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Equivalence in Linear Fractional Programming (*)

A. Cambini - L, Martein **

§ 1. Introduction

The linear fractional problem is the problem of maximizing the
quotient of two affine functions subject to linear constraints. Because
of the potentially broad applications of the linear fractional program-
ming, in the last twenty years, several authors suggested algorithms
for solving this problem. These studies have led to theoretical and
computational analysis in order to compare the various methods.
Some algorithms (for example Martos [12] and Charnes-Cooper [8],
Isbell-Marlow [9] and Bitran-Novaes [3] and Bhatt [1]), even if different
in their approach, have been shown algorithmically equivalent in the
sense that they generate the same finite sequence of points leading to
an optimal solution.

This equivalence fails when the feasible region is unbounded. This
fact has stimulated the Authors in trying to extend the result given by
Wagner-Yuan [14], taking into account the experiments performed by
Bitran [2] which have shown the superiority of Martos procedure over
the others and taking into account the results given in [4] where it is
suggested an algorithm which works efficiently even for the unbounded
case.

Since such an algorithm has been shown to be an useful tool in solving
other kinds of problems like as maximizing the sum of ratios [6] or
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in studying parametric analysis in linear fractional programming [7]
or for generating the set of all efficient points of a bicriteria linear
fractional problem [11], in this paper we will give a self-contained
version of such an algorithm and, at the same time, we will point out
the reason why Martos procedure does not process the problem in the
not compact case; finally we will extend in a suitable way the results
on the equivalence given in [14]. |

' § 2. Cambini-Martein algorithm

Consider the prbblem

c:c+co] A

P: [Supf(a:)=dm+d =L,a:ER={m€IR_”:A:B=b,mZO}

where ¢,d are 1 X n véctors; co,dg € R; Ais am X n real matrix;
beR™ and dz +dy > 0,Vz € R.

The following theorem states some fundamental pr0perties of a linear
fractional problem.

Theorem 2.1. Co‘nsider the linear fractional problem P. Then con-
ditions i), ii) and iii) hold.

i) L= max f(z) iE there exists a vertex z° € Rsuch that L= f(z°).

ii) If L # max f(z) then there exists an extremum ray, i.e., a 1ay
eER _ : '
7 of equation 2 = 2° + tu,t > 0, such that L = sup f(z) =

. TEr
T 04 |
. hx_lp f(z? +tu).

iii) Let D be the set of the optimal solutjons of the linear problem:
| ngﬁ(dm 4 dy).

‘Then L = +oc0 iff D is unbounded and sup(cz + ¢p) = +00.
wel -



Proof: For the proofs of i) and ii) see Martos [12].
iii) Let us note that D # @ since the linear function dz -I— dp is lower
bounded on R. For ii) we have L = sup f(z) = sup ¢ +eott(eu)

220+ doFi(du)’ 50
that L = +o00 iff du = 0 and cu > 0.
It is easy to prove that the ray r’ whose equation is z = z* + tu,
t >0, z* € D, is contained in D and, furthermore,

sup (cz + cg) > sup(ce + o) = +00.

wer!

Suppose now that sup(ez + ¢p) = +o0. Then there exists a ray r'c.D
€D
of equation # = z* + tu, ¢ > 0, such that:

(2.1) sup(cx + ¢g) = +00.

zeT!

Since r'CD implies du = 0 and (2.1) implies cu > 0, then we have
L = 400. This completes the proof.

In order to clarify the main ideas of the sequential method that
we are going to describe, we will give the following definitions.
We say that the feasible point z* is an optimal level solution for the
linear fractional problem P, if z* is optimal for the linear problem:

max(ex + ¢g)

de =dz*, € R

In particular, z* is referred to as a basic optimal level solution if, in
addition, z* is a vertex of R.

Let us note that an optimal solution for P is also a basic optimal level
solution and a ray having the property that any of its points is an
optimal level solution is also an extremum ray.

This remark points out how the concept of optimal level solution is
important in solving the linear fractional problem.
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In order to characterize a basic optimal level solution, we introduce
some notations.

Let 2° be a vertex of the feasible region R with corresponding basis
B; we partition the vectors c and d as ¢ = (eB,cn), d=(dB,dy) and
the matrix A as A = [B : NJ. Set:

Co =cpB b+ Co, Eo =dgB~1p 4 dy,

CN = CN — CBB"l.N, dy = dy — dgB~1N, ¢; and Ej the j-th
component of ¢y and dy respectively.
Consider the following sets of indices:

h={j:d; >0} B={j:d; <0} J3={j:d; =0}
The following theorem holds:

Theorem 2.2. The vertex z° € R is an optimal level solution iff
conditions i) and ii) both hold.
i) For any index j € J; we have ¢; < 0.

ii) If J; and J, are not empty sets, then:

- 73 A — 5 o3 A 5
e/ d, = I,%ajiw"/ djS;:Iell};Cj/ d; = ¢/ da.

Proof: Let us note that, if we refer to the simplex tableau associated
to the vertex 2%, 2% turns out to be an optimal level solution iff there
exists an index s such that, by performing a pivot operation on ds,
the corresponding reduced costs ¢} = ¢; — (¢, / d,) d; are non-positive
Vj, and this is true iff (2.2) holds:

(2.20) d; =0 implies ¢ <0

(2.2b) d; >0 implies ¢,/ d, > ¢;/ d;
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(2.2¢) d; <0 implies 7,/d, <7/ d;

Consequently we have ¢;/ d; < &/d.<e/d; VjeT, Viel,
so that condition (2.2) implies i) and ii).

Let us note that if J; and J, are not empty sets, then s =%k or s = h.
This completes the proof.

Remark 2.1. Let N} and N be the columns of N associated
with the indices k¥ and & respectively. Then any feasible solution of
the kind 2 = B-1p — B“lN(k)a:Nk,a:Nk > 0 or of the kind zp =
B7'5~ B INMgn xn, > 0is an optimal level solution since it is
optimal for the linear problem

( max(cx + co)

$ dx + dxy =30 +33xN8

\z e R

where s = k or s = h. As a consequence, by performing a pivot
operation corresponding to the selected index k or h, we obtain a
new vertex which is a basic optimal level solution; if such a pivot
operation is not possible, then any point of the ray zg = B~1b —
B-1N(s) g N.>»Zn, > 0is an optimal level solution; in such a case s = k
necessarily since the denominator does not turn out to be negative.

As we have just pointed out an optimal solution for P is also an
optimal level solution; the following theorem states a necessary and
sufficient condition for a basic optimal level solution to be optimal.
Set a doen — Gody and let 7% and 7y, be the components of v
corresponding to the selected indices k& and A respectively.

Theorem 2.3. Let 2° be a basic optimal level solution for problem
P. Then z° is optimal for P iff ; < 0 and vn < 0.
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Proof: Tt is known (see Martos [12]) that 0 is optimal for P iff v < 0,
Obviously if ¥ < 0, then 4, < 0 and Yr < 0; now we will prove that
the nonpositivity of 5 and 7, implies v <0.

Taking into account condition (2.2), it is sufficient to prove that v, < 0
implies v; <0 Vj € J; and vy, < 0 implies v; <0 Vi€ .

For (2.2b) we have ¢;/ d; < &/ d, Vj € Ji; on the other hand,
Ye < 0 implies Ek/ Ek < ?fg/ Eo, so that Ej/ Ej < Eg/ ao Vi€ i,
ie, v <0 Vjie .

In a similar way, taking into account (2.2¢), we can prove that
Y; <0 Vj € Jy. This completes the proof.

The following theorem gives a sufficient condition for a ray rCR to be
an extremum ray.

Theorem 2.4. Let 2° be a basic optimal level solution for prob-
lem P and suppose that y; > 0 and B-'N®) < 0, Then the ray
r whose equation in the non-basic variables space is x5 = B~1b —

B'N®™gyn.,zn, > 0, is an extremum ray for P that is sup f(z) =
‘ <

Slép f((l}) = Ek/ Ek.

Proof: Let us note that 7, > 0 implies, for ii) of theorem 2.2,
7i £ 0 Vj € Jo. Taking into account that any point of the ray
zp =B~ - B IN®zgy zn >0, is an optimal level solution (see

—

remark 2.1), we have:

sup f(z) = sup sup f(z) =
zc R TN, >0 dn'.-|—do=-&-0+akme
eER
Cr N, 1+ € . ChTN, +Co Tk
= sup 2—*-L-——_~— = ].1111 :"——k"-—_- = =
dkme + dO Ty, —+F oo dkme + dO dk

This completes the proof.



Remark 2.2. Theorem 2.4 points out the main difference between
Martos procedure and the algorithm that we are going to describe. In
order to clarify this difference, consider the following problem:

(sup f(zy,25) = 22utdze
—Z1 + 29 <2

{
Ty — 2&32 S 1

\ 21,22 20

We have sup f(x1,22) = 7/4 = L, while if we apply Martos algo-
z€R
rithm we find the ray 7CR of equation z, = 2 + t, t > 0 such that
— T Bi+2 _ .
sup f(an,22) = lim 32 =5/3 < I
This happens since r does not have the property that any of its points
is an optimal level solution.

Now we are able to suggest a sequential method for solving P for any
feasible region.

The algorithm generates a finite sequence z%,i = 1,...,£ of optimal

level solutions, the first of which is found in the following way:

solve the linear problem () P, : n%iﬁ(dm +dp) and let z° be an optimal
4]

solution. If 2° is unique, then it is also an optimal level solution,
otherwise solve the linear problem

( max(cz + ¢p)

P dp=dz®

"z ER

() Let us note that Py has optimal solutions, since the objective func-
tion is bounded below.



If P, has no solutions, then we have sup f(z) = +oo foriii) of theorem
2ER

2.1; otherwise an optimal solution z! of P, is also an optimal level
solution.

Let us note that, since we start solving Py, we are interested in gener-
ating optimal level solutions corresponding to increasing levels of the
denominator, so that, taking into account remark 2.1, in order to ob-
tain z**! from z?, we must perform a pivot operation corresponding
to the index k given by the following rule:

(23) %/ di = max ¢;/ d;

Cambini-Martein algorithm

Step. 0: Find the optimal level solution z!: if such a solution does not

exist, STOP: sup f(z) = +o0, otherwise set i = 1 and go to
®2ER
step 1.
Step. 1: If J; = @, STOP: 2% is an optimal solution for P; otherwise

let k be such that (2.3) holds and go to step 2.

Step. 2: The non-basic variable zy, enters the basis by means of a
pivot operation, set s + 1 = ¢ and go to step 1. If such an

operation is not possible, STOP: sup f(z) = &,/ dp.
zeR

§ 3. On the equivalence

In [8] Charnes-Cooper have solved problem P applying the usual
simplex algorithm to a suitable linear problem Pr; when the feasible
region R is a compact set, it is easy to establish the relationship be-
tween an optimal solution of P; and an optimal solution of P; when
R is unbounded and the supremum of the linear fractional problem
is finite but not maximum, Schaible has shown in [13] that infinite
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suitable feasible rays in P are associated to an optimal solution of Py.
Let us note that several vertices of P; can be generated by applying
the simplex algorithm corresponding to feasible rays in P.

This remark and the fact that Martos algorithm does not process the
problem are the main reasons for which the equivalence established
by Wagner-Yuan in [14] cannot be extended to the non-compact case
without any change.

In order to obtain such an extension we will suggest to solve Pr by
means of a suitable choice of the variable entering the basis; this allows
us to obtain a correspondence between an extremum ray of P and an
optimal solution of P; and viceversa. With this aim in mind, first
of all we consider the following transformation suggested by Charnes-
Cooper:

(3.1) y=tz, where ¢=1/(dz + dy)

By means of (3.1) problem P is reduced to the following linear one:
Pr : sup (cy+ ct),(y,t) € Ry,

where R;2 {(3,¢) € R™ : Ay — bt = 0,do+dot = 1,y > 0,¢ > 0},
It can be shown that if (y°,4,),¢ > 0 is a (basic) optimal solution for
Pr, then 20 = /0 [to is a (basic) optimal solution for P.

When R is bounded, the variable ¢ is positive for any feasible point
of Ry, so that we can find an optimal solution for P solving the linear
problem Pj,.

Wagner-Yuan have shown in [14] that Martos and Charnes-Cooper
algorithms are equivalent in the sense that they generate a sequence
of vertices #*,i = 1,...,£ and a sequence of vertices (' t)i=1,..,4
respectively, such that & = y?/t;.

Let us note that, when the feasible region of P is unbounded, the
variable ¢ turns out to be zero, so that the relation ¢ — y/t cannot be
applied.



Nevertheless we will show that by solving Py, with a suitable choice
of the variable entering the basis, we obtain an algorithm which is
equivalent to the one suggested in section 2.

This last algorithm generates a finite sequence of vertices z%,i =
L,...,4, corresponding to increasing levels of the denominator (dz+-dy);
furthermore z¢,4 = 1,...,£ are optimal level solutions the last of which
is optimal for the linear fractional problem or it is the origin of an
extremum ray for P.

Let us note that by means of the Charnes-Cooper transformation the
vertex z¢, with corresponding basis B, is transformed into the vertex
(y*,t,-) with £; = 1/(d$i + dyp), y”" = t;x°.

On respect to this vertex, problem P; can be rewritten as:

[ sup cyyn + ¢
yp + N*yy = b°

t+dyyn =ty

\szov yNZO,tEO

where:

Cy =CN — toﬁoaN; dy = toEN; b* = toE

(3.2) A o=
t0=1/d0; N* = N+ 1tb dy.

Starting from the basic solution (y', ;) corresponding to z!, we will
solve problem P; by means of the usual simplex algorithm with the
following criterium for the variable entering the basis

(3.3) max ¢ /d

where ¢} and d; are the j-th component of ¢* and d* respectively.
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In such a way we obtain an algorithm which is equivalent to Cambini-
Martein algorithm, in the sense that it generates a sequence of vertices
(", 81), s (35, 2,), satisfying the properties stated in the following the-
orem.:

Theorem 3.1.
i) We have z* = Y/t i=1,..L
ii) z* is optimal for P iff s = £ and (3, t;) is optimal for Pp.
iii) ¢ is the origin of an extremum ray for Piff s = £+1 and (¥, =
0) is optimal for Py. ﬁ
Proof: Let us note that (2.2) hold substituting d;,d,,e;,, with
d;,d;, c},c} respectively.
As a consequence we have:

. Y =cr/dy < min e /d*.
(3.4) glz,}gigcj/d, cx/dy < mmin ¢} /d;
Furthermore, taking into account theorem 2.3, y; < 0 implies =
toy <0, so that ii) follows.
Relation (3.4) implies that the variables entering the basis, applying
the two algorithms, are the corresponding variables 2 Ny s YNy -
Let w = (wi,...,wm) be the column of the matrix N associated to
TN, and let w* = (wi,...,wh,, w§) be the column of the matrix N*
associated to yn,, where wy = tydy, and w} = w;+tob;dy, i = 1,..., m.
Set I = {i:w; >0} and I* = {3 : w’ > 0}. Let us note that I*#0
since wg > 0 and furthermore ICI*, Taking into account that:

*

wp  wg
H}‘ax — ,-----—) P
wy >0 tgbi to

(3.5)

- 1 w; —
- Te 4+ — wi
ma’x{ bt g A b,;’dk}’
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we have the following cases:
-I#£0.

We have mezi}x w; /b; é w, /by and (3.5) reaches its maximum value in

di +w:/ By so that the corresponding variables z N, and yy, leave the
basis and this implies i),

~I=9.

In such a case zp = b — zy,w, zn, > 0, is the equation (in the non-
basic variables space) of an extremum ray for P and the supremum
of the problem is ¢ /dy. On the other hand, in (3.5) the maximum
is reached in dj so that the variable ¢ leaves the basis by performing
a pivot operation on d,. The new basic solution is (y**t1,0) and it
is optimal for Py with optimal value &, / dx, because of (3.4); this
implies iii) and completes the proof.

Remark 3.1. By iii) of theorem 3.1 and taking into account (3.2),
we can find the relationship between the equation of the extremum
ray given by Cambini-Martein algorithm and the optimal solution of
problem Py, obtained by using criterium (3.3).

In the first algorithm we obtain: the vertex «¢ = (Zp = b, Zn = 0),
the extremum ray of equation 25 = b — 2 NW, TN, > 0, where w is
the column of the matrix IV associated to the variable z N, and the
value ¢/ dy, for the supremum.

In the second algorithm, by performing a pivot operation on dy, we
obtain: the optimal solution (y*+! = (g5 = ~w/ dp, G, =1/ A, G =
0),t = 0), the optimal value 7, / di (this is an indirect proof of the
property that the supremum of the problems P and Py, are equals) and

the column associated to the nonbasic variable ¢ given by u = (up, uy)
where

(3.6) ug; = —~w; [tods — b;,  §=1,..,m; up =1/tyds.
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It is easy to prove, setting B the set of indices corresponding to the
bases B, that the value of £y and the index k are characterized by

'I.LJ' >0
JEBU{R}

Then we have the following correspondence:

~ifzp =b—x N W, Zn, > 0is the equation (in the non-basic variables
space) of the extremum ray for P, then (y*+1,¢ = 0) is the optimal
solution of P;, where

y£+1 = (yB = “w/zk:yk = 1/81“ yN = 0)
and dj, is given by (2.3).

~ Let (y**1,¢ = 0) be a basic optimal solution of Pr, where y'tl =
(Tp+1,Tn = 0) and let u be the column associated to the non-basic
variable ¢; furthermore let 75, up be the vectors obtained deleting
the k-th component in Tp41 and u respectively, where k is the index
corresponding to (3.7).

Then 2p = b — zy,w,2n, > 0, is the equation of an extremum ray
for problem P where

b= —~up +?IB/750, W= ~Tp/Up-

Remark 3.2. As we have pointed out in the proof of the previous
theorem, when the variable ¢ leaves the basis we find the optimal
solution of Pp; this is not true if we do not apply criterium (3.3).

4. Concluding Remarks

In this paper we have suggested two algorithms for solving a linear
fractional problem which can be interpreted as a modified version of
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Martos and Charnes-Cooper algorithms; furthermore we have shown
that these algorithms are equivalent in the sense given by theorem
3.1. This last result can be viewed as an extension of the one given
by Wagner-Yuan for a compact feasible region.

As last remark, we point out that in studying post-optimality in linear
fractional programming, the equivalence between the two algorithms
allows us to choose the one which is more appropriate. More ex-
actly, the Cambini-Martein algorithm seems to be more appropriate
when the parameter appears in the right-hand side of the constraints,
while the second algorithm seems to be more appropriate when the
parameter appears in the coefficients of the numerator of the ob jective
function.
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