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INVEXITY IN NONSMOOTH PROGRAMMING

Giorgio Giorgi (o)
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Summary. The aim of this paper is to show that the class
of the invex 11psch1tzxan functions is equlvalent to. the
class of functions whose stationary points are global mi-
nima. Moreover, we shall generalize the Fritz John and
the Kuhn-Tucker necessary optimality conditiocns for a
nonlinear programming problem (P) whose lagrangian is an
invex lipschitzian functioﬁ, Under the same hypothesis on

(P), we shall generalize the direct duality theorem of

Wolfe and the strict converse duality theorem of Mangasarian,

§1, Iniroéuctﬁon.

In 1975 Clarke (2) introduqed the notion of generalized
directiondl'derivative'(Clérke'derivative) of a locally
1ipschitzian fﬁnction (seé Definition 2.1) f: X+ R (X is
a Banach space) at a point-x € X, in the direction h e X, in

the following way:

2 h) = 14im sy p L(X' AAn) - £(x)
X'—-—-)x . by
A v O

It can be shown that'fo(x; .)is, for each x € X » a finite,
sublinear (i. e. convex and positively homogeneous) funetion
of h. From these properties Clarke defines the generalized

gradient of £(x) (Clarke subdifferential of £(x)), denoted
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Bf(k), as the subdifferential of the convex function fo(x; )

at O, that is

3£ (x) = {ge X7 |£%(x; h)> < £, h >, ¥ h € X} ,
: %
where X is the dual space of X.
The set 3f(x) is'a-nonempty, convex and ww—compact-subset

of X*and satisfies the relation

£%x; h) =max { < £,h > | £ €¥f(x)}, for all h € X.

Clarke sﬁbdifferential keeps 'many properties of the diffe-
rential, as shown in the papers of Clarke (2, 3), Hiriart-
Urruty (9, 10), Rockafellar {1l6). Clarke subdifférential found
an ideal place of applicétion in the optimization theory;
in particular this éonéept was applied in the study of the
necessary Fritz John and Kuhn-Tucker necessary optimality
conditions (3, 9, 10, 16) and of the Wolfe duality theorem
(5) for a nonsmooth programming problem invoiving locally
lipschitzian functions.

In the present paper we prove first that the class of the
invex locally'1ipschitzian-functions is equivalent to the
class of functions whose stationary pointe (in the sense of
Clarke) are global minima. This property is then used to
establish some optimality theorems and some duality theorems,

in the Wolfe épproach, for a nonsmooth programming problem,

§2. Invexity for lipschitzian functioné.
The notion of invexity was introduced (without this name)
by Hanson (8) for Fréchet differentiable functions and was

developed‘mostly by Hanson, Mond and Craven. The name of



"invex functions" was given by Craven (4) as a contraction
of "invariant convex", since f = g 0 6 will be invex if g
is convex, 0 is differentiable'énd V8 has full rank: invexity
(unlike convexity) is a property invariant to bijective coordi--
nate trahsformétions. Let XCR" an open set and f: X+ R be

diffepentiable} then £(x) is Znvex if

(1) £(x) - £(w> [hix, w]T vE(x),
for all x, u € X and for some vector function h: X x X+ RM,
Of course if h{(x, u) = x - u, we obtain from (lj the clas-
sical definition of differentiable convex function. Craven
and Glover (6) showed thaﬁ‘the class of the invex functions
is equivalent to the class of functions whose stationary
points are giobal minima (see also (1, 11)). wWe shall prove
that this'pfoperty continues. to be true for invex locally
lipschitzian functions., Iet us give the following definitions.
Definition 2.1. _ |
Let XCR™; £: X+ R is said to Pe locally lipschitzian if
for any point x € X there exists-aéneighbourhood N of x such
that, for gome nonnegative constanE k and for all z, u € N,

the following relation holds

|£(z) - f(u)l< k ||z = u |

As previously noted, under this property fo(x; h) is a
finite and sublinear function of hi

Definition 2.2,

Let X§;Rn and f: X+ R bé,locallf lipschitzian; f(x) is
I~invex at u € X if there exists a véctor function n:X x X -+

> R® such that |



(2) £(x) - £(w) > [ nx, w]T ), ¥ £(w) e af(w), ¥ x e X
~or equivalently (5)

fi{x) - f(u) ;ﬁo(u, nx, u), ¥ x 8 X.

The function f(x) is L-strictly invex at u & X if, for
X # u, the relation {2} is satisfied with the strict inequality
- sign. The function‘f(x) is L-invex on X (L-strictly inver on
X) if it is L-invex (L—strictly invex) at any point of X.

Definition 2.3.

Any point x € X CR® which éatisfies.the condition

O € 3f (x)

is called Clarke stationary point of Flx) (7).

The function n(x, u) can be chosen in the following way:

: C, 1f 0 € 3f(u)
(3) on{x, uv) =

min Q0 - £ gy,
swe At )17 £(u)
if O & BF(u).

Example. The function f(x) = |x|, x € R, is (locally)

lipschitzian on R but not differentiable at. x = 0. We have

1 , if u >0

8f(u)=‘



So we deduce

-|x| =u, if u <o
n(x, w={ -{x|, if u = 0

|%f=u, if u 0.

The following théorem generalizes the ébove mentioned
result of Craven and Glover. | |
Theorem 2.1. The lipschitzian function £ is L-invex on
X if and only if every Clarke stationary point is a point
of giobal minimum on X..
Proof.If f(x) is L-invex, then O € of (x) implies
£(x) - £(u) 20, ¥ x € X, that is u is a global minimum point.
Conversely, let us suppose that
0 e 3f (u) == f(x) >f(u), ¥ x € X. |
Then the function n(x, u) can be selected according to

relation (3).
53. Necessary optimality conditions Ffor a nonsmooth
programming problenm.
Let us consider the locally lipschitzian functions

£(x), 9,(x), g,(x), ..., Iy (%)
all from X CR® to R} where X is a nonempty open set, .and

the programming problem

(P)
D = '[XI X & x,r gi(X) ;O' i = 1121010_}m} .



Let us suppose that x° € D is a point of local minimum
of (P); Clarke (3) establishes the following Fritz John

necessary optimality conditions for (P): there exists numbers

ro, ug, PO ui € R, not all zéro, such that

m, .

(4) r® 8£(x%) + 22 u? 89, (x°) 30
| | ' i=1 P TE

(5) uf g, x°y =0, i=1,...,m

(6) (x® ud) 20, i =1, ..., m.

Under various constraint qualifications, Clarke (3),
Hiriart-Urruty (9), Watkins'(ls) eStqblished the following

Kuhn-Tucker necessary optimality conditions for the point

O

X , local solution of (P): theré exists. numbers ui,...,uge R

so that
m _
(7) | 5f (x°) + 1 59.(x°) 30
. 1 1
i=1
(8) uz gi(xo) =0, i=1,..., m
(9) u; 20, i =1,...,m.

Let us introduece the notation

m
¢ (%, u) =r £(x) + 22 u; g (x) = £(x) + uTg(x).
: i=1 '
The following theorem is a Fritz John saddle point necessa-

ry optimality theorem for problem (P).

o) .
€ D be a solution of the program (P)

and let us suppose that the functions f, 9q

Theorem 3.1. Let x

«e.s g are

locally lipschitzian on X. Let r° € R and u0 € Rm, 50 that



the program (P) satisfies at (ro, uo, xo) the Fritz John

conditions (4)~(6). If @ro(x,uo) is L-invex at xo,.then the

following relations hold:
{10) CprO (XO., U)_f: ‘I)ro. (Xof uo); ‘Dro (%, UO)' ¥ x eX,

¥ u >0,

Q

that is @ro admits at (x, uo) a saddle point on X x RT.

Proof. Let first note that the relation (4) can be

rewritten with the following notation

- Q e}
(11) ax @ro (x ;, u ) >3O0,

. . . O .
But the function @ro(x, uo) being L~invex at x , according

to theorem 2.1 from (1l1) it results

(12) éro(xo, uo); @ro'(x, uo), ¥ x € X.

The inequality

0

{13) '¢ro(x U} < @ro(xo, uo), u €@ R?

is equivalent to the relation
uT g(xo) 20, ¥ u 20.

Thus the relations (12) and (13) are equivalent to (10).

Moreover it can be proved the following Kuhn-Tucker
saddle point necessary optimality conditions for the problem
(F).

Theorem 3.2. Let x° € D be a solution of program (P) and
let us suppose that the functions £, gl,...,gm are locally
lipschitzian on X. We also suppose that the program (P)

e o . . .
satisfies at X~ a constraint qualification so that the vector



(xo, uo) verifies the Kuhn-Tucker conditions (7)=(9). If
the function ¢(x, uo) is L~invex at xo, then the following

‘inequalities hold:

®(xo, u) < @(xo, uo); di{x, uo), ¥x e X, ¥ue&e RT.
The proof is similar to  the one of the prévious theorem
(use the Kuhn-Tucker conditions (7)=-(9) instead of the Fritz

John conditions (4)—(6)).

§ 4. Wolfe duality.

The Wolfe dual of the program (P), accbrding to Schechter

(17), is the following program

max & (x, u)
(x,u)eq
(DW)

n+m

2 ={(x, u)er s @¢(x, u)y 0, xe X, u> 0}.
" 2

Theorem 4.1. (Weak Wolfe duality theorem). Let us suppose
D and Qnonempty and that the function (., u) 1is L-invex

on X for each u >0. Then

(14) f(x) >sup & (z, u.

inf >
X éD (z,u)en
Proof. .For (z, u) € Q@ we have

{15)" BX ®(z, u)>30.

Being ¢(., u) L-invex on X, according to theorem 2.1, it

results

S e(x, u)> 9(z, u), ¥V x e X,

or equivalently

(16) £(x) + ug(x)> 6(z, u), ¥ x @ x.



But x € D and u 20 involves uT g(x)< 0. Then from (16}

it results

(17) ' f(x) > o(z, u), ¥ x e D;

(z,lu) being arbitrary in'R, from (17) we obtain the thesis. -

Theorem 4.2. (Direct Wolfe dualzty theorem). Let x° be
a solutlon of the prlmal pProgram (P) and let £, Fyres gm
be locally lipschitzian functions on X; moreover let the
following conditions hdld:

(1) A constraint qualification for (p) is satisfied.

(2) The function ®(., u) is L-invex on Xs for each u 20.

Then there exists u° e RY SO that the point (x rou ) is

a solution of the dual program (DW) and it is ®(x . u°)=f(x0).

Proof. Since x° is a solution of (P) and a constraint
qualification is satisfied, there exists a poiht u® e R™
satisfying the Kuhn~Tucker conditions (7)- {9). So, (xo,uo)eﬂ
and (u®) g(x }) = 0. As the functlon @(., u) is L-invex on X,

o)

the relation (17) comes.trué. Thén for x = 2z = xo and u = u_,

from (17) we deduce the equality_

Lnfx) =max oz, i = o(x°, u°) = £(x°) .
&€ D (z,u)eaQ

m
X
Theorem 4.,3(Strict converse Wolfe duality theoren). Let
o o
Let (x7, uo) be a solution of the dual program (DW) and
let the following conditions be satisfieq:

(1) The primal program (p) admits a solution X and 1

constraint qualification is satisfied for the same program.



_lo-..

(2} The function @(x,.uo) is L-strictly invex at xQ.

Then x° = x and £(x°) = o(x%, u°).

The proof is similar to the one of theorem 4 of (14) in
which the Kuhn-jucker conditions (7)—(9) are to be used.

The theorem 4.3 admits a local version. Indeed, let
VCX a neighbourhood of thé point x° and consider the set
B = (Vf\RT) X {i. Then the following corollary holds.

Corollary. Let‘(xo, u®

) be a solution on B of the program

(bW); sSuppose moreover that fhe following conditions heold:
(1i The primal program (P) admits the sclution X on

vnD, énd a constraint qualification is satisfied for (P).
(2) The function @¢(x, uo) is strictly L-invex at xo.

Then x° = X (that is x° is a local solution of the primal

program (P)) and f(xo) = @(xo, uo).

Remark. The theorem 4.2 generalizes the direct duality
theorem of Wolfe (19) and the theorem 4.3 generalizes the

strict converse duality theorem of Mangasarian (12).
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