Report n.13

On generating the set of all efficient points

of a bicriteria linear fractional problem

Laura MARTEIN

Pisa, 1988 , 3
This research was partially supported by Public Education Ministry.



Introduction

In this paper, we will study the multiobjective mathematical programming problems with two
linear fractional objective functions; problems like these are important and have potentially
broad applications. In fact, linear fractional objective functions occur frequently in
optimization problems involving criteria that are rates or ratios, such as return on investment,
dividend coverage, margin on sales, residential density. Furthermore linear fractional
functions are widely used as performance measures in many management situations such as
production planning and scheduling, educational administration and analysis of financial
enterprises.

For the bicriteria linear fractional problems, the characterization of efficiency and some
global properties, such as connectedness of set E of all efficient points have been
investigated [ 5, 6, 9, 10] and some algorithms for generating E have been proposed when
the feasible region R is a compact set. When R is unbounded, set E is not necessarily
connected; one of the main findings in this paper is to show that E is connected for any
feasible region when, at least, one of the objective functions is linear and to suggest a
sequential method for generating E.

Furthemore the general bicriteria linear fractional problem can be reduced, by means of the
Chames-Cooper trasnsformation, to one having at least one linear objective function; so that
the suggested aforesaid algorithm allows us to generate set E even if it is not necessarily
connected.

2.Some properties of the set of all efficient points.

The properties of set E of all efficient points of a bicriteria linear fractional problem have
been studied by several authors [5, 6, 9, 10] which have pointed out that E is connected
when the feasible region R is a compact set.

The compactness of R is a crucial assumption, since it is easy to show by means of simple
examples that E may be disconnected when R is unbounded. One of the main findings of this
paper is to show that the set of all efficient points is still connected when R is not necessarily
bounded for the class of bicriteria linear fractional problems where one of the objective
functions is linear, With this aim, let us consider the following problem

P : max (fi(x),f(x)),x € R={x€ IRN:Ax<h)

where
CT X+C
S
fx)=a x , f£(x) = ——
T
d x+ dO

and Aisamx nreal matrix and b € IRM _



A point x0€ R is said to be efficient for P if there does not exist a pointx € R such that

fi(x) < £i(x0) (i =1,2) where at least one of these inequalities is strict.
As outlined in [ 5, 10] the set E is related to the set of optimal solution of the scalar problem

Pa supfr(x) ,xER ,fix)2 ¢ , A € IR

In order to characterize set E, consider the set H £ {0t : Py has optimal solutions} and the
parametric problem :

Py,(9) 12(0) d max f(x) , x ER@Z{xER : fi(x) 2 ag- 6,020}
where

ogp=maxH ifH= 0.
Let us note that 61 < 8y implies R (61) € R(63) so that z(0) turns out to be a non -
decreasing function! .

The following theorem holds :

Theorem 2.1 Assume H= @ . Then i) and ii) hold.

i) Set S(8) of the optimal solutions of P%(e) is non-empty forany 6 2 Q.

ii) z(8) is an increasing function in [0, +o° [ or there exists © = O such that z(0) is
increasing in [ 0,0 ]and z(®) =2z(®) v 8 2 §.

Proof.
i) The thesis is obvious if R is a compact set . Let x0 be an optimal solution to the problem

Pan(O) and suppose, ab absurdo, that there exists 8 > 0 such that S@) =9 .
Since P%(e) is a linear fractional problezn, there exists a halfline, whose equation is of the
form x =X +tu,t20, contained in R(B), such that z(0) = lim f5(X + t ).

1= + 00
Since z(8) is a non-decreasing function and S$(6) = @, necessarily we have z(8) > z(0) . It
is easy to verify? that the halfline x =x0 +tu, t 2 0, is contained in R(0) so that

1 The function f:IRE— IR is said non-decreasing (increasing) iff Vxi,xp x1>x2
f(x1) 2 f(x2) . (f(x1) > f(x2)) _

2 Letusnote that { x : X+tu,t20} n R (8) implies Au <0 and f1(n) = 0, otherwise the
inequalities AX + t Au < b, f1(X) +t f1(u) 2 0ig - & are not verified for t = +eo. As a
consequence Ax? +t Au<band f(x0) + tfj (W) = 0g; V20,50 that x=xO+tu €R o,
vV t20.



z(8) = lim foX+tu)= lim f, (x0+¢ w) > z(0)
t—++oo 1= 400

and this contradicts the optimality of xP,

1) If z(0) is non-increasing in [0, +oo, set 8 & max { 6:z(0)1is increasing in (0, 8] } .

Suppose, ab absurdo, that there exist 0; and 6, such that § < 0, < 8, with 2(8) =
=z(01) < z(62). Let X and x, be optimal solutions for Paﬂ(ﬁ') and Py (02), respectively. Since
f2(X) < fo(x3), the restriction of f> on the segment [X, x;] ¢ R(62) is an increasing linear
fractional function, so that fo(x) > f2(8) V x € [X, x5] N R (61) which contradicts the

equality z(B) =z(6,).
This completes the proof.

The following theorem points out the relationship between the optimal solutions of the
parametric scalar problem P%(B) and set E of all efficient points of the bicriteria problem P,

Theorem 2.2 IfH=@ thenE=0 , Otherwise
E= U S(0) .
8e [0,

Proof. If X is an efficient point for problem P , then it is also an optimal solution for the
problem Pau(é), O=ap - fi(x), sothat EC U  §(6).
o€ {08

Now we must show that Eo U S(8) .

8e [0,8]
Let X be an optimal solution for PQD@), 6e [0,3] - It is obvious that % is an efficient point
for P if a) and b) hold :
a) fi (x) = f) (X) implies £ )£ HX),V x €R;
b) f; (x) > £,(X) implies f,(x)< £, x),V x R.
If f1(x) 2 f1(x), necessarily we have f) (x) < fy (X) since x € R( ) and a) is satisfied.
Suppose now that fi(x) > fi(X) and set § = 0o - f1(x);we have 8=oy - fix)>ap - fi(x) =0
so that for ii) of theorem 2.1, £, (x) < sup fox) <z (0) = £ (x) and b) holds.

XxE R(0)
This completes the proof.

The previous results point out that we can generate all efficient points of P if we are able to
answer the following questions:

I) how to find o,



II) how to find S (8) for any 6 € [ 0,87 .

In the next section we will propose a sequential method which allows us to solve problem
IT), and, at the same time, to establish that E is connected. In section 4 we will solve problem

I).
Let us note that since Paﬂ(e) is a linear fractional problem, it is easy to find, in two-

dimensional space, the set of optimal solutions 5(0), 62 0 from a geometrical point of
view. As a consequence we are able to describe the set of all efficient points taking into

accountthat E = U S(@) This will be done in the following example
0 € [0,6]
Example 2.1 . Consider the following bicriteria linear fractional problem

P max (fi(x), f2(x)), x €R ={x=(x,x2): x1- 2x2 < 4, X,x220)

where fi(x) =-x1+x2 , (X)) = (x1- 2)/(x3+ 1)
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fig. 1 b)

Figure 1a) points out that problem Py has not optimal solutions for o> o

where ap= f1(A) = f2(A); figure 1 b) shows the level o, the value 8 and the set of all
efficient points E=r U [ x0, x(1)].

3 - A sequential method.

As we will point out in section 2, the set of all efficient points of problem P is related to the
optima] solutions of the parametric problem P%(G), © 2 0. For this reason, we will give a
sequential method for solving P%(B), BeE [ 0,@'] .

Suppose that o is known. Let us note that Py (0) is a linear fractional problem whose
feasible region is not necessarily bounded, 0 that the modified version of Martos's

algorithm? [3] can be used to solve it. The parametric problem Pq(6) will be solved by

means of a suitable post-optimality analysis performed either by a dual-simplex like
procedure or by the modified version od Martos's algorithm.

With this aim we will rewrite problem Pan(B) in the following standard form

1 See Appendix A.



C"r X+ CO
sup f,(x) =
d x+ d,

P, ®: Ax=b
a'x=0,-6 , x 20

Let X =(Xp = b , XN = 0) be a feasible basic solution for P (é), with corresponding basis
. We partition the vectors c andd as ¢ = (¢p, ¢N) , d = (dB,%fN) and

. LA A A A .:
the matrix A = -1 aaA=[B:N].

Set
-l A A wl A A -
N=c;—c;BllQI , dNﬂd;l;-nglN . coé—-cT)?+co
A Ta .
dy=d X +d, , Y= d,cg-¢dy

and introduce the following notations:

YO =y-6w w=lOEN—pOEN

where Ag and (0 are the last components of the vectors ¢y B-1 and dfg B1 respectively ;

X,@) =%, -0 h
where h is the last column of the matrix B-L,
The parametric analysis is performed by studying the optimality condition ¥ (8) < 0 and the
feasibility condition Xp (8) 2 0. With regard to the optimality condition, let us set Ij= { i
wi< 0 }; if Ii= @, then v (8) €0, for any 0 2 0, otherwise Y (8) <0 V 8 € [0, 6'] where:

(3.1) 0'=min — = fx
iel, W w

L



With regard to the feasibilty condition, let us set In={i:hi>0}; if I= @, then g (9) 20
for any 0 = 0, otherwise Xp(6) 20V 8 € [0, 8"], where

ﬁB‘ 4 ’A‘Bj
(3.2) 6" = min _— = =l
iel, b hj

As a consequence for any 6 € [0, 0], where 6 A min (8", 8"), &p (8) is the optimal
solution of the problem P%(G); when©>6 and 6=0", we can restore the feasibility by

means of dual-simplex like algorithm; when 6 > 9 and 6 = ', we can restore the
optimality by means of the modified version of Martos's algorithm.

Let us note that in this kind of case a pivot operation can always be performed for i) of
theorem 2.1.

Now we will describe a sequential method for solving problem Pau(B), 0£[0, B starting
from an optimal basic solution to Py, .

STEP 0 (not iterative) Solve Py, 0(80 = () and let Xp(0) an optimal basic solution; set i=0
and go to step 1.

STEP 1 Consider Pan(ﬂi + 0), 8 2 0; calculate ¥(8), xp@® (8), 0 and set §i+1 = 01 + 6;
kp(+1) = 4pGX@) is an optimal basic solution for Py, (O],
If z(@1*+1) = z(61), then §=6' STOP; otherwise go to step 2.

STEP2 If 6= 6'< +00 , then XN, enters the basis by means of a simplex-like pivot ope-
ration; set i=i+1 and return to step 1.

If 0=0"< 40 then x5 , must leave the basis and a pivot operation is performed
on a;j such that 1(0) a 4 min Yi (5)/ ajj; seti=1i+1 and return to step 1.
ajj<0
igly
Otherwise Xp(+1)(8) is optimal for Py, (6+1 +6), § =+ ; STOP.

Remark 3.1 Let us note that if a value & > oo is known such that problem Pg has
optimal solutions, we must solve problem Pg(0) V 0 € IR,in order to find the set of
optimal solutions S (6) Vo€ [0, 8]; this can be performed by means of the previous
algorithm applied to the patametric problems Pg(0) 020 and P5(0) 6<0.



4 - On generating the set of all efficient points of problem P.

We have just outlined that set E= U §(8) of all efficient points of problem P can be
oe [0,8)

obtained, if E # @, by starting from the optimal solutions to problem P

The algorithm, given in section 3, generates a finite sequence of parameters 0 = 00<p!

<....<B5= § and, as a consequence, a finite number of connected line segments whose end-

points x(0), x(1),...,x(5) are optimal basic solutions to P%(Gi) i=0,...., s and also efficient

points for P. Taking into account that ¥(8) and xg(6) are lincar functions and S(B)is a
convex set, the following theorem is established:

Theorem 4.1 . The set of all efficent points of problem P is connected.

Theorem 2.2 together with the sequential method, suggested in section 3, points out that, in

order to describe set E, we must solve the following problem :how to find agorto
establish that E =0.
In order to answer the question consider the linear problem:

P, :max fi (x),x € R.

Let us note that if Py, has a unique solution x0 or set St, of the optimal solutions of Py, is
compact, then we obviously have ap = f (x9) . In the general case let X0 be an optimal

basic solution to Pr, , if one exists, or a vertex which is the end-point of aray r C R such
that

sup f1 (x) = +00,
XET
Consider the problem

A
swpf,=L , x€R, fE2fE)
The following cases arise:

a) L is reached as a maximum; in this case we can find o by applying the algorithm to the
problem Pg(8), <0, & = f1(x0) as outlined in remark 3.1.

b) L < +% is not reached as a maximum; in this case in solving the linear fractional

problem Pg, o0 = £1(x0), by means of the modified version of Martos's algorithm, we find a

basic solution and an index t such that ¢ > 0 and the corresponding column has nonpositive
coefficients.

Consider the parametric problem Pg(8), 820, and calculate 6", setting 9" = 400 if Ip=@.
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Let §' > 0 be the positive root of the linear equation Y(8) and set 0'= +00,if such a
positive root does not exist. If 8'=0" =+ ,then H=( so that E=@. If 0"< ', set
9 = 0", consider problem Pg, where & = o - 6", and repeat the above considerations. If
9'< 8", set8=0" and consider problem Pg, 0= o -9"; if Pg has optimal solutions,
then E # @ and o = &, otherwise repeat the above considerations. After a finite number of
such iterations we are able to find o or to establish that E = @.

¢) L = +00; in this kind of case H = @ so that E = . We get this result after taking into
account that L =-+co implies the existence of halfline x=x9+tu, t=0, such that

L= lim f3 (x0+tu).
1=+ oo

Since any halfline of equation x = £ + t u, t 2 0, is contained in the feasible region R(c) of

problem Pg  if % € R(0) ( see footnote 2 ), we have sup fr(x)=+% , Va.
X € R(&)

5. Numerical Examples.

We will now propose some numerical examples with the aim of clarifying some
theoretical aspects which have been pointed out in the previous sections.

Example 5.1 Consider problem P where

X
f,(0)=-2x+x,,f,(x)= ;—:}-é:&-
1

and
R={x=(x1,x2) EIR2: x1 +x9<2,-x] +2x2£8,x1, %020 )

First of all we will solve the linear problem Pr, : max f1(x) , X € R, which has a unique
optimal solution x0= (0,2), so that x0 turns out to be the unique solution to the linear
fractional problem Py, where ag =f1 xN=2.



I1

Consider now the péramenic problem
max f3(x) =x1/ (X1 +x2 +4)

(x1,%x2) € R
P%(B):
-2x1+x3 2 2-6,020

We solve the linear fractional problem Pg, (0) , by mesns of the modified version of
Martos's algorithm; the optimal simplex- tableau is the following

<ol 0 0 o -1 0 -1 where the first and the second rows
-dg -6 00 -3 o -2 represent the reduced costs of the
xa| 2 0 1 2 0 1 numerator and of the denominator of
x4 | 4 o 0 -3 1 -1 f2(x) respectively ; the optimal solution
x1 0 1 0 1 0 is x0 =(0,2) .

Sensitivity analysis applied to Py (0} gives the following simplcx-tabléau:
D

-0 00 -1 0 -1

-6-20 0 o0 -3 0 -2

X2 | 248 0 1 2 0 i

x4 | 4-0 0 0 3 1 -1

X1 o) 1 0 1 0 1
tablean 1

Since y () =(6+20)(-1,-1)-6(-3,-2)=(-6+0, -6) and the optimality
condition requires y(8) < 0, we have € = 6; on the other hand the feasibility condition
xp5(0)20 implies 8'= 4. Since 8 = 0"=4 ,x (8) = (6, 2 + 0) is optimal for Py, (0)0 €
[0,4], we have 08! =80+ 4 =4 and x() = 4,6).

It results that z (80) = 0 < z (1) = 2/7, so that we set © =4 40 in the tableau 1 and we
restore the feasibility by performing a pivot operation on the circled number - 3.We have :
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461 0 0 -1 0 -1
1420l 0 0 3 0 =2
x0 6401 0 1 2 0 1
x| 0 0 0 (3) 1
xil 430 1 0 1 o 1
426l 0 0 0 -13 -3
14010 0 0 -1 -1
xo|6+(138) 0 1 0 (23) 13
x3l amelo o 113 13
xqlA+(2/36] 10 0 13 273
tableau 2

Since Y(0) = (14 + 6) (-1/3, -2/3) - (4 + 2/30)(-1, -1) = (-2/3 + (1/3)0,-16/3 ),we have
8'= 2, while 6" =+ o0, Asa consequence x (0) = (4 + (2/3)8, 6 + (1/3)6) is optimal for
6 & [0,2];we have 02=014+2 =6 x(2}=(16/3,20/3) and z (B1) = 2/7 < z (62)=1/3,

so that we set 8 =0 + 2 in tablean 2 and we restore the optimality performing a pivot
operation on the circled number 2/3. We obtain

-2-(1/2)6 0 1/2 ¢] 0 -1/2

-6+(1/2)0 0 32 0 0 172

x4 | 10+(1/2)0 0 32 0 1 12

x3 | 4+(1/2)0 0 12 1 0 12

x1 | 2+(172)6 1=12 0 0 172
tableau 3

Since y (8) = (6 - (1/2)0) (1/2,-1/2) - 2 + (1/2)0)(3/2, 1/2) = (-6, -4), we have O'=+ oo;
on the other hand 6" = + 0, 50 that x (0) = (2 + (1/2)6,0) is optimal for 8 = (); we have
0= + 9, %@ =(2,0)and the algorithm stops. The set of all efficient points is
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E=x0,xMju xM,x@u x@,x @1V 1,

where r is the halfline whose equation is x = (2,0) +0 (1/2,0),020.

In figure 2, the feasible region and set E are drawn.
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Example 5.2 The following cases a) and b) show that when the set of optimal solutions
to the linear problem Pp_ is unbounded, then E may be empty or not.

Case a) Consider problem P where now f1(x) = -xy1+x2, f2(x) = x1/(x1+x2+4) and
R={x=(x1,%x) € R2:-x;+x2£2, X1,x2 20}

The set of optimal solutions to the linear problem P, is the halfline x = (0,2) +(1,1)t,t=20
so that we consider the linear fractional problem
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Xy

SUP s
x1+x2+4

(5.1) (x,,x)€ R

—x1+x22f1 (x0)=2

The final tableau obtained by applying the modified version of Martos's algorithm is the
following

-CQ ol 1 0 0 0
-dg -6} 2 g 0 1
X3 2] -1 1 O -1
X3 0] 0 0.1 1

so that we can conclude that problem 5.1 does not have optimal solutions and
sup fa(x) =L =1/2 <+ .
Seta. = f1(x0) = 2 and consider the parametric problem
X
1

x1+x2+4

P& (6) (x;,%,) € R

-x1+x22&—9 , 820

starting from the following simplex-tableau

0 1 0 0
60| 2 0 0 1

x2] 20| CO 1 0 -1

X3 v 0 Q 1 1

tablean 1
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The feasibility condition implies 8" = 2, and the positive root of y1 () =6-0 is 0'=6.
Since 8" < @', let us note that Pz (9) does not have optimal solutions VB €[0,2] ;
set © =2 + 0 in tableau 1 and perform a pivot operation on the circled number. We obtain
the tableau associated with parametric problem Pg (0), wherenow a=2-0" =0.

-6_ 0 1 0 -1

-4-6 0 2 0 -1

X1 6 1 -1 0 1

X3 248 0 0 ] 1
tableau 2

The feasibility condition implies 6" =+ ¢ and the positive root of the linear function
v2(0)=4-0 is 6'=4. Let us note that Pg(8) does not have optimal solution

V 6€[0,4[; set 8=0"=4 and consider the problemPg; a=0-06"'=-4.

The previous tableau becomes optimal for 0 =4, so that og= o = - 4 and the set of

optimal solutions to Py, 1s the halfline r; whose equation is x = (4,0) + (L,D t,t20.
According to theorem 2.1, set E of all efficient points can be obtained by solving problem

P%( ), 8E[0,8]. By setting 6 =0 + 4 in the previous tableau we obtain:

-4-8 0 1 0 -1

-8-9 0 2 0 -1
X1 4+6 1 -1 0 1
X3 | 6+6 0 0 1

The feasibility condition implies 8" =+ 9, the optimality condition y(0) <0 implies
0=+ Sothat 0=+ andx(0)=(4+ 0,0) 02 0is optimal V 8 2 0. The set
of all efficient pointsis E= 11 U rp where 1y is the halfline whose equation is

x=(40+ 01,0 920.

In figure 3, the feasible region and set E are drawn.
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CaSe b) Consider problem P where now
%
fl (x)—Xl"X2 , fZ(X)mW and

R= {x=(x1,x2)EIR2:—x1+x222, X o Xy 2 0}.

The set of optimal solutions to the linear problem Py, is the halfline x = (0,2) + (1,D t,
t 2 0, so that we consider the linear fractional problem

X

X, +%,+4

sup
j 1%y

(3.2) x,,%,)€E R

xl—xzz-fl(x0)=-2
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The final tableau obtained by applying the modified version of Martos's algorithm is the
following:

0 1 0 0 0
-6 2 0 0 -1
X2 21 -1 I 0 1
X3 Q 0 0 1 1

so that we can conclude that problem 5.2 does not have optimal solutions and-
sup f2(x)=1/2 <+ 0, Set & = f1 (xY) = - 2 and consider the parametric problem

X

SUP —————rmems
X, +X, +4

P-® | (x,.x) €R
o
x1~x22-2-6 , 020

starting from the following tableau

4] 1 Q0 OI
-6-6 0.0 =
X2 2+ { -1 1 0 1
X3 6 0 0 1 1

The feasibility condition implies 8" = + ¢0; since the linear function Y1(9) = 6 + 9 does not
have a positive root, we have €' = + ¢, so that H=(J and consequently E=@ .

Example 5.3 Now we will apply the algorithm to the problem solved geometrically in
example 2.1, Let us note that the linear problem Py, does not have optimal solutions;

x0 = (0, 0) is the end-point of the halfline r, whose parametric equation is x1 = 0, x220,
such that sup f1(x) =+ o,
XE T
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Consider the problem
P X, + 1
P& (:K1 %) € R
_ 0
"X+ Xy 2 O =f1 x)=0

and solve it by means of the modified version of Martos's algorithm ; the final tableau is the
following :

2 0 10 -1
-1 0 1 0 0
x3 [ 4 0 1 1 -1
X1 0 1 -1 0 1

We have y=(3, -1); since y1 > 0 and any coefficient of the corresponding column is
negative,then problem Pg does not have an optimal solution.
Consider the parametric problem

- sup ’f2 (%)

P-(®) :({x€ R
* -X X, 2-0 820

starting from the following tableau

2-6 0 1 0

-1 0 | 0 0
X3 4-9 0 -1 1 -1
X1 9 1 -1 0 1

The feasibility condition implies 8" = 4 and the positive root of y((0) =3 -8 is 0' = 3.
Problem Pg (8) does not have optimal solution VO € [0,3[;set® =0 =3 and
consider problem Pg, 0t =0-8'=-3.The previous tableau becomes optimal for 6 = 3, so

that ot g= 0 = - 3, 6% = 3 and the set of optimal solution to Pa is the halfline r1 whose
equation is x=(3,0) + (1,) ¢, t2 (.
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Setting 6 =0 + 3 in the previous tableau, we obtain

L0 0 1 0 -1
4l 0 1 ¢ o0
x3 |16 0 CD 1 -1
x; [|3+8 1. -1 0 1

Since 71(0) = - 0, we have ' =+ o0 while 6" = 1.We have 6 =8" = 1, so that x(8) =
=(3+6,0)is optimal for P, (0), VOE [0,1]. Set 6l =00+ 1 = 4, we have

x@ = (4,6), z(0% =1 <z (81) = 2 5o that we set © =0 + 1 in the previous table and
we restore the feasibility by performing a pivot operation on the circled number. We obtain

-2-28 e .0 1 -2

-1-9 00 1 -1

X2 0 0 1 -1 1
x1 J4¢20] 1 0 1 2

Since y(0) = (-1-6,0), we have 0'=+ and 6" =+ ; consequently x(0) =
= (4 + 20, 8) is optimal for P“u (8), V 8 20, but it is not an efficient solution for P, since

2+26=2=z

2(0) = ®) Vo 20

1+6
Thus 8= 61 = 4and setBisgivenby E=r1 U [ (3,0), (4,0)].

Example 5.4. Consider the following problem

x1+3

P: max(x -x,,
(%, 2" x,+1

) X%, 20

Let us note that the linear problem Py does not have optimal solutions and x0 = (0, 0) is the
end-point of the halfline r, whose parametric equation is x1= 0, x2 2 0, such that

sup f1(x)= +90 .
XE T
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Consider the problem
X +3
sup f2 x)= ;;T—l'
= 0
P X tx,20 =f (x)=0
X, ,X, 20

and solve it by means of the modified version of Martos's algorithm,; the final optimal tablean
is the following: ‘

3l 1 0 0
-1 1 0 1
xol O -1 1 -1

Since problem Pg has optimal solutions, we must consider the parametric problems Pg(0),

620, and Pg (8), 0 <0, in order to find & and o respectively ( see remark 3.1) starting
from the following tableau:

-3 1 0
-1+ 1 0 1
x2]-0] -1 1 -1

a) Case 062 0

Y (8) = (-2- 0, -3), so that ' =+ o ; since the feasibility condition implies 8" = 0, we will
perform a pivot operation and obtain the following tableau

-3-6 0 | S |
-1 0
x2|_06 1 -1 1

The feasibility and the optimality conditions imply 0'=0" = + © 50 that the halfline
whose equation is x(0) = (9, 0), 020, is optimal and such that rjc E.
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b) Case 06< 0

Y(0) = (-2- 6, -3), so that y(@) < 0 for® < -2 ;taking into account that x3 (8)=-62=0
V 8<0, x(8) = (0, -6) is an optimal solution for P g (8) and also an efficient point for P
forany 9 £ [-2, 0]. Set @ = 0 - 2 in the tableau, we obtain

31 1 0 0
-34+61 1 0 |

x21.2-9] -1 I -1

We have ¥(0) = (- 8, - 3) and x2 (8) = 2-8 .Since y1(0) >0 for § <0, and x3 (8) > 0 for

8 <0 problem Pg (8), & = 2, does not have optimal solutions so that og = 2. For 6 = 0,
we have alternate optimal solutions which are also efficient points for P.

Set E is drawn is figure 4.
[
x
E=r1U rpU [x0, x1]
x1
xo X1

fig.4

Remark 5.1 The above examples have outlined the main features of the sequential
method suggested in sections 3, 4; at the same time the examples show that set E of all
efficient points may be non-empty even if one or both objective functions are not
upperbounded on the feasible region.
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6. The Bicriteria linear fractional problem,

In this section we will consider problem P where now f1, fa are both linear fractional
functions. We have just said that, in this case, set E of all efficient points is not necessarily
connected when the feasible region is unbounded;nevertheless the sequential method
suggested in the previous sections can be used in order to find E since, by means of the
Charnes-Cooper transformation, problem P reduces to a problem where one of the objective
functions is linear.

Suppose that
_ T
a X+a
£ (%) = wpprmme
b'x+b,
and consider the Chames-Cooper transformation
fm 1 y=tx ;
b'x +b,

problem P is transformed in the problem

mex (£ &), £, (€))

p* Y e Rr
t
T
b y+b0t=1, t=0

where f1 (y/t) and fy (y/t) are a linear function and a linear fractional real-valued function
respectively.

It is easy to prove the following theorem which establishes a relationship between the
efficient points of the problems P and P*.

Theorem 6.1 i) If x0 is an efficient point for P then (yo, tg) is an efficient point for P¥*,
where

1 0 0

fp= = y =fX

=
b x + b0
ii) If (y0, to) is an efficient point for P*, then x0= y0/ tg is an efficient point for P.

qua}'k 6.1 _Since P* is a bicriteria linear fractional problem having, at least, one linear
objective function, the sequential method described in sections 3 and 4, can be used to solve
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it. Taking into account ii) of theorem 6.1, we are able to find all efficient points of problem
P.

Let us note that E turns out to be disconnected if and only if in the algorithm variable t leaves
the basis and successively enters the basis again at a positive value.

In order to point out the results given in this section, we will propose a numerical example
where the set of all efficient points is disconnected.

Consider the following bicriteria fractional problem

"X, t2 X, -2
P:max (fy() =—— £,(%) = ——}, x=(%,%) 20
2 X, +3x,+1
By means of the Charnes-Cooper transformation
1 .
t= Y ,  y=tx thatis y =tx, , y,=tX,
we obtain a bicriteria problem where the first objective function is now linear
y, -2t
~y, +2
max (-y; +2¢ y, 3y, +t )
P y, +2t=1
Y0¥y 2 0 t 20

First of all we will solve the lingar problem
max (£ (y,,y,.t) & -y, +21

¥,:¥, 20, t290

which has the unique optimal solution w0 = (y1=0,y2=0, t =1/2), so that w0 also turns

out to be the unique solution to the linear fractional problemn PZ’EO where ap = fi(wl) =1.
Now consider the parametric problem

¢ ¥, -2t
max z(yla}’z,t)-m
P* 6 1y2+2t=1
6@ ) iy +2t21-6 , 0820

yl,yzzo R t=0
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"The following optimal tableau is obtained by applying the modified version of Mattos's
algorithm to the problem Pzg (0).

] 00 0 -1
P32 0 0 50
t |12 -12 0t -2
vlol 1 1 0 1

Sensitivity analysis applied to Pio (0) gives the following tableau

1-9 0 0 0 -1

-1/2-(5/2)9 1 -3/2 0 0 -572

t 1/2-(1/2)6} -1/2 0 1 -12
y2 8 1 1 0 1

Since ¥ (6) = (-3/2 + (3/2)8), we have ©' = 1; on the other hand the feasibility condition
implies 8" = 1, so that w(@) = (0, 6, 1/2 - (1/2) 6) is optimal for PoLﬂ ® vOoe{0 1] |
Let us note that, in the onginal problem P, the solution x (8) associated with w(®) is

x(@) =(0,—2& ) ;

as a consequence the halfline r1, whose parametric equation is

X, =0, X)=- 91 , BE[0,1]
55 9

is contained in set E of all efficient solutions. Set 6 = 1 + 8 in the previous tableau; in order
to restore the feasibility and the optimality conditions we are obliged to perform a pivot
operation so that t will have to leave the basis.

el o o o 1
3520 32 0 0__.5p

e ame|Cr) o 1 ap
yal 1+0] 7 10 1
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-0 0. .0 0 -1

-3-0 0 0 -3 -1

yi 6 10 2 1
y2 1 0 1 2 Q

Since v () = 38, we have 0' =0 while 8" = +o0. We restore the optimality by performing
a pivot operation; we obtain the following tableau

0] 0 0 0 -1
3200 0 32 0 -1

yi|] 1+6] 1 1 o0 1
t 12l 0 12 10

Since y(8) = (-3/2) 0, we have 0'=+oo; the feasibility condition implies 8" = +oo,
so that w(9) = (1+6, 0, 1/2) is optimal ¥ 0 = 0. As a consequence, in the original

problem P, any point of the halfline ), whose parametric equationis x1(6) =2 (1 +8), xp -

=0, 0 2 0, is an efficient point.

Let us note that for 8 = 0, y(0) =0, so that w = (1-y2, y2, 1/2 - (1/2)y2) is an alternative
optimal solution for any y2 20.
Consequently the halfline r3, whose parametric equation is

1-y 2y
. 2 _ - 2
xl-l 1 =2 Ky == y220
ey Yy
2 272

is contained in E.
Set E of all efficient solutions toPis E=r1 U 1 U r3. Since, in the suggested algorithm,

variable t leaves the basis and successively enters the basis again at a positive value, set E is
disconnected.

ol
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Appendix A (A medified version of Martos's algorithm ) [3]

Consider the problem
ch+co i
max (z(x) = e ) ,x ER=(x € IR; Ax=b,x20}
T
d x+d0

where A is am x n matrix, b € IRM and dTx+dp>0 Vx€ER,

STEP 0 Find an optimal level solution ! x% if such a solution does not exist STOP
( sup z(x) = + ), otherwise go to step 1.
x€ R .
STEP 1 Set y=(dgcn- codn) andJ={j :¥j >0} where ¢y and dy are the reduced
costs of numerator and denominator corresponding to x' respectively and ¢g and

dg are the value of numerator and denominator at x = x' respectively. If J = g,
STOP, x'is an optimal solution; otherwise set k such that

cNk/demﬁneaj{ (e, /dy )
g0 to step 2.

STEP 2 The non-basic variable xp, enters the basis by means of a pivot operation, go to
step 1. If an operation like this is not possible, STOP.

(sup 2= ey /dy ).

1 x' & Ris said an optimal level solution if x'solves the parametric problem

) _
— max(ch+co) , XER , de+d0=Lf,'
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