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‘1. INTRODUCTION

The bicriterla maximization problem P has been studied by se-
veral authors [3,4,5,6,7,8] malnly with the aim of establis-
ing the connectedness of the set of all efficient points E.

In this paper we will introduce a parametric real-valued func—
tion z(0) which allows us to derive a parametric representa-
tion of E in a more general form than the one given in [8];
furthermore we will point out that the properties of the funec-
tion z(9) are strictly related to the connectedness of E and
that they can play an impeortant role in finding sequential
methods for generating E [7].

The aforesaid approach allows us to obtain new results and

known ones.



2. A PARAMETRIC REPRESENTATICN OF TEE SET OF ALL EFFTCIENT
POINTS.

Let us consider the bleriteria maximization problem

P: max (fl(x), fg(X)) , X€ER

where f f2 are real-valued continuous functions on the non-

15
empty compact set RCﬁBn.

A poilnt x°e R is said to be efficient for P if there does not
exist a point x € R such that fi(x) ;fi(xo) i=1,2 where at

least cne of these inequalities is astrict.

Several authors [3,4,5,8] nave pointed oyt that set § of al1
efficient points of p is related to the optimal solutions of

a suitable parametric problem.Following this idea,we will consider
the parametric problem stated in a form which allows us to
establish some important relations and to obtain known results

and new oneg,

Set:
P(0): n(8)2 max £,(x), x eR(e)2 (xe R £(x) 2 M-6,62 0)

where M A max fl(x), X € R.

Let us note that P(:#) has optimal solutions for any e 20, sirnce

the feasible region R(¢) 1is n compact set.



The followlng theorem gives the relation between E and the

optimal solutions to the parametrie problem P(6).

THEOREM 2.1. Consilder the bicriteria maximization problem P.

Then

(2.2) E = L) stee
0€L0,Fi-m]

1}

where m min fl(x), x € R.

Proof. If x is an efficient point for problem P then it is
also an optimal solution for P(&) with 8= M—fl(E) and it is

easy to verify that x €3'(0); consequently F < LJ Sti{e).
o€l M-l

Now we must show that E 2 J St(8). Tet x be an opti-
8-{0,M-m]

mal solution for problem (2.1) with e = 8'e L0O,M-m]; x is
also an optimal sclution for problem P(8") where

oV = M—fl(i) and 8" < o'. Suppose, ab absurdc, that x is not
an efficlient polint for P, that is, there exists x° ¢ R such
that the following inequalities:

(2.3a) £ (x°)2 fl(i)ﬁ-

(2.3b) fz(xo)z fg(x)

hold where at least one of these is strict. Since (2.3a) im-

plies x°€R(8"), we have fz(xo)g fg(i), that is, from (2.3b),



fg(xo):fg(E). As a consequence x°€ 8 (8'), so that (2.3a)
can hold only as an equality and this is absurd.

This completes the proof.

The previous theorem points out that an optimal solution for
P(6) is not necessarily an efficient pocint for P, so that,

in general, E‘# LJ S(8 ), nevertheless E can be characte-
o€l 0, M-m]

rized as the union of suitable sets S(6).

As we will see, the function z(6) plays an Important role in
finding this characterization,.

The following theorem states scme important properties of

the funetion z(8).

THEQREM 2.7. Consider the parametric function z:[0,M-m] + IR,

z{8) = max fg(x). Then i) and ii) hold.
XeR(6 )

1) z(®) 18 a nondecreasing funetions

i1) z (8) 1s an upper semicontinuous function.

Proof. i) It followsby noting that 6 < 6, Implies R(Bl)s R(ez)

so that z(el)é 2(92).

i1i) The thesis follows immediately from thecrem in [13]1. For
sake of simplicity we will give a direct proof.

Set eoe [O,M~m] ; we must prove that the upperlimit of z(8),

6 -+ %pis not greater than z(eo) that is 1im z(9) gz(eo).
6+BO



Let {en}c [0,M-m] be such that en_*eo and let X be an opti-
mal soluticn for problem P(en). Since R i1s a compact set
there exists a subsequence {XS} < {xn} such that X x°€ R.

Taking into account that f. is continuous and fl(xs); M—OS

1

¥s, we have, fl(XO); M- 6, 80 that x°e€ R(ed).

On the other hand 1lim z(8) = lim fz(xs):fg(xo)é Z(Bd).
9—>BO XS+X°

This completes the proof.

As a consequence of theorem 2.1 there exists a suitable sest

of indices I, O0eI, suchk that [0,M-m]= £g{[ei’ei+1]’ 80=O;

furthermore,if z(6) 1s constant in ]%ﬁei+1[ then it is

eilther increasing in ]ei+1’ai+2[ cr constant in
]Bi+l,6i+2[ with ei;p z(8) # ei;p. z(8}; on the contrary
i+l i+1
if z(6) is increasing in ]ei,ei+l[ then elther 8, 4, = Mem
or z(8) 1s constant in ]ei+1’ei+2['
L c ! - . . + -EI
et Il € I be such that z is increasing in ]ei’ei+1[’ i 1

and let J € I be such that 1eJ implies

z(ei) = 1im+ z(8) # lim z(o).
6+Bi 6*81

Now we are able to establish the following results:

LEMMA 2.1. Let 6 €10,M-m[ be such that

(2.4) z(8) <z(8'), ¥Wa<o',



Then every optimal solution for P(8') is binding at the
constraint fl(x)z M-o' and, furthermore, it is also an effi-

cient point for problem P.

Proof. Let x' be an optimal solution for P( &) and, suppose,

ab absurdo, that fl(x')>-M—e'. Then x' is optimal for prob-
=M L} t = L t

lem P(el), 8, M Ll(x ) < 8' so0 that z(el) z(8") f2(x } and

this contradicts (2.4).

Now we must show that x' is an efficient point for P; to

this aim it i1s sufficient to prove that both a) and b) hold:

t » 2 1 .
a) fl(x)é fl(x ) implies fz(x) éfz(x ), ¥xe R;

A

£f.(x'), ¥x eR.

b) fl(x)> fl(x') implies fg(x} 5

1 2
and a) is satisfied. On the other hand fl(x)> fl(x‘) implies

If £ (x)z fl(x‘)we necessarily have fg(x) < f

that x is an interior point for R{8') sc that it is not an

optimal solution for P( &), i.e. f2(x)< . (x'). This com-

2
pletes the proof.

LEMMA 2.2. Suppose that z(8) 1s constant in [a,bl . Then any
optimal solution for P(8), 8e€la,bl binding at the constraint

fl(x)gfm-e is not an efficient point for P.

Proof. Let x' be an optimal solution for P{(6), with fl(x')=
= M-6 and let x° be an optimal solution for P(a). Since

z(a) = z{8) we have fg(xo) = fz(x') and Turthermore

fl(xo); V~a > M-8 = fl(x'), so that x' 1g not an efficient

(x') silnce xe€ R{8'")



peint for P and this completes the proof.

THECREM 2.3. Ceonsider the bicriteria maximization problem P.

Then

(2.5) E = L ste)) v LJ  sCe)
0elo, ,79, [ ie Ju{l}
S 17 i+l

1 el
1e 1

Proof. Let us ncte that e' € I8,.,6, [, 1e€I_1s such that
—_— i° 141 1

z{(e)< z(6') W¥o< o' and that the same property holds for any

6., 1ed.
From Lemma 2.1 we have B 2 LJ S{a)l u LJ S(e,)
0ele.,o. [ i€ Ju{ 0}
i7 i+l ’
ie [
el

On the other hand, an efficlent point x'e E is an optimal

solution for the problem

max fg(x), xe R
o 1 = Y |
.f’l(X) =f1(x ) = M-8

Since x' is binding at the constraint f (x) zM-e', we have,

1
; '
from Lemma 2.2,that @ G(J_J :mi,ei+l[) u (. ei)
:LeIl ieJu{0}

This completes the proof.



COROLLARY 2.1. Suppcse that z(9) 1s a semli-strictly quasi-

(1) and set 8% = max H(e), where H(8) £

concave function
A
= {6: z(9) 1s increasing in [0,8 1}

Then

(2.6) E

L] se)

6&el0,8¥]

I

Proof. Tt 1s sufficient to note that the semi-strictly quasi-
concave function z(®) is either a constant function or an
increasing function or a function which is increasing in
[C,6%] and constant in J6¥, M-m] , so that the thesis follows
from theorem 2.2;

Let us note that if z(8) is constant then E=S(0), while if

z(6) is increasing then E = LJ (e ).
ge [0 ,M~-m]

This complefes the proaof.

The characterizaticn of E as the union of sultable sets S(9)
plays an 1mportant role in finding sequential methods to
generate E [4,7] and also in studying the connectedness of
E [5,8]

As pointed out in corollary 2.1, E'assumes a simple form

(1) A real-valued function f defined on a convex set X isg

called geml-gtrictly quasiconcave if for all x x.€ X

1”72

such that f(xl) # f(xg) the inequality

f{x)> min(f(xl), £{x,)) holds for all x on the open

2
line-segment ]xl,xg[.



when z(6) is a semi-strictly quasiconcave function.

A class of problems which ensures the semi-strictly quasi-
concavity of the function z(8) 1s one where at least one
of the objective functions 1is semi-strictly quasiconcave;

this is shown in the following theorem:

THECREM 2.4. Let us consider problem P where the feasible

reglon is a convex set and let us suppose that f2 is a semi-

strictly quasiconcave function. Then z{8) turns out to be

a semi-strictly quasiconcave function.

Proof. Ab absurdo, let us suppcse that the nondecreasing
function z(8) is not semi-strictly quasiconcave,then there
exist el,e*,eg with el-<e* <62 such that z(e#*) = z(el) <z(82).

Let x, and %, be optimal solutions for P(el) and'P(eg)

regpectively; since x X, are not necessarily binding at

1 T2
the parametric constraint, we set

A A
o= — < . no= - =
8 M fl(xl) £ 6 . 9 M fl(xg)s 8

1 2°

Now we wlll prove that e¥ e Jo',e"[ , that 1s 6% < 8", since
8% > 8" 1s cbvious.
If 8% z ¢", we have fl(xg):M—e" z M- 0%, so that X, € R(e¥®);
A
consequently fg(xg) = z(62)§ z( 6%) and this is absurd.

The continuity of the function [, implies the existence of

1
x %
E]Xl,K2[ such that

fl(x*) = M-o¥e]M-9'", M-5"[ ,
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Congider now the restriction of the function f2 on the
line-segment [Xl’xgj' We have

£ (x*)sz(8%) = z(g ) 2 £(x,) < f

5 (x..) and this contradicts

272

the semi-strictly quasiconcavity of f2:

The proof is complete.

For the subclass of bileriteria maximization problemsywhefe
at least one of the objective functions is semi-strictly
quasilconcave, we obtaln, as a direct consesquence of corollary -

2.1 and theorem 2.4, the following result given in [8].

COROLLARY 2.72. Suppose f,_ is semi-gtrictly quasiconcave and

2
the feasible region ig a convex set. Then (2.6) holds.

3. ON THE CONNECTEDNES3S OF E.

In the previous sectlion we outlined the role played by the
function z(98) In order to achieve a characterization of the
set of all efficient points of the bicriteria maximization
problem P.

Now we will point out that z(e) is also related tc the

(2)

connectedness of E, in the sense that the semi-strictly

(2) Connectedness of a set is referred to arcwlse-connecte-

dness.
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guasiconcavity of z is a necessary condition for E to be
conhected.

This last property is established 1in the fecllowing theorem:

THEOREM 3.1. Consider the bieriteria maximization problem P

and assume that B 1s connected.

Then the function z(6) is semi-strictly quasiconcave.

Proof. Ab absurdo, let us suppose that the nondecreasing

function z(e) is not semi-strictly quasiconcave, then there

exist Bl,e*,eg, with 6. < 6% < 6 such that z(e*):z(el)< z{(0,).

1 2

Let X, and X, be coptimal solutions for P(el) and P(#

spectively and alsc efficient points for P.
A
. 1 = N <
Set: 8 M fl(xl) ‘61’
procf of theorem 2.4) 8'< g¥* < o",

2

2) re-

gn & M—fl(xg) £ 8.3 we have (see

23
Since E 1s connected, there exists a continuous function

o: [0,11+R" such that ¢(0) = X, 0(1) = x,and 0(t) fis
an efficient point for P ¥te JO0,1[. Consider the func-
tion ¢ = flo ¢ :[0,1] »R; since ¢ 1is a continucus function,
we have ¢([0,1]1) S 2 [fl(xg), fl(xl)]:[M_e"’ M-8'1, sc
that there exists t* € 10,10 such that ¢(t*) = M-8¥%, It
follows that x* = ¢(t*) is an efficient point which is bind-
ing at the constraint fl(x); M-6* and this is absurd (see

lemma 2.2).

This completes the proof.
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The followlng example shows that the semi-strictly quasi-
concavity of the function z(8) is not, in general, a suffi-

cient condition for E to be connected,

FXAMPLE 3.1. Consider the following bicriteria maximization

problem

It 1s easy to verify that the set of all efficient points

is E =[a1,a2]LJ[bl,b2], where al=(1,l), a2=(4,1), b1=(1,—1),
b2:(4,—1), so that E i1s disconnected. ]

On the other hand, z(8) = (l—e)2 + 1, 06 e 0,31, and thus
z{(86) turns out to be a semi-strictly quasiconcave function

because it 1s increasing in [0,3]1.

REMARK 3.1. Let us consider the parametric problem

Pl(e): zl(a) max fl(x), x € R, fg(x) gMQ—e,e z0

where M2 4 max fg(x), X €R,

Obviocusly, we can apply all the previously stated results
tc problem Pl(e). Consequently a necessary condition for E

to be connected is that both z(ge) and zl(e) are semi-strictly
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guasiconcave functions.

In Example 3.1 the function z_ (6) is semi-striectly quasi-

1
i1s algo semi-strictly quasi~
1(0)

and z(8) is not sufficient to guarantee the connectedness

concave because fl(x) = -x,

cencave, so that the seml-strictly quasiconcavity of z

of E. Taking into account (2.6), the loss of connectedness

is related to the disconnectedness of sets 3(6). A particu-
lar subclass of bicriteria maximizaticn problemsfor which E
turns cut to be connected is one where bothof the objective

functions are semi-strictly guasilconcave [81],

4. CONCLUDING REMARKS.

In this paper we have pointed cut the rcole played by function
z(8) in characterizing the set of all efficient points of

& bicriteria maximization prcoblem as the unlon of suitable
sets ol optimal solutlons to the parametric problem P(6).
Obvicusly the possibility of finding an efficient sequential
method which is able to solve P(8) is strictly related to

the structure of problem P, that is, to the properties of
the objectilve functlicons and the constraints.

In T71 a simple algorithm is given which generates the set of
all efflcient points of a bileriteris linear fractional prob-
lem for any feasible region (bounded or unbounded); such

an algorithm points out that jwhen one of the objective func-

tions is linear ,then E is connected even if the feasibie
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region is unbcunded.

The obtained results suggest the possibility of generating
E for particular subclasses of bieriterla maximization prob-
lems by means of a suitable revision of the parametric

metheds given 1n [9,10,11,12].

This will be the subject of a forthcoming paper.
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