ON THE BICRITERIA MAXIMIZATION ${\tt PROBLEM}^{(\, *\,)}$

Laura MARTEIN (**)

- (*) This reaearch was supported in part by the Ministry of Public Education.
- (**) Department of Statistics and Applied Mathematics, University of Pisa.

'1. INTRODUCTION

The bicriteria maximization problem P has been studied by several authors [3,4,5,6,7,8] mainly with the aim of establising the connectedness of the set of all efficient points E. In this paper we will introduce a parametric real-valued function $z(\theta)$ which allows us to derive a parametric representation of E in a more general form than the one given in [8]; furthermore we will point out that the properties of the function $z(\theta)$ are strictly related to the connectedness of E and that they can play an important role in finding sequential methods for generating E [7].

The aforesaid approach allows us to obtain new results and known ones.

2. A PARAMETRIC REPRESENTATION OF THE SET OF ALL EFFICIENT POINTS.

Let us consider the bicriteria maximization problem

P: max
$$(f_1(x), f_2(x)), x \in \mathbb{R}$$

where f_1 , f_2 are real-valued continuous functions on the non-empty compact set $\mathbb{R} \subset \mathbb{R}^n$.

A point $x^{\circ} \in \mathbb{R}$ is said to be efficient for P if there does not exist a point $x \in \mathbb{R}$ such that $f_{\mathbf{i}}(x) \ge f_{\mathbf{i}}(x^{\circ})$ i=1,2 where at least one of these inequalities is strict.

Several authors [3,4,5,8] have pointed out that set E of all efficient points of P is related to the optimal solutions of a suitable parametric problem. Following this idea, we will consider the parametric problem stated in a form which allows us to establish some important relations and to obtain known results and new ones.

Set:

 $P(\theta): z(\theta) \stackrel{\Delta}{=} \max f_2(x), x \in R(\theta) \stackrel{\Delta}{=} \{x \in R: f_1(x) \ge M - \theta, \theta \ge 0\}$

where $M \stackrel{\Delta}{=} \max f_1(x)$, $x \in \mathbb{R}$.

Let us note that $P(\theta)$ has optimal solutions for any $\theta \ge 0$, since the feasible region $R(\theta)$ is a compact set.

Denote with S(0) the set of optimal solutions for P(0) and with S'(0) the set of optimal solutions to the problem

(2.1) $\max f_1(x), x \in S(\theta).$

The following theorem gives the relation between E and the optimal solutions to the parametric problem $P(\theta)$.

THEOREM 2.1. Consider the bicriteria maximization problem P. Then

(2.2)
$$E = \bigcup_{\theta \in [0, M-m]} S^{\bullet}(\theta)$$

where $m \stackrel{\Delta}{=} min f_1(x), x \in \mathbb{R}$.

<u>Proof.</u> If \bar{x} is an efficient point for problem P then it is also an optimal solution for $P(\bar{\theta})$ with $\bar{\theta} = M - f_1(\bar{x})$ and it is easy to verify that $\bar{x} \in S'(\theta)$; consequently $E \subseteq \bigcup_{\theta \in [M-m]} S'(\theta)$. Now we must show that $E \supseteq \bigcup_{\theta = [0,M-m]} S'(\theta)$. Let \bar{x} be an optimal solution for problem (2.1) with $\theta = \theta' \in [0,M-m]$; \bar{x} is also an optimal solution for problem $P(\theta'')$ where $\theta'' = M - f_1(\bar{x})$ and $\theta'' < \theta'$. Suppose, ab absurdo, that \bar{x} is not an efficient point for P, that is, there exists $x^o \in R$ such that the following inequalities:

(2.3a)
$$f_1(x^\circ) \ge f_1(\bar{x})^{-1}$$

(2.3b)
$$f_2(x^\circ) \ge f_2(\bar{x})$$

hold where at least one of these is strict. Since (2.3a) implies $x^{\circ} \in R(\theta")$, we have $f_2(x^{\circ}) \le f_2(\overline{x})$, that is, from (2.3b),

 $f_2(x^\circ)=f_2(\bar x)$. As a consequence $x^\circ \in S(\theta^!)$, so that (2.3a) can hold only as an equality and this is absurd. This completes the proof.

The previous theorem points out that an optimal solution for $P(\theta)$ is not necessarily an efficient point for P, so that, in general, $E \neq \bigcup_{\theta \in [0, M-m]} S(\theta)$, nevertheless E can be characterized as the union of suitable sets $S(\theta)$.

As we will see, the function $z(\theta)$ plays an important role in finding this characterization.

The following theorem states some important properties of the function $z(\theta)$.

THEOREM 2.2. Consider the parametric function $z:[0,M-m] \to \mathbb{R}$, $z(\theta) = \max_{x \in \mathbb{R}(\theta)} f_2(x)$. Then i) and ii) hold.

- i) $z(\theta)$ is a nondecreasing function;
- ii) z (θ) is an upper semicontinuous function.

<u>Proof.</u> i) It follows by noting that $\theta_1 < \theta_2$ implies $R(\theta_1) \subseteq R(\theta_2)$ so that $z(\theta_1) \le z(\theta_2)$.

ii) The thesis follows immediately from theorem in [13]. For sake of simplicity we will give a direct proof.

Set $\theta_0 \in [0, M-m]$; we must prove that the upperlimit of $z(\theta)$, $\theta \to \theta_0$, is not greater than $z(\theta_0)$ that is $\frac{1}{\theta \to \theta_0}$ $z(\theta) \le z(\theta_0)$.

Let $\{\theta_n\} \subset [0,M-m]$ be such that $\theta_n \to \theta_0$ and let x_n be an optimal solution for problem $P(\theta_n)$. Since R is a compact set there exists a subsequence $\{x_s\} \subset \{x_n\}$ such that $x_s \to x^o \in R$. Taking into account that f_1 is continuous and $f_1(x_s) \ge M - \theta_s$ \(\forall s, \text{ we have, } f_1(x^o) \geq M - \theta_0, \text{ so that } x^o \in R(\theta_0).\)
On the other hand $\lim_{n \to \infty} z(\theta) = \lim_{n \to \infty} f_2(x_s) = f_2(x^o) \le z(\theta_0).$ This completes the proof.

As a consequence of theorem 2.1 there exists a suitable set of indices I, $0 \in I$, such that $[0,M-m] = \bigcup_{i \in I} [\theta_i,\theta_{i+1}]$, $\theta_0 = 0$; furthermore, if $z(\theta)$ is constant in $]\theta_i,\theta_{i+1}[$ then it is either increasing in $]\theta_{i+1},\theta_{i+2}[$ or constant in $]\theta_{i+1},\theta_{i+2}[$ with $\lim_{\theta \to 0^+} z(\theta) \neq \lim_{\theta \to 0^-} z(\theta)$; on the contrary $\theta \to 0^+$ $\theta \to 0^ \theta \to 0^ \theta$

if $z(\theta)$ is increasing in $]\theta_i, \theta_{i+1}[$ then either $\theta_{i+1} = M-m$ or $z(\theta)$ is constant in $]\theta_{i+1}, \theta_{i+2}[$.

Let $I_1 \subseteq I$ be such that z is increasing in $]\theta_1, \theta_{1+1}[$, $i \in I_1$ and let $J \subseteq I$ be such that $i \in J$ implies

$$z(\theta_{i}) = \lim_{\substack{\theta \to \theta_{i}^{-} \\ i}} z(\theta) \neq \lim_{\substack{\theta \to \theta_{i}^{-} \\ i}} z(\theta).$$

Now we are able to establish the following results:

LEMMA 2.1. Let $\theta' \in]0,M-m[$ be such that

$$(2.4) z(\theta) < z(\theta'), \Psi \theta < \theta'.$$

Then every optimal solution for $P(\theta')$ is binding at the constraint $f_1(x) \ge M - \theta'$ and, furthermore, it is also an efficient point for problem P.

<u>Proof.</u> Let x' be an optimal solution for $P(\theta')$ and, suppose, ab absurdo, that $f_1(x') > M - \theta'$. Then x' is optimal for problem $P(\theta_1)$, $\theta_1 = M - f_1(x') < \theta'$ so that $z(\theta_1) = z(\theta') = f_2(x')$ and this contradicts (2.4).

Now we must show that x' is an efficient point for P; to this aim it is sufficient to prove that both a) and b) hold:

- a) $f_1(x) \ge f_1(x')$ implies $f_2(x) \le f_2(x')$, $\forall x \in R$;
- b) $f_1(x) > f_1(x')$ implies $f_2(x) < f_2(x')$, $\forall x \in \mathbb{R}$.

If $f_1(x) \ge f_1(x')$ we necessarily have $f_2(x) \le f_2(x')$ since $x \in R(\theta')$ and a) is satisfied. On the other hand $f_1(x) > f_1(x')$ implies that x is an interior point for $R(\theta')$ so that it is not an optimal solution for $P(\theta')$, i.e. $f_2(x) < f_2(x')$. This completes the proof.

LEMMA 2.2. Suppose that $z(\theta)$ is constant in [a,b]. Then any optimal solution for $P(\theta)$, $\theta \in]a,b[$ binding at the constraint $f_1(x) \ge M-\theta$ is not an efficient point for P.

<u>Proof.</u> Let x' be an optimal solution for $P(\theta)$, with $f_1(x') = M - \theta$ and let x° be an optimal solution for P(a). Since $z(a) = z(\theta)$ we have $f_2(x^\circ) = f_2(x')$ and furthermore $f_1(x^\circ) \ge M - a > M - \theta = f_1(x')$, so that x' is not an efficient

point for P and this completes the proof.

THEOREM 2.3. Consider the bicriteria maximization problem P. Then

(2.5)
$$E = \left(\bigcup_{\substack{\theta \in \mathbb{J}\theta_{1}, \theta_{1} + 1}} S(\theta) \right) \cup \left(\bigcup_{\substack{i \in J \mathbf{v}\{0\}}} S(\theta_{i}) \right)$$

$$i \in I_{1}$$

<u>Proof.</u> Let us note that $\theta' \in J_{\theta_i}, \theta_{i+1}[$, $i \in I_1$ is such that $z(\theta) < z(\theta') \quad \forall \theta < \theta'$ and that the same property holds for any θ_i , $i \in J$.

From Lemma 2.1 we have
$$E \supseteq \left(\bigcup_{\substack{\theta \in]\theta_1, \theta_{1+1} \\ i \in I_1}} S(\theta)\right) \cup \left(\bigcup_{\substack{i \in J \cup \{0\} \\ i}} S(\theta_i)\right)$$

On the other hand, an efficient point $x' \in E$ is an optimal solution for the problem

$$\begin{cases} \max \ f_2(x), & x \in \mathbb{R} \\ f_1(x) \ge f_1(x') = M - \theta' \end{cases}$$

Since x' is binding at the constraint $f_1(x) \ge M - \theta'$, we have, from Lemma 2.2, that $\theta' \in \left(\bigcup_{i \in I_1} \theta_i, \theta_{i+1} [\right) \cup \left(\bigcup_{i \in J \cup \{0\}} \theta_i \right)$.

This completes the proof.

COROLLARY 2.1. Suppose that $z(\theta)$ is a semi-strictly quasi-concave function and set $\theta = \max_{\theta \in \{0\}} H(\theta)$, where $H(\theta) \triangleq \Delta \in \{0\}$ is increasing in $[0,\theta]$.

(2.6)
$$E = \bigcup_{\theta \in [0, \theta^*]} S(\theta)$$

<u>Proof.</u> It is sufficient to note that the semi-strictly quasi-concave function $z(\theta)$ is either a constant function or an increasing function or a function which is increasing in $[0,\theta^*]$ and constant in $]\theta^*$, M-m], so that the thesis follows from theorem 2.2.

Let us note that if $z(\theta)$ is constant then E=S(0), while if $z(\theta)$ is increasing then $E=\bigcup_{\theta\in [0,M-m]}S(\theta)$.

This completes the proof.

The characterization of E as the union of suitable sets $S(\theta)$ plays an important role in finding sequential methods to generate E [4,7] and also in studying the connectedness of E [5,8].

As pointed out in corollary 2.1, E assumes a simple form

⁽¹⁾ A real-valued function f defined on a convex set X is called <u>semi-strictly quasiconcave</u> if for all x_1 , $x_2 \in X$ such that $f(x_1) \neq f(x_2)$ the inequality $f(x) > \min(f(x_1), f(x_2))$ holds for all x on the open line-segment $]x_1, x_2 \Gamma$.

when $z(\theta)$ is a semi-strictly quasiconcave function. A class of problems which ensures the semi-strictly quasi-concavity of the function $z(\theta)$ is one where at least one of the objective functions is semi-strictly quasiconcave; this is shown in the following theorem:

THEOREM 2.4. Let us consider problem P where the feasible region is a convex set and let us suppose that f_2 is a semistrictly quasiconcave function. Then $z(\theta)$ turns out to be a semi-strictly quasiconcave function.

<u>Proof.</u> Ab absurdo, let us suppose that the nondecreasing function $z(\theta)$ is not semi-strictly quasiconcave, then there exist $\theta_1, \theta^*, \theta_2$ with $\theta_1 < \theta^* < \theta_2$ such that $z(\theta^*) = z(\theta_1) < z(\theta_2)$. Let x_1 and x_2 be optimal solutions for $P(\theta_1)$ and $P(\theta_2)$ respectively; since x_1 , x_2 are not necessarily binding at the parametric constraint, we set

$$\theta' \stackrel{\Delta}{=} M - f_1(x_1) \le \theta_1$$
, $\theta'' \stackrel{\Delta}{=} M - f_1(x_2) \le \theta_2$.

Now we will prove that $\theta * \in]\theta', \theta''[$, that is $\theta * < \theta''$, since $\theta * > \theta'$ is obvious.

If $\theta * \ge \theta$ ", we have $f_1(x_2) = M - \theta$ " $\ge M - \theta *$, so that $x_2 \in R(\theta *)$; consequently $f_2(x_2) \stackrel{\Delta}{=} z(\theta_2) \le z(\theta *)$ and this is absurd. The continuity of the function f_1 implies the existence of $x * \in]x_1, x_2[$ such that

$$f_{1}(x^{*}) = M - \theta^{*} \in M - \theta^{!}, M - \theta^{!}$$
.

Consider now the restriction of the function f_2 on the line-segment $[x_1,x_2]$. We have

 $f_2(x^*) \le z(\theta^*) = z(\theta_1) \stackrel{\Delta}{=} f_2(x_1) < f_2(x_2)$ and this contradicts the semi-strictly quasiconcavity of f_2 . The proof is complete.

For the subclass of bicriteria maximization problems where at least one of the objective functions is semi-strictly quasiconcave, we obtain, as a direct consequence of corollary 2.1 and theorem 2.4, the following result given in [8].

COROLLARY 2.2. Suppose f_2 is semi-strictly quasiconcave and the feasible region is a convex set. Then (2.6) holds.

3. ON THE CONNECTEDNESS OF E.

In the previous section we outlined the role played by the function $z(\theta)$ in order to achieve a characterization of the set of all efficient points of the bicriteria maximization problem P.

Now we will point out that $z(\theta)$ is also related to the connectedness (2) of E, in the sense that the semi-strictly

⁽²⁾ Connectedness of a set is referred to arcwise-connecte-dness.

quasiconcavity of z is a necessary condition for E to be connected.

This last property is established in the following theorem:

THEOREM 3.1. Consider the bicriteria maximization problem P and assume that E is connected.

Then the function $z(\theta)$ is semi-strictly quasiconcave.

Proof. Ab absurdo, let us suppose that the nondecreasing function $z\left(\theta\right)$ is not semi-strictly quasiconcave, then there exist $\theta_1, \theta^*, \theta_2$, with $\theta_1 < \theta^* < \theta_2$ such that $z(\theta^*) = z(\theta_1) < z(\theta_2)$. Let x_1 and x_2 be optimal solutions for $P(\theta_1)$ and $P(\theta_2)$ respectively and also efficient points for P. Set: $\theta' \stackrel{\triangle}{=} M-f_1(x_1) \leq \theta_1$, $\theta'' \stackrel{\triangle}{=} M-f_1(x_2) \leq \theta_2$; we have (see proof of theorem 2.4) 0' < 0* < 0". Since E is connected, there exists a continuous function Φ : [0,1] $\rightarrow \mathbb{R}^{n}$ such that $\Phi(0) = x_{1}$, $\Phi(1) = x_{2}$ and $\Phi(t)$ is an efficient point for P $\forall t \in]0,1[$. Consider the function $\phi = f_1 \circ \Phi : [0,1] \to \mathbb{R}$; since ϕ is a continuous function, we have $\phi([0,1]) \stackrel{\Delta}{=} A \supseteq [f_1(x_2), f_1(x_1)] = [M-\theta", M-\theta'], so$ that there exists $t^* \in [0,1[$ such that $\phi(t^*) = M - \theta^*$. It follows that $x^* = \Phi(t^*)$ is an efficient point which is binding at the constraint $f_1(x) \ge M - \theta^*$ and this is absurd (see lemma 2.2).

This completes the proof.

The following example shows that the semi-strictly quasi-concavity of the function $z(\theta)$ is not, in general, a sufficient condition for E to be connected.

EXAMPLE 3.1. Consider the following bicriteria maximization problem

P:
$$\begin{cases} \max (-x_1, x_1^2 + x_2^2) \\ 1 \le x_1 \le 4, \quad -1 \le x_2 \le 1 \end{cases}$$

It is easy to verify that the set of all efficient points is $E = [a_1, a_2] \cup [b_1, b_2]$, where $a_1 = (1,1)$, $a_2 = (4,1)$, $b_1 = (1,-1)$, $b_2 = (4,-1)$, so that E is disconnected. On the other hand, $z(\theta) = (1-\theta)^2 + 1$, $\theta \in [0,3]$, and thus $z(\theta)$ turns out to be a semi-strictly quasiconcave function because it is increasing in [0,3].

REMARK 3.1. Let us consider the parametric problem

$$P_1(\theta): z_1(\theta) \stackrel{\Delta}{=} \max f_1(x), x \in \mathbb{R}, f_2(x) \ge M_2 - \theta, \theta \ge 0$$

where $M_2 \stackrel{\Delta}{=} \max f_2(x)$, $x \in \mathbb{R}$.

Obviously, we can apply all the previously stated results to problem $P_1(\theta)$. Consequently a necessary condition for E to be connected is that both $z(\theta)$ and $z_1(\theta)$ are semi-strictly

quasiconcave functions.

In Example 3.1 the function $z_1(\theta)$ is semi-strictly quasiconcave because $f_1(x) = -x_1$ is also semi-strictly quasiconcavity of $z_1(\theta)$ and $z(\theta)$ is not sufficient to guarantee the connectedness of E. Taking into account (2.6), the loss of connectedness is related to the disconnectedness of sets $S(\theta)$. A particular subclass of bicriteria maximization problems for which E turns out to be connected is one where both of the objective functions are semi-strictly quasiconcave [8].

4. CONCLUDING REMARKS.

In this paper we have pointed out the role played by function $z(\theta)$ in characterizing the set of all efficient points of a bicriteria maximization problem as the union of suitable sets of optimal solutions to the parametric problem $P(\theta)$. Obviously the possibility of finding an efficient sequential method which is able to solve $P(\theta)$ is strictly related to the structure of problem P, that is, to the properties of the objective functions and the constraints.

In [7] a simple algorithm is given which generates the set of all efficient points of a bicriteria linear fractional problem for any feasible region (bounded or unbounded); such an algorithm points out that when one of the objective functions is linear, then E is connected even if the feasible

region is unbounded.

The obtained results suggest the possibility of generating E for particular subclasses of bicriteria maximization problems by means of a suitable revision of the parametric methods given in [9,10,11,12].

This will be the subject of a forthcoming paper.

REFERENCES

- [1] Avriel, M.: "Non linear programming: Analysis and Methods". Prentice Hall, Englewood Cliffs, N.Y., 1976.
- [2] Avriel, M., Drewert W.E., Schaible, S., Zang, I.:
 "Generalized concavity". Plenum Press. New York and
 London, 1988.
- [3] Benson, H.P.: "Vector maximization with two objective functions". Journal of Optimization Theory and Applications, vol.28, pp.253-257, 1979.
- [4] Choo, E.U., Atkins, D.R.: "Bicriteria linear fractional programming". Journal of Optimization Theory and Applications, vol.36, pp.203-220, 1982.
- [5] Choo, E.U., Atkins, D.R.: "Connectedness in multiple linear fractional programming". Management Sciences, vol. 29, pp. 250-255, 1983.
- [6] Choo, E.U., Schaible ,S., Chew, K.P.: "Connectedness of the efficient set in three criteria quasiconcave programming". Cahiers du C.E.R.O., vol.27, pp.213-220, 1985.
- [7] Martein, L.: "On generating the set of all efficient points of a bicriteria linear fractional problem".

 Technical report no 13, Dep. of Statistics and Applied Mathematics, University of Pisa, 1988.
- [8] Schaible, S.: "Bicriteria Quasiconcave Programs".
 Cahiers du C.E.R.O., vol. 25, pp.93-101, 1983.

- [9] Cambini, A., Martein, L., Pellegrini, L.: "A decomposition algorithm for a particular class of nonlinear programs". Actes du 1° Colloque AFCET-SMF, Tome III, pp.179-189, Palaiseau (France), 1978.
- [10] Cambini, A., Martein, L. Sodini, C.: "An algorithm for two particular nonlinear fractional programs" Methods of Operations Research, Vol45, pp.61-70, Athenaum/Hain/Honstein, 1983.
- [11] Cambini, A., Martein, L. Schaible, S.: "On maximizing a sum of ratios". To appear in Journal of Information and Optimization Sciences.
- [12] Martein, L., Schaible, S.: "On solving a linear program with a quadratic constraint". To appear in Rivista Matematica per le Scienze Economiche e Sociali.
- [13] Bank,B., Guddat,J., Klatte,D., Kummer,B., Tammer,K.:
 "Non-linear parametric Optimization". Akademie-Verlag-Berlin, 1982.

PUBBLICAZIONI

del

Dipartimento di Statistica e Matematica Applicata all Economia

- Report n. 1 Some Optimality Conditions in Vector Optimization.(A.Cambini- L.Martein), 1987
- Report n. 2 On Maximizing a Sum of Ratios. (A.Cambini-L.Martein-S.Schaible), 1987
- Report n.3 On the Charnes-Cooper Transformation in Linear Fractional Programming. (G.Gasparotto), 1987
- Report n. 4 Non-linear Separation Theorems, Duality and Optimality. (A.Cambini), 1987
- Report n. 5 Indicizzazione parziale: aspetti metodologici e riflessi economici. (G.Boletto), 1987
- Report n. 6 On Parametric Linear Fractional Programming. (A. Cambini-C. Sodini), 1987
- Report n. 7 Alcuni aspetti meno noti delle migrazioni in Italia. (A.Bonaguidi), 1987
- Report n. 8 On Solving a Linear Program with one Quadratic Constraint. (L.Martein-S.Schaible), 1987
- Report n. 9 Alcune osservazioni sull'equazione funzionale $\phi(x,y,z) = \phi(\phi(x,y,t),t,z)$. (E.Lari), 1988
- Report n.10 Une étude par ménage des migrations des personnes âgées: comparaison des résultats pour l'Italie et les Etats-Unis. (F.Bartiaux), 1988
- Report n.11 Metodi di scomposizione del tasso di inflazione (G.Boletto), 1988
- Report n.12 A New Algorithm for the Strictly Convex Quadratic Programming Problem. (C.Sodini), 1988
- Report n.13 On Generating the Set of all Efficient Points of a Bicriteria Fractional Problem. (L.Martein), 1988
- Report n.14 Applicazioni della programmazione frazionaria nel campo economico-finanziario. (L.Martein), 1988
- Report n.15 On the Bicriteria Maximization Problem. (L.Martein), 1988