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A k-Shortest Path Approach to the Minimum Cost Matching Problem

by
Paolo Carraresil and Claudio Sodini2

Abstract

A new algorithm for the minimum cost matching problem is presented. The proposed approach is
based on computing the shortest alternating path between a pair of free nodes, w.r.t. the current minimum
cost matching of cardinality u, 1<u< [ n/2]. If the shortest alternating path is not augmenting, the second
shortest alternating path is determined, and so on until the shortest augmenting path is found. This way the
cardinality of the current minimum cost matching is increased by one. The number of paths explicitly

enumerated by the schema is less than or equal to the number of arcs.

1 Introduction

Let G=(N,A) be an undirected graph, where N={1,2,...,n} is the set of node and A is
the set of edges with |Al=m. A matching M is a sub-set of edges with no two incident with
a common node. A node ie N is free with respect 1o M if no edge of M is incident with i,
otherwise the node is matched. Given a matching M, let Np and Ny denote the set of free
nodes and respectively matched nodes. A matching of G is perfect if no node of G is free.

Let c(i,j) be the cost of edge (i,j)e A and c=[c(i,j): (i,j)e A]. The minimum cost
matching problem is that of finding a perfect matching M, such that the sum of the cost of
the edges in M is minimum. This problem has been widely investigated [13], and most of
the approaches in the literature (see, for example, [3],[4].[5],[9]) are based on the
pioneering paper of Edmonds [6]. Recently a new algorithm has been proposed [12],
where the continuous relaxation of the minimum cost matching problem is solved as a
network flow problem and blossom constraints violated by the current solution are added,
one at a time, as equality constraints; the new problem is still solved as a network flow
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problem. The proposed approach is based on computing the shortest alternating path
between a pair of free nodes, w.r.t. the current minimum cost matching of cardinality u,
1su< Ln/2]. If the shortest alternating path is not angmenting, the second shortest
alternating path is determined, and so on until the shortest augmenting path is found. This
way the cardinality of the current minimum cost matching is increased by one. Two aspects
may be pointed out: first, the number of paths explicitly enumerated by the schema is less
than or equal to the number of arcs; second, the approach provides an upper bound to the
optimal solution, which together with the lower bound given by the length of the current
enumerated path determines an “optimality gap” of the feasible solution. The paper is
organized as follows. Section 2 contains a review of basic definitions and properties of
matching problems, while the description of the proposed approach is given in section 3.
Finally the correctness and the worst case complexity are stated in section 4.

2 Alternating and augmenting path on the collapsed graph

A minimum cost parametric cardinality matching problem P(u) is that of finding a
matching M,;: IMl=u,1<u< Ln/2], such that the sum of the cost of the edges in M, is
minimum. ‘

Given a non-perfect matching M, an alternating path is a path whose edges are
alternatively in and out of M; an augmenting path is a simple alternating path Py; from a
free node i to a free node j, i#j. Denoted M, @ P;; , the operation of augmenting M,, yields
a new matching M, . given by the edges of M, minus the edges of P in M,,, plus the
edges of P out of M,,.

Let us define the cost Cj; of an augmenting path P;; as the sum of the cost of the edges
of Py in M, minus the sum of the cost of the edges of P;; out of M. The following
theorem ([13] page 115) allows the determination of the optimal solution of P(u+1), given
the optimal solution of P(u).

Theorem 2.1 ,
Let M, be an optimal matching for P(u) and P;; be a shortest augmenting path. Then
Mys1 = My @ Pj;is an optimal maiching for P(u+1).

As stated by theorem 2.1 the problem is to finding a shortest augmenting path. To this
aim, given the graph G=(N,A) and an optimal maiching M, consider the following



directed graph G'=(N',A"), where 1(1,j) denote the cost of (i,j)e A’ (see fig.1).

N'={s}JUOUDUWU{t}, where

- O and D correspond to free nodes of G with respect to M;;: O={i: 1is a free node} and
the set D is a copy of O, i.e., D = {i+n, Vie Q};

- ‘W is the set of matched nodes; the matching M,, can be described by a vector mate(.),
where i=mate(j), j=mate(i), Vij: (,j)e M, and mate(i)=n+i, mate(n+i)=i, V ie O.

- sisasource node notin G;

- tisasink node notin G.

The set A’ and the related cost 1 are given by:

(s,i), Vie O; 1(s,1) =0;

(1,j), Vie OUW,Vje D: (i,j-n)e A; 1(4,j)=c(i,j-n);

(L)), Vie OUW, Yie W: (i,k)e A and k=mate(j); 1(1,j) =c(.k)-c(k,p);

G.1),VjeD; 1(G,0)=0.

optimat matching { (2,3),(5,6) }

fig, 1

Note that G' is completely defined by G and by the current matching M,,. In fact,
assume G is defined by the “adjacency list” AL(D), V ie N, where AL()={j: (.,j)e A};
then the “forward star” FS(1)={j: (i,j)e A"} and the “backward star” BS(i)={j: (j.i)e A'},

ie N' are given by:



FS(5)=0, BS(s)=8, FS{t)=g, BS(t)=D;

FS(i)={mate(j): j#mate(i),je AL(1)}, ie OUW; FS(i)={t}, ie D;

BS(i) = {j: je AL{mate(i}),j#i}, ie WUD; BS(i)={s}, ic O.

First observe that any s-t path in G' (i.e., a path from s to t) corresponds to a path
from oe O to de D which will be called o-d path and denoted by P, 4. Note that any o-d
path corresponds to an alternating path in G.

Given a path P, 4 defined by the sequence of nodes: Po,d={0,w1,w2...,wp,d}, where
00, de D and wie W, i=1,...,p, the symmetric path of P, 4, is the path S(P, g)={d-
n,mate(wp),...,matc(wz),mate(wl),o-i-n}. The symmetric path of a path in G' from
wie W to wje W is analogously defined. A pair i,mate(i) will be called a pair of
symmetric nodes. By definition i,i+n, Vie O are pair of symmetric nodes.

Let T=(N',A') be the shortest path tree on G' rooted at s, 8(i) the length of the unique
path from s to i on T. T is described by the predecessor vector pred(.), where pred(s)=0.
The following properties of o-d paths in T hold trivially.

Property 2.1

P, 4 and S(P,, g) have the same length. A

Property 2.2

P,a does not correspond to an augmenting path iff it contains at least a pair 1,j of
symmetric nodes. A

The shortest path on G' induces an odd cycle on G.

fig. 2

Note that if P, 4 contains at least one pair i,j of symmetric nodes then the



corresponding path in G contains an odd cycle, that is, a cycle with an odd number of
nodes (see fig. 2).

Now given a path P, 4, consider a procedure which labels the nodes of this path
starting from d. If the procedure labels a node j such that i=mate(j) has been labeled, then a
cycle is discovered and 1 is called the base of the cycle. If such a condition is not verified
and o is reached, then Py, 4 is an augmenting path. Otherwise the path is not augmenting
and the set of nodes C= S(Ppyaiei) ) Pmateqi),; Will be called the nodes of the cycle.
Furthermore the set of the arcs connecting nodes of the cycle, i.e., {(u,v)e A" u,ve C}
~ will be partitioned in two sub-sets: the set B of boundary ares, B=({(u,v): (u,v) is an arc of
Prate(i),i OF Of S(Prareqy,)} and the set I of internal arcs, I={(u,v): u,ve C]\B.

Note that if Py, 4 is not a simple path, then an even cycle on G corresponds to each cycle
contained in the path. In the following we consider (except when explicitly stated) simople
o-d paths and, for sake of simplicity, we will say that P, 4 contains a cycle when the
corresponding path on G contains an odd cycle.

Property 2.3

P, g and S(P, ¢) are not node disjoint paths iff Py, 4 (and S(P, g} ) includes at least one
pair of symmetric nodes. A
Property 2.4

Let T, be the sub-tree of T rooted at o and let P, 4 be the shortest o-d path on T, (if
any). Further assume that P,, 4 contains at least one cycle; let i be the base of the first cycle
encountered when backtracking from d. Then the path P’y

n,d given by the three sub-paths:
S(P;,0): Pmate(i) > Pi,a has the same length as P,, 4 and contains exactly one cycle. A

A non-augmenting path with the structure of P'y , 4 will be called a blocking path (see
fig. 3).

Assume that the shortest path Pgx_ 4+ is a blocking path of length §, which contains the
cycle C. The following theorem characterizes augmenting paths of lengths greater than or

equal to 8, which include arcs of C.

Theorem 2.2

Let Py g be an augmenting path on G' which contains an internal arc (u,v) of the cycle
C. If the length of P, 4 is greater than or equal to 8, then there exists an augmenting path
including only boundary arcs of C with a length less than or equal to the length of Py 4.
Proof.

Let b be the base of C and j be the last node of P, g which belongs to Py« g+. The



following cases can be distinguished:

- jeC, j#b; in such a case the path given by the sub-path of Pgx_, g+ (or of S(Pgr_p g+) if
je S(Pgx.q g+)) from d*-n to j and by the sub-path of P, 4 from j to d satisfies the
condition of the theorem.

- jbelongs to the sub-path of Pg«_, 4+ from b to d*; in this case the path given by the sub-

path of P, 4 from o to u, by the sub-path of Pgs_p, g+ (or of S(Pgr.py g#) if j& S(Pg+.p, g+))
fromu to j and by the sub-path of P, g from j to d satisfies the condition of the
theorem.A

The shortest path on G’ corresponds to the path

1,2,34,5,3,2,6,7,8,9,7,6,10.
The path is not augmenting and there are two

blocking paths of the same length.

fig. 3

Observe that if G is a bipartite graph, then any o-d path in G' corresponds to an
augmenting path. Consequently the problem of finding the shortest augmenting path on G,
reduces to that of finding the shortest path tree on G' rooted at s. In the general case
shortest o-d paths, not corresponding to augmenting path in G, must be avoided; this can
be done according to an implicit enumeration schema which is described in the following.



3 The matching algorithm

Let SPT(T) be any shortest path tree routine which determines T on G'. The procedure
given in table 1 yields a maximum cardinality minimum cost matching by computing a

sequence of minimum cost matchings M,;: IM, | =u, u=1,2,....p < tn/2].

procedure Parametric_Matching;
begin
InitiatizeM;
u=1;
repeat
ur=utl;
SPT(T);
Find_Shortest_Augmenting_Path(T,P,Aug_path);
if Aug path then Augment(P});
until (u = n/2_l) or {not Aug_path)
end.
table 1

InitializeM determines the minimum cost matching M; simply by computing c(1',j)=
min{ci,j): (1,j)e A} and setting : mate(i):=n+, mate(n+i):=t Vizi',j' and i':=mate(j"),
j=mate(i’).

Augment(P) grows the current matching by alternating the shortest augmenting path in
G returned by the procedure Find_Shortest_Augmenting Path(T,P,Aug_path). This
procedure yields a shortest augmenting path by efficiently enumerating shortest s-t paths.

The enumeration procedure starts by considering the shortest s-t path on G', that is the
unique path from s to tin T. Let i, j be the first pair of symmetric nodes discovered by
backtracking on T starting from t and let j be backtracked before 1. If no pair of symmetric
nodes belongs to the path, the path is augmenting. Otherwise the path is not augmenting,
since it includes at least the cycle based at j. Moreover a blocking path of the same length is
given by the sub-path from mate(j) to t and from the symmetric of the sub-path from jtot.
Therefore if the path is not augmenting a blocking path has been found (Property 2.4).
Furthermore the symmetric of the blocking path is a blocking path of the same length; this
blocking path will be implicitly enumerated by the procedure.

In classical enumeration schemata of shortest paths {[2], [11]), successive shortest
paths are found by computing “shortest deviations” w.r.t. the set of enumerated paths. A

deviation w.r.t. the node v of an enumerated path, say the path h,is a path given by the



sub-path from s to w on T, by any arc (w,v), where w does not belong to the path h, and
by the sub-path from v to t of the path h. The arc (w,v) will be called the deviation arc. The
shortest deviation w.r.t. the nodes of the enumerated paths corresponds to the next shortest
path in the enumeration. If this path includes a cycle it is a non-augmenting path (not
necessarily a blocking path). Note that, also in this case, the symmetric of such a pathis a
non-augmenting path of the same length, which will be implicitly enumerated. Since our
aim is to find the shortest augmenting path, all the shortest paths which are not augmenting
can be implicitly enumerated. Consequently, the deviations which include cycles previously
discovered cannot be considered. This is the case when a deviation refers to a node which
is after (w.r.t. backtracking) the cycle of a blocking path, i.e., the node which belongs to
the sub-path from s to mate(j}, where j denotes the base of the related cycle. In such a case,
deviations can be computed from the nodes which belong to the sub-path from j to t and to
the two subpaths from mate(j) to j of the blocking path and the symmetric path respectively,
except the node mate(j).

Assume that k shortest paths have been enumerated and consider for each enumerated
path the sub-paths described above. Let G*=(N* A*) denote the graph spanned by these
sub-paths. Note that each node of G is connected to t by at least one alternating path which
does not include a cycle.

In order to find the path k+1, the shortest deviation w.r.t. the nodes of G* must be
computed. Then the path k+1 is backiracked, to check if the shortest angmenting path has
been found. The following cases can be distinguished: 1) either a pair of symmetric nodes is
discovered (i.e., a cycle is found) and the path is not augmenting; ii) or the node s is
reached and the path is augmenting. If 1) is verified then G* is grown by the sub-paths
previously described. Otherwise if ii) is verified, that is, the node s is reached without
verifying 1), the shortest augmenting path has been found.

This way, an enumeration procedure which finds a shortest augmenting path has been
completely defined. It is worthwhile to remark that the worst case complexity of such a
procedure depends on the number and on the length (in terms of the number of arcs) of
enumerated paths. In the following we want to show that a shortest augmenting path can be
found in O(nm). The basic idea is to consider, for each node i of G*, the first (i.e., the
shortest) enumerated sub-path which includes i. This is suggested by the fact that the
shortest deviation w.r.t. the node 1 refers to such a path. It should be noted that, obviously,
the shortest augmenting path can be any deviation w.r.t. any path traversing a node 1 (not
necessarily the shortest one). Therefore the procedure must also be able to compute such



deviations. Following this idea, it is not necessary to explicitly store for each node i all the
enumerated paths containing i but only the shortest one together with the cycle contained
by the path when it is a blocking path. In fact, in this case, the cycle allows us to implicitly
store the symmetric path. Let Ftw(N t,At) be a forest of G*, and an(NS,A S) be the
symmetric forest, i.e., (i,j)e A iff (mate(j),mate(i))e A,. The enumeration procedure grows
K, (and implicitly F) by alternating paths which do not include any cycles, in such a way
that NN _=¢. Initially F, is given by the sub-path of the first blocking path from the node
next to mate(j) to t, where j denotes the base of the related cycle. Hence one of the tree of Ft
is rooted at t. As we will see, each root r#t of a tree of Ft refers to a given node of NS.
The graph given by the union of F, and F, by the arcs addressed by the roots of F,
together with the knowledge of the cycles related to the enumerated blocking paths, allows
us to efficiently store the enumerated paths and to find the shortest deviation. Consider the
following notation:
for each enumerated path h, h=1,... .k
8(h):  the length of the path h,
dest(h):  the destination node of the path h;

ine if the path h is blocking and jj, is the base of the cycle,
base(h)=
0, otherwise;

for each node ie Nt:

0, ifigN,
next(i)= j, if(ij)eA andiisnotarootof F,

-j,  if iisarootof E, where je NS;

h(G): the enurperated path which contains i;
base(h')#0, if i belongs to the cycle related to the blocking path h', where h'
is the shortest blocking path whose cycle includes i, and i is not

cycle)= the base of the cycle;

0, otherwise.



In order to retrieve the blocking path which corresponds to cycle(i)#0. i.e., the first
blocking path whose cycle includes i, the following notation is introduced:

h, if i is the base of the cycle corresponding to the blocking path h;
path(i)=
0, otherwise.

As we will show later, the procedure grows F; after having computed the shortest
deviation among deviations starting from nodes of N, and from those nodes of N which
belong to previously discovered cycles. Therefore the following property of F, holds true
during the enumeration: each root r of F, r#t , refers to a node je N such that j belongs to
a previously discovered cycle, i.e.,: if next(r)=-}, r#t then cycle(mate(j))#0. In fact if the
shortest deviation starts from a node je N, then the procedure grows a tree of F;
otherwise, if the shortest deviation starts from a node je N, then the procedure initializes a
new tree of F[ rooted at r, where (r,j) is the shortest deviation arc and next(r)=-].

Note that N*thu{Eea N $ cycle(mate(1))=0}; furthermore the shortest alternating path

from j to t which does not include a cycle may be found by applying the procedure depicted
in table 2.

procedure Sh_Alt_Path(i.t);
begin
while j#t do
begin
if next(j)=0 {je NS and cycle{mate(j)#0}
then j=cycle(mate(i));
if next(j)<0 {j is a root of Ft}
then j:=cycle(mate{inext(i));
if next(j)>0 {ieN,)
then ji=next(j)
end
end,
table 2

The enumeration procedure terminates when:
- an s-t path is contained in G*; in this case the corresponding o-d path is the shortest
augmenting path.

10



- all the shortest s-t paths have been enumerated without satisfying the previous
condition. In such a case the set of augmenting paths is empty.

Assume that the forest F, corresponding to the enumeration of k shortest path is given,
- and let (w,v) be the deviation arc corresponding to the shortest deviation. A backtracking
from w on T checks if the path k+1 is augmenting. Let i be the current backtracked node.
The following cases can be distinguished:

I;) anew cycle is discovered;

I) anode ie Nt orieN s is reached;

I3) the node s is reached.

If case 1) holds, then a new blocking path has been found. Case 1) can be partitioned
as follows: - the path k+1 is not simple, since it includes an even cycle (fig. 4a); - the
simple path is augmenting (fig. 4b), blocking (fig. 4c) or non-augmenting, but non-
blocking, since it contains a cycle which refers to a previously enumerated blocking path
(fig. 4d). Finally, if case I3) is the first one verified, then a shortest augmenting path has
been found.

Note that when computing the shortest deviation from a node ve N* we refer to the
shortest sub-path from v to t of G*, This way a deviation from v which refers to a different
sub-path from v to t is not explicitly considered when computing shortest deviations. The
following theorem shows that the enumeration based on the above definition of shortest
deviation does not exclude augmenting paths. Let P, ; be the shortest path in G* from v to
t and let P'y; be another path from v to t . Assume that the shortest deviation from v
corresponds to the arc (w,v) and let Qg , denote the sub-path from s to w of the path given
by the shortest deviation.

Theorem 3.1

If the path P given by the sub-path Qg ,, by the arc (w,v) and by the sub-path Py, is
not augmenting and the path P' given by Qg , (w,v), P'y | is augmenting, then there exists
a node g of Py such that the shortest deviation from mate(g) is the symmetric path of P".
Proof.

First note that P is a blocking path. In fact if P is not blocking it follows that the sub-
path Qg y, should contain a cycle contradicting the hypothesis that P' is an augmenting
path. Let (g,g") be the arc where P', ; deviates from Py ; (see fig. 5).

11
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4a} : even cycles 4b): augmenting paths

t t

4c): blocking paths 4d). not augmenting paths
fig, 4

Since P'is an augmenting path, then g belongs to the cycle C related to the blocking
path P and g#b where b is the base of C. When P is enumerated it follows that mate(g) is
one of the nodes which grows G*; furthermore the shortest path from mate(g) to t in G* is
the symmetric of the sub-path of P from s to g. The shortest deviation from the node
mate(g), w.r.t. such a path, corresponds to the arc (mate(g"),mate(g)) and is the symmetric
of the path P.A

i2



fig. 5

Let ¢(i), ie N, be the length of the shortest deviation from i w.r.t. the nodes of the
enumerated paths. The shortest deviation must be computed among the arcs (i,j)e A' such
that ie N, je N* and (i,j)2 A*. In fact, the arcs of A® can be ignored, since the deviation
(i,j) refers to the shortest path traversing j and considering (i,j)e A* should produce a
previously enumerated path. The length of the deviation is given by A(1,j)=I{(1,j)+0()-
8(j)+0(h), where

h(), if h(j)>0 (that is je Ny,
GB.Dh=
path(cycle(mate(j))), otherwise.
Note that 1(i,j)+06(1)-0(j) can be interpreted as the reduced cost of (1,j) w.r.t. the optimal
solution J of the shortest path problem; consequently 1(,j)+3()-8()=0.

Hence the length @(i) of the shortest deviation from i is given by:

o(1)=A{i,r)=min {A(i,}): je N*, ie N and (i,))e A"},

13



and the cotresponding deviation arc can be stored by setting r=dev(i} (@(i)=+eo, and
dev(1)=0 if no deviation from i is known).

Let UB be the length of an augmenting path. Initially UB=+ce; we will show later how
the procedure can discover an augmenting path and consequently update UB.

Let Qp be a priority queue with respect to ¢(i), which contains each node i such that
@(1)<UB.

The deviation arc (w,v), which addresses the path k+1 is given by:
w: ¢(w)=min{g(i): ic Q},

v=dev(w).

(3.2)

Hence to determine the path k+1 the node w is selected and removed from Q».

When backtracking the path k+1 starting from w, the nodes which can improve the
length of the deviations stored in Q,, are inserted in a set denoted Q. Such nodes are those
in the sub-path of the path k+1 from the node next to mate(base(k+1)) to t, which have not
been previously inserted in Q;. Furthermore, since the symmetric of the path k+1 is
implicitly enumerated, the nodes, not previously inserted in Q, of the sub-path of the
symmetric of the path k+1 from the node next to mate(base(k+1)) to base(k+1), must be
inserted in Q. In order to retrieve the nodes inserted in Q; the boolean variable InQ, (i) is
defined for each node i, where InQ,(i)=true if i has been inserted in Qq, false otherwise.
Note that for each node i such that InQ;(i)=true, a shortest alternating path fromitot
which does not include a cycle, is known.

For each node je Qy, the “feasible” arcs of the backward star of j are scanned in order
to evaluate new deviations and, possibly, update Q9. The arc (i,j) is feasible (feas(i,j)=true)
if (1,j)¢ A* and (i,j) is not an internal arc of a cycle related to a previously enumerated
blocking path. An internal arc (i,j) of a cycle is not considered, since if there exists an s-t
augmenting path which uses (i,7) then there exists an s-t augmenting path traversing i (not
using (i,j) ) with a length shorter than or equal to the length of the previous path (see
Theorem 2.2). Initially feas(i,j)=true, V(i,j)e A"; feas(i,j) is set to false when (i,j) grows
G” or when a cycle containing both i and j is discovered.

Let h be defined according to (3.1). For each feasible arc (i,j), the length 1(i,j)+8(1)-
3(j)+0(h) of deviation (1,j) w.r.t. the path h, is computed and compared with (). Then if
the length of the deviation (i,j) is shorter than the length ¢(i) of the current best deviation

associated to the node i, then ¢(i) is updated and the new current best deviation is stored in

Qy.
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The procedure which implements the updating of Q, starting from a node je Qq is
shown in table 3. This procedure receives in input the node j, the path h defined by 3.1 and
returns the set X which contains the improved nodes. The procedure makes use of a
boolean function feasible(i,j) which returns false when feas(i,j)=false or when
feas(i,j)=true but i, j are nodes of a cycle related to an enumerated path. In such a case
feas(i,j) is set to false.

procedure Scanning(j,h,X);
begin
for each ic BS(j) such that feasible(i,)) do
begin
if 103,)+8(0)-8()+B¢h <)
then begin
dev(i)=ij;
()= 1(1,j)+8(i)-8(j)-+6(h);
Insert(X 1)
end
end
end.

table 3

Note that the “for cycle” in the procedure Scanning(j,h,X) is the well-known updating
of Bellman's equations in a shortest (first search) path tree routine [10] where:
- the cost of arc (i,j) is given by the reduced cost 1(i,j)+0(1)-8());
- 0(h) is the length of the shortest alternating path which does not include a cycle from j
tot;

- (1) is the length of an alternating path which does not include a cycle fromitot.

The procedure Find_Shortest_Augmenting_Path(T,P,Aug_path) is shown in table 4.

procedure Find_Shortest_Augmenting_Path(T,P,Aug_path);
begin
Initialize;
while Q5 not empty and not Aug_path do
begin
ki=k+1;
wi=Select(Qy,best);
Growing_F, (k,w,v,p(w),Q1,UB,Aug_path);
if not Aug_path
then begin
UpdateBound(Q,UB);

A I )

Ch Lh s

~I
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8 Empty(X);

9 while Q¢ not empty and nof Aug_path do

begin
10 ji=Select( Qq,head);
11 if h(j)>0 then h:=h(j)
12 else h:=path(cycle{mate(j));
13 Scanning(j,h,X)

end

end;
14 UpdateSet(Qy,X)
end
end,
table 4

The procedure Initialize performs the following initialization:

1) k:=0; Aug_path:=false;
cycle(i)=h(i)=next(i)=base(i)=0, InQ(i)=false, p(i)=+oc0, Vie N'; UB=+o00;
feas(i,j)=true, V({i,jle A"

i) Qi=8. Qu=D; ¢(d)=5(d), VdeD;

dev(d)=t, Vde D, dev(i)=0, VieD.

The “while cycle” 2 terminates when a shortest augmenting path has been found or if
the set of the augmenting paths is empty. The function Select (Q,,best) returns arc (w,v)
given by (3.2). This arc addresses the shortest deviation w.r.t. the nodes of N*, Note that
the procedure must evaluate the new shortest deviation from w w.r.t. the nodes which have
been inserted in Qy, that is min {A(w,j): InQ;(j)=true and (w,j) A*} must be computed.
In fact the node w has been removed from Q, and no deviation arc is related to w.
Furthermore, during the enumeration schema, a cycle which includes both of the nodes of
an arc inserted in Q, can be discovered. This implies that feasible(w,v)=false can occur and
obviously such an arc must not be considered. Therefore Select ((Q;,best) must return the
best arc (w,v) such that feasible{w,v)=true and for each selected arc the new shortest
deviation must be computed, that is, Qo must be updated.

The procedure Growing_Fy(k,w,v,p(w),Q;,UB,Aug_path) constitutes the core of
Find_Shortest_Augmenting _Path(T,P,Aug_path). This procedure performs the
backtracking starting from w and updates all the parameters of the enumeration schema; in
particular it grows F, and updates Q. The procedure UpdateBound(Q,,UB) removes from
Q, the node i such that @(i)2UB. The “while cycle” 9 prepares the updating of Q, starting
from Qy: the procedure Select (Q;,head) returns the “head” of Q;, the statements 11 and 12
perform (3.1). Finally UpdateSet(Q,,X) updates Q, with X returned by the procedure
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Scanning(j,h,X).

In the following the details of Growing_F(k,w,v,0(w),Q;,UB,Aug_path) are given in
order to prove that the enumeration schema implemented by the procedure
Find_Shortest_Augmenting_Path(T,P,Aug_path) is correct.

Consider case Iy). Note that this case occurs when i=mate(j), j being a previously
backtracked node, i.e., ] is the base of the cycle related to the blocking path k+1. Let i’ be
the node next to i in the backtracked path; let P(i',t) denote the sub-path from i’ to t of the
path k+1. Consider, in place of the path which would have been yielded by still
backtracking on T, the blocking path given by the sub-path S(P(j,t)) and by the sub-path
P{mate(j).t). The blocking path has the same length and, by exploiting symmetry, it can be
found without further backtracking. Let U denote the following set of nodes:

U = {le N" 1 belongs to the sub-path of P(i',t) from i to w,
or mate(}) belongs to the sub-path of P(i',t) from i’ to j and mate(l)#mate(j)}.

The nodes of U are the only nodes which can improve deviations stored in Qo, as stated
by the following theorem.

Theorem 3.2

Assume that case Iy) is verified. If the nodes of U are inserted in Q; and Qo is updated
starting from Qy, then no augmenting path is contained in the set of shortest paths implicitly
enumerated by the procedure.

Proof.

It is enough to observe that only the nodes of the path k+1 which are inserted in Qq can
improve the deviations stored in Q. In fact, the deviation w.r.t. the nodes of the sub-path
from v to t have been previously considered, while the deviations from the nodes in the
sub-path from s to i include the cycle of the path k+1.A

Remark 3.2
The procedure adds to F, the sub-path of P(i',t) from1i' to v, if ve Nt. Otherwise, if
ve NS, the procedure adds to Ft the sub-path of P(i',t) from i' to w as a new tree rooted at

w and sets next{w)=-v. Moreover the values h(l), le Q; and 6(k+1), dest(k+1) are
updated. The cycle related to the blocking path is stored, that is base(k+1), cycle(l),
le P(1',j) and path(base(k+1)) are updated. Note that for each node I: cycle(mate(D))=j a
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shortest augmenting path from | to t is known. Such a path is not explicitly stored in F,, but
it can be easily found by exploiting symmetry.

Consider case Ip). First of all the case when the path k+1 is not a simple path (i.e., it
contains an even cycle), is considered. The following theorem, which can be easily proved,
allows us to recognize a non-simple path.

Theorem 3.3
The path k+1 is not simple if and only if a node i such that i belongs to the shortest
path on G* from v 10 t, is reached by backtracking on T.

Remark 3.3
The condition of theorem 3.3 can be easily rephrased in terms of F, and F as follows.

If ve N, then the path k+1 is not simple iff:

- ieN, and

- dest(h{i))=dest{(h{v)) and

- 1ibelongs to the path in G* from v to t given by the procedure Sh_Alt_Path(j,t) (see
table 2).

If ve N then the path k+1 is not simple iff:

- e NS and

- dest(h{mate(i)))=dest(h(mate(v))) and

~ v belongs to the symmetric of the path from mate(i) to t given by the procedure
Sh_Alt_Path(,t);

or

- ieN, and

- dest(h(i))=dest(h(mate(v))) and

- i belongs to the path in G* from cycle{mate(v)) to t given by the procedure
Sh_Alt_Path(j,t).

Theorem 3.4

Assume that case I5) is verified and the path k+1 is not simple. If the nodes of U =
{le N': ] belongs to the sub-path of P(i',t) from i' to w} are inserted in Q; and Q is
updated starting from Q1, then no augmenting path is contained in the set of shortest paths
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implicitly enumerated by the procedure,
Proof.
Hasily derived from the proof of theorem 3.2.

Remark 34
The procedure adds to Ft the sub-path of P(i't) from i’ tov to Ft or fromi tow

according to Remark 3.2. Then the values h(l), le Qg and 6(k+1), dest(k-+1) are updated.

If case Io) holds and theorem 3.3 is not verified, then the path k+1 can be an
augmenting or a blocking path or a non-augmenting path (but not blocking, since it
includes a cycle which is related to a previously enumerated blocking path), according to
the following theorem.

Theorem 3.5
Assume that a node ie N, or ie N is reached by backtracking on T and that the path
k+1 is simple. Then:
- the path k+1 is augmenting iff the following conditions hold true:
ap) if h()=0, i.e., ie Nt’ then dest(h(i))=dest(h{v)+h(mate(v))) and cycle(i)#0 and
h(i)=path(cycle(i));
ap) if h(mate(i))=0, i.e., ie NS, then dest(h(mate(i)))=dest(h(v)+h(mate(v)));
- the path k+1 is blocking iff the following conditions hold true:
by) if h(1)0, then dest(h(i))=dest(h(v)+h{mate(v))) and cycle(i)#0 and
h(i)= path(cycle(i));
by} if h(mate(i))#0, then dest(h{mate(i)))=dest(h(v)+h{mate(v)));
- the path k+1 is not augmenting iff the following conditions hold true:
cy) h(i#0 and cycle(d)=0 and h{i)#path(cycle(i));
cp) h(i)=0 and cycle(i)=0.
Prodof.
{al) and a2})

Note that either h{v)>0 (ve N[) or h(mate(v))>0 (ve NS); first consider case al). In this
case a node i of N, which belongs to a cycle is reached starting from a node v of N, or N,
The condition h(i)=path(cycle(i)) states that the cycle which includes i is related to the
shortest enumerated path traversing i. Consequently a sub-path from s to i which does not
include a cycle is known. The path k+1 can be partitioned as follows: the sub-path from s
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to 1, the arc (i,1"), where 1' is the node next to i, the sub-path from i’ to w, the arc (w,v) and
the sub-path from v to t. The condition dest(h(i))#dest(h(v)+h(mate(v))) implies that for
each node 1 of the sub-path from s to i, mate(l) cannot belong 1o the sub-path from v to t;
consequently, since the nodes in the sub-path from i’ to w do not belong to a previously
enumerated path and do not include pair of symmetric nodes it follows that the path k+1 is
augmenting. The proof of case a2) is analogous.

Conversely if the path is augmenting then the sub-path from s to i is an alternating path
which includes no cycles and no node 1 such that mate(l) is a node of the sub-path from v to
t. Conditions al) or a2) follow immediately.
( bl) and b2})

The path is not augmenting since it contains at least the pair of symmetric nodes

=dest(h(v)+h(mate(v))), mate(l). Furthermore the symmetric of the nodes of the sub-path

of the path k+1 from mate(cycle(i)) to v do not belong to the path k+1. Therefore these
nodes belong to a cycle which is new since the deviation arc is feasible, This implies that
the path is blocking. Conversely if the path k+1 is blocking, conditions bl) or b2) trivially
follow.
(cl) and ¢2))

It is enough to observe that conditions ¢1) or c¢2) imply that i is before (w.r.t.
backtracking) the cycle related to the blocking path h(i).A

If conditions aj) or ap) are verified, a shortest augmenting path has been found and the
procedure terminates. If conditions by) or by) are verified, let j=base(k+1) be the base of
the cycle related to the path k+1. Consider the set U= {i: InQy(i)=false,izmate(j) and 1
belongs to the sub-path of the path k+1 from mate(j) to j or i belongs to the symmetric of
this sub-path}. The nodes of U are the only nodes which can improve deviations stored in
Q», as stated by the following theorem.

Theorem 3.6

Assume that the condition by) or by) of theorem 3.5 1s verified. If the nodes of U are
inserted in Qq and Q, is updated starting from Q;, then no augmenting path is contained in
the set of shortest paths implicitly enumerated by the procedure.
Proof.

Note that deviation arcs which have not been previously considered refer only to the
nodes of U. A
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Remark 3.6

The sub-path of P(i',t) from i’ to v (or from i' to w) is added to Ft. The values h(l),
le Qq, 6(k+1), dest(k+1) and base(k+1) must be updated. Each node 1 of the new cycle
which is not contained by any previously discovered cycle and belongs to F; must be
stored, i.e., cycle(l)=base(k+1).

Note that if the conditions c;) or ¢9) of theorem 3.5 are verified, then the results of

Theorem 3.4 and Remark 3.4 can also be applied.
When the condition ¢y) is verified, then the path k+1 is not augmenting and its length

is given by O(k+1)=1{w,v)+8(w)-0(v)+6(h(v)+h(mate(v))). Note that in this case the path
k+1 allows us to determine an augmenting path (see fig. 6a) or a blocking path (see fig. 6b)
of a length greater than or equal to 8(k+1), according to the following theorem.

-

w' w'o "'\‘
v Lt
i
w <
v
t
a b)

fig. 6

Theorem 3.7

Assume that the condition cy) of theorem 3.5 holds. If dest(h(i))=dest(k+1), then a
new blocking path is found. Otherwise, if dest(h(i))=dest(k+1), then an augmenting path is
found. In both cases this path is given by the sub-path from s to i of the path
h=path{cycle(i)), the arc (i,i") and the sub-path of the path k+1 from i’ to t. Its length is
given by I{w,v)+&(w)-6(v)+8(h)=0(k+1).
Proof.
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Note that condition c1) of theorem 3.5 implies that node i is before the cycle of path h(i) but
is a node of the cycle related to the path h. It follows that the sub-path from s to i of the
path h is alternating with no cycle. The length of the path given by the sﬁb»path of the path
h from s to i, by the arc (i,i") and by the sub-path of the path k+1 from i' to t is given by
{w,v)+3(w)-8(v) +6(h). If dest(h(i))=dest(k-+1), then condition b1) of theorem 3.5. holds
and the path is blocking; if dest(h(i))=dest(k+1), then condition al) holds and the path is
augmenting. A

Remark 3.7

Let P denote the path shown by theorem 3.7, If P is augmenting, then the length of P
is an upper bound to the length of the shortest augmenting path. Hence, in this case, P can
be immediately enumerated by updating the upper bound UB. If P is blocking it will be
enumerated by the procedure as soon as its length becomes the current shortest length.

The procedure Growing_F, (k,w,v,0(w},Q;,UB,Aug_path) (see table 5) implements
the backtracking according to theorems from 3.1 to 3.7, starting by the deviation arc (w,v),
which refers the path k+1 of length equal to @(w).

Procedure Growing_F; (k,w,v,9(w),Q;,UB,Aug_path);

begin
1 B)=p(w;
2 destky:=dest(h(v)}+h{mate(v})));
3 i=w
4  i=v;
5 if veNg then j=-j; {wis aroot of Fy}
6 while mate(i) ¢ Q and {not case 1)}
(h(i}+h{maie(i}) =0} and {not case I)}
i=s do {not case I3)}
begin
7 feas(i,j):=false;
8 Insert(Q; 1),
9 h(i):=k;
10 next(iy=j;
11 =g
12 i=pred()
end;
13 feas(i,j);=false;
14 if 3.4 does not hold {the path is simple}
15 then if i= s or 3.5 a;) holds or 3.5 ay) holds {the path is augmenting)

16 then Aung_path:=true
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17 else if mate(i)e Qqor 3.5 by) holds or 3.5 by) holds {the path is blocking}
18 then FindCycle(Qq)
19 else if 3.5¢;) holds and dest(h(i))=dest(k} {the path is not augmenting}

then UpdateBound{UB)
end.
table 3

The procedure Insert(Qy,1) inserts node i in Qy and sets InQq{t)=true.
The procedure UpdateBound(UB) updates the upper bound UB, if case ¢y) is verified
and dest(h(i))=dest(k+1) (see theorem 3.7).

Finally the procedure FindCycle(Q;) finds the new cycle, updates the parameters
related to the cycle and updates Q1. Two cases can be distinguished.

a) mate(i) € Q. In this case all the nodes of the cycle have been found by the procedure
Growing_F,(k,w,v,0(w),Q{,UB,Aug_path) and the procedure FindCycle(Q) sets
base(k-+1)=mate(i} and cycle(j)=mate(i), for each node j in the sub-path from the node
next to i to mate(i), j7mate(i). The nodes of the symmetric of the sub-path of the path
k+1 from 1 to the node before mate(i) are inserted in Q.

b) Conditions bl) or b2) of theorem 3.5 hold. In this case, if ie N, (see fig. 7), let b be the
first node common to the sub-path of the path h given by (3.1), from mate(v) and to
the sub-path of the path h(1) from i.

1 H
b i, b= mate(v} ! b= mate(v) |
1 “\‘ [ t
mate(v} ¢ - ' t
( ) 1 T ™ 5
H s H

¥ ~ -y ~ - 1 \‘

. ~\ 1

+ 4

t -

W
mate(h) = v mate(h) = v

fig. 7

Otherwise, if ie N, let b be the first node common to the sub-path of the path h given
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by (3.1), from mate(v) and to the sub-path of the path path(cycle(mate(i))) fromi. The
base of the new cycle is mate(b) and the new cycle has been completely identified. After
discovering the nodes of the cycle, cycle(j)=mate(b) is assigned to each node j in the
cycle such that j#mate(b), cycle(j)=0 and h(j)#0, that is je N,.

4 Correctness and worst case complexity

The correctness of the procedure Parametric_Matching given in table 1 is provided by
the following theorem.

Theorem 4.1

The procedure Find_Shortest_Augmenting_Path(T,P,Aug_path) determines in O(nm)
the shortest augmenting path or finds that the current matching is a maximum cardinality
matching.

Proof.

First note that the current matching is a maximum cardinality matching when
Find_Shortest_Augmenting_Path(T,P,Aug_path) returns Aug_path=false, that is, the
procedure terminates due to the condition Qy = empty without having found an augmenting
path. Secondly the procedure halts after a finite number of steps, since it enumerates, at
most, all the alternating paths; the correctness of the enumeration schema directly follows
from the results of the previous section. Note that at most m selections from Q; can be
executed, since we consider at most m deviation arcs. Therefore the while cycle 2 (see table
4) is repeated at most m times. Furthermore the complexity of Select(Q,,best) is O(n)
including the evaluation of the new shortest deviation from w. Then the overall complexity
of Select(Qy,best) is O(nm). Finally, since each node can be inserted in (and successively
selected from) Q at most once, the overall complexity of cycle 9 (see table 4) is O(m).A

The complexity of the procedure Parametric_Matching is given by O(n(o+[3)), where
o is the complexity of the procedure SPT(T) and J is the complexity of the procedure
Find_Shortest_Augmenting_Path(T,P,Aug_path). Therefore, since o=0(nm), the
complexity of Parametric_Matching is O(n?m). It is worthwhile to remark that o could be
reduced by using dual variables and relative costs. Improving the crude complexity analisys

which provides B, is an open problem.
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