametric constraint and thus X, is a degenerate basic
solution. Clearly, the different bases containing the parametric
constraint are n if X5is a non degenerate vertex of S ; more than n if X,
is a degeneraie vertex of $. To point out the dependence of z(8), p(8), ...
on the basis B, we write zg(0), pg(8), ... A basis B is said feasible if p'g=0.

The following theorem holds :

Theorem 2.2

a) If there are two different feasible bases By and Bs, such that
opy > -1, popa<-1 or popy<-1, Ropp>-1 then X, is the optimal
solution for problem (1.1} ;

b} If we have Up(8) = (0] for any feasible basis B then x, is the optimal
solution for problem (1.1). '

Proof : a) Since p'ogy> -1, popp<-1 (pogg<-1, popp>-1), from
lemma 2.2, we obtain z(8) = zy in a neighbourhood of 0, on the right
(left ) and on the left ( right ), respectively. Hence x, is a local minimum
point for problem (1.1). From the convexity of problem (1.1} it follows
that x; is also a global minimum point. b) It follows directly from the
definition of Ug(8).

3. An algorithm for problem (1.1)

The results of the previous sections can be used to propose a finite
algorithm for problem (1.1). The algorithm is the following :



Step 0 Determine a vertex x, of S optimal for problem P'(g, =
cTxy). Go to Step 2.

Step 1 If b) of theorem 2.1 is fulfilled, xy+ (~{i'y+ 1)/p Ju is the
optimal solution. Otherwise let 8* be the end point of U(0)
different from zero. Set x*=xy+ 8* a ( x* is an optimal
solution of problem P'(§*=§p + 8*) ) and delete the
constraint i such that p'i(8') = 0 and add the constraint j
such that aTx*> b; and ;Tx* = b; (a;T denote the j-th row of

A). Set x5 - x . £p.=&* and determine o, B, ¥y, 'y, 1"
If 'p=-1then xy is the optimal solution; otherw1se goto

Step 2.

Step 2 If xgis not a vertex of §, go to Step 1 ; otherwise select a
feasible basis of xgand compute the corresponding o, p, ¥,
fo. 1. If p'g=-1 then x, is the optimal solution; otherwise go

to Step 3.

Step 3 If theorem 2.2 holds , 1y is the optimal solution ; otherwise
go to Step 1.

Theorem 3.1

The proposed algorithm, given a starting point, determines the
oplimal solution of problem (1.1) in a finite number of iterations.

Proof : Starting from x4 the algorithm generates x* such that -

i) z(x*)<z(xq); ii) if x* is not an optimal solution, then there exists a
set of binding constraints at x* which differs from the set of binding
consiraints at x,. Clearly conditions i), ii) guarantee the convergence of
the algorithm in a finite number of iterations.

The algorithm requires the capability of determining a veriex
xg€S optimal for the problem :

min 1/2 xTQx + ¢'Tx
PlcTxg): xe$
cfx =cTx,.

Notice that if Sn{x : c¢Tx = cTxg)={xg), clearly x4 is an optimal
solution of P'(cTxy). Such a vertex can be easily obtained by solving the



linear programming problem (3.1) minc™, xS or (3.2) maxcTx,
xe$. In fact if x; solves (3.1) or (3.2) and is the unique optimal solution
then cTx - cTx; is a supporting hyperplane and Sn{x : ¢Tx = cTxg)={xy).
When xq is not the unique optimal solution of (3.1) or (3.2) clearly
Snix : cTx = cTxy}={xy} and in general x, is not the optimal solution of
P'(cTxy). In this case the point Xy can be used as a starting point in this
way.

Y Let c*eRm be a vector such that Sn{x : c*Tx = c*Txgl={xq) ; notice
that such a vector can be easily obtained by a positive linear
combination of the rows corresponding to the binding constiraints at X

Let us consider the problem :

minz = 1/2x7Qx + ¢*Tx +¢'Tx
(3.3)
Ax=b

where ¢"=c+¢ - ¢* Problem (3.3) is exactly problem (1.1). Clearly %,
is an optimal solution for problem :

min 1/2 xTQx + ¢'Tx
(3.4) xe8
c*Ty = ¢c*Tx,

as Sn(x : ¢*Tx = ¢*Txy)=(xy) and then can be used as a starting point for
the algorithm with ¢ = ¢* and ¢’ = ¢". In this way any vertex of S can be
used as a starting point.

4. Computational aspects

In this section we consider some computational aspects related to
the proposed algorithm. In Step 2 a feasible basis of 1p must be
determined. If xg is a non degenerate vertex then M is a non singular
nxn matrix ; if xqis a degenerate vertex then M is a kxn matrix, k>n,

which contains a non singular nxn submatrix.
Set

where M, is a non singular nxn matrix and M, the matrix containing
the remaining rows (if any). Let us consider the system:



Cpg* MyTpy + MpTpy = ¢+ Qxg
(4.1)
Rep220

A feasible basis of xp corresponds to a feasible basic solution of system
(4.1) containing pg as a basic variable, Given a feasible basis a new
feasible basis corresponds 10 a feasible basic solution of system (4.1),
containing jg as a basic variable, different from the current feasible
basic solution, and then can be obtained by a pivot operation. In this
way all the feasible bases can be enumerated by a finite sequence of
pivot operations.

In Step 1 a new binding constraint is added to the Kuhn-Tucker
system or an old binding constraint is deleted from the Kuhn-Tucker
system. After this operation the new values of «, B, .. must be
calculated. Let us consider the Kuhn-Tucker system:

Qr -cyg- MTp =-¢'

(4.2) cx = tu*'*e
Mzx =h

System (4.2) has been solved and then the inverse G-!of the matrix
Q ©-M

¢ 00

M 00

G-=

is known. When a new constraint , say a,Tx = h, , is added the
following Kuhn-Tucker system is obtained:

O -cplg- MTp - apy = - ¢

cTx = Xg+0
(4.3)
Mzx =h

To solve (4,3) the inverse of the matrix:

where a*,T = (a,70,..,0), must be computed. The inverse of G' can be
easily obtained by using G-1: in fact it results:



1 [G -a*p}“l [G’l -1 Gla*pa* TGt G-ta*jax,T
et I DR -

where t=1/a*pTG-la*p. Vice versa when the inverse G-! is known and
the constraint a,Tx - hy is deleted from the Kuhn-Tucker system (4.3),
the Kuhn-Tucker system (4.2) is obtained and then the inverse of the
matrix G must be computed. The matrix G-! can be obtained by doing a
pivot operation on matrix G-1 ; in fact pivoting on the element t of G-
we obtain the matrix

which contains the inverse of G.

5. Numerical example

Let us consider the problem:

31 » ¢
min f(x) = -2x)- x5+ 1/2 (x,, X5)
1 i X9

5- (xeR%: (1) 21y +2x32 3, (2) -x;+xp2 -2, (3) -xp2 -2,
(4) %120, (5) %3:0)

Applying the algorithm to the problem, the following sequence of
steps is obtained:

Step 0. By solving the linear problem min - 2X;- X3 , X€8, we obtain
the vertex xg = (4, 2) which can be used as a starting point of the
algorithm.

Step 2. xo0 is a vertex of S. In %o the constraints (2)£3) and the
parametric constraint -2x;- x5 = -10 + 8 are binding. A feasible basis
associated io 1y is given by the parametric constraint and constraint
{3). With respect 1o this basis it resulis w=(-1/2,0), p=3/4, y=-1/4'4=-7,




r3=1.
Step 3. Theorem 2.2 does not hold.

Step 1. It results U(6)=[0,4], 6'-8. Setting 0*-4 we obtain the new point
1*=(4,2)+4(-1/2,0)-(2,2) and p'g(4)~ -4, p's(4)= 0. Since p's(4)= 0,
constraint (3) is deleted and o, f, p'y corresponding 1o xp=x*=(2,2) must
be calculated. It results a=(-1/3,-1/3), p=2/3, p'g=-4.

Step 2. 3 is not a vertex of 5.

Step 1. It results U(8)=[0,15/4], 8'=9/2. Setting 6*=15/4 we obtain the
new point x*=(2,2)+15/4(-1/3,-1/3)=(3/4,3/4). Constraint (1) is now
binding and then must be added. With respect to the new basis it
results Xg=x*~(3/4,3/4), a=(-1,1), B=2, =1, p'p=-3/2, ', =0.

Step 2. x; is not a vertex of S.

Step 1. It results U(8)=[0,3/4], 9'=1/4. Since 0'=1/4cU(8)=[03/4] then
setting 6*=1/4 we obtain x*=(3/4,3/4)+1/4(-1,1)=(1/2.1) which is the
optimal solution of the problem.

X9 *
22) (4.2)
W rarrsnnssanisnnasarannsssaantansan
0,2) -
C."’.‘
(0,3/2)
(/2,0 S

L (3/4,3/4)

(3/2,0) (2,0

Fig. 1

In Fig.1 the feasible region S of the problem is depicted. The path

followed by the algorithm to obtain the optimal solution is represented
by the dotted lines.
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