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INTRODUCTION

In recent years multiobjective mathematical programming has been widely
studied because of its applications in different optimization fields; in fact, in
many real problems, one is usually confronted with several objectives which
are in mutual conflict.

For instance, a production manager, who is responsible for the operations in
a plant, does not always want to maximize his profits onfy. For strategic
reasons, he may also pursue the goal of minimizing the utilization of scarse
resources in order to avoid their consumption.

In this paper, we will consider a bicriteria problem, ie. the problem of
maximizing, in the sense given by Pareto, a pair of functions fy, f2 .
Problems of this kind, naturally arise in various areas of Economic and Social
Sciences, such as portfolio selection problem where we are interested in
minimizing the risk of investment and, at the same time, in maximizing the
profit.

I1 is well known that when f; and f; are convex functions, the set of all
efficient points can be generated bv solving a scalar convex parametric
problem whose objective function is a non-negative linear combination of {;
and f» | Markowitz (3], Pang [7], Sharpe [11]]. Unfortunately such an
approach cannot be extended to a non convex bicriteria problem, not even to
the class of generalized-convex bicriteria problems, since the quasi-
convexity of [y and f» does not imply the quasi-convexity of their non-
negative linear combination. For this reason and because of its wide
applications, recently, some authors | Martein {4,5], Choo [2], Schaible [10] ]
have suggested a different approach for the bicriteria problem in order to
study the conneciedness of the set E of all efficient poinis and, at the same
time, to give algorithms for generating E.

In such new methods one of the two objective functions plays the role of a
parametric constraint; in this way E can be generated by means of a suitable
post-optimality analysis and the properties of the objective functions are not
lost,

Following this idea, in this paper, we will establish, first of all, some
theoretical results in order to characterize the set E for a wide class of
bicriteria problems that is the class of bicriteria problems where at least one
of the objective functions has the property that a local minimum is also
global. Then we will suggest a sequential method for generating E in the
classic case where one of the objective functions is strictly convex quadratic
function and the other one is linear.



1. STATEMENT OF THE PROBLEM

Let us consider the bicriteria problem in the following form:

IP:( minfi(x), max f2(x) xR

where [y, fo are real-valued continuous functions, defined on a compact
subset R of IR

A point xU € R is said to be efficient for the bicriteria problem if there

does not exist a point x € R such that the following inequalities f;{z) =

fi(x9) , fa(x) = f2(x9) both hold, where at least one is strict. Let E be the
set of all efficient points of IP.

Recently some authors [Martein [5], Schaible [10] ] have pointed out that
E can be expressed as a suitable union of sets of optimal solutions of a
parametric problem where one of the objective functions plays the role of a
parametric constraini. Without loss of generality we will consider the
following parametric problem:

IP{B):z(6)= min f((x), xeR(B)={xeR: fHx) > 8}
and from now on we will refer to f5(x} = 6 as the parametric constraint.

In this section, we will establish some theoretical results in order to
characterize the sei E of all efficient points for a wide class of bicriteria
problems. More exactly we will consider the class £ of bicriteria problems
where [y, f2 are real-valued continuous functions, defined on a compact
subset Rof IR2 and where at least one of the objective functions! has the
properiy that a locai optimum is also global.

The following propositions establish some properties of the parametric
problem IP { 9 ), which are useful in the sequel.

Set B¢ =max fa(x) and 8 ;= maz f; (x)
fi(x)= ap.xeR X€R
where ag = min f; (x)
xR

1 Wewill suppose, without loss of generality, that {{ has the property that a [ocal
minimum paint is also global.



PROPOSITION 1.1 Let f; and fy be real-valued continuous functions
and let 29 be an optimal solution of the parametric problem IP(6). If x9
is not binding to the parametric constraint , then x0 is a local minimum

point for the problem { min I; (), x €R).

Proof: Since we have f(x) > f;(x?), ¥ x € R(8) and {5 (x0) > 0, for the
continuity of the functions f; and fy there exists a neighbourhood U of 19
such that f>(3)>8 and f; (x)= f; (x0), ¥ x € UNnR

As an immediate consequence of the previous result we have the following
proposition:

PROPOSITION 1.2  If the function f| does not have a local minimum
point on R, different from the global one, then any optimal solution of the

parametric problem IP (9 ) is binding to the parametric consiraint ¥ 0 €
[0g.0¢].

Now we can state the following theorem which gives a characterization of
the set E of alf efficient points for the aforesaid class of bicriteria problems.

THEOREM 1.1 Let us consider problem IP where f; and f; are
continuous functions defined on the compact set R and f; has the property
that a local minimum point is also global. Then,

(1.1) E=U S(98)
8€ [{8q,0]

where S (8 ) is the set of optimal solutions for the problem IP (9 ).

Proof : We must show that x0 is an optimal solution for [P (8 ) with
8 el0g,0;] if and only if 20 is an efficient point for IP.

If 20 is not an efficient point for IP, then there exists x € R such that:

(1.2)  f2(x) » f2{x0) and fi(x) < fy(x0)

ar

(1.3)  f2(x) = f2(z9) and £ (x) ¢« f;(z0)



{1.3) contradicts the optimality of x0, while (1.2) implies the existence of an
optimal solution ¥ for IP ( 8 ) which is not binding to the parametric
constraint and this contradicts Proposition 1.2. Let x0 be an efficient point
for problem IP; if %0 is not an optimal solution of the parametric problem
IP( 9 ) with f2(x9) = 6 , then there exists x € R such that g (x)< f; (x0),

f2 (x) = f (x0) and this is absurd taking into account (1.3). This completes
the proof.

Taking into account that the class of convex quadratic functions and the
ciass of semi-strictly guasi convex functions? belong to £, we can obtain, as
a corollary of the previous theorem, the following result stated in Martein [5]
and Schaible [10}

COROLLARY 1.1 Consider the bicriteria problem where f| is a semi-
strictly quasi-convex function, f2 is a continuous function and R is a compact
set. Then:

E- U s(s)

ec lop,04l

2. SOME THEORETICAL RESULTS

In this section we will give some theoretical resulis in order 10 suggest a
sequential method for generating the set E of all efficient points for the
bicriteria problem where, now, {; is a strictly convex quadratic function and
fz 1% a linear function defined on a compact sef R, that is, we will consider
the following problem:

P: [min(1/23TQx+qTx+qp), maxcTx], xeR={x€ IR0:Ax=2b)

where the symmetric matrix Q of order n is positive definite, geIR? , ggEIR,
cEIRD, Aisareal m x n matrix and b €IR®

2 A real-valued function f defined on a convex set X is called semi-sirictly quasi-convex

if for all x4, x2 € X such that f(x() # f(x2 ) the inequality f(x) < max (f(x}).f{x2 )) holds
for all x on the open line segment 1 xy.x2 |.
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Set M =max cTx, the parametric problem can be rewritten in the
KER
following way:

PO): z(0)=min (1/2xTQx+qTx+qy), x€R(D)
where R(0)={x e R:cTx>2M-0,020)

Since £;(x) is a strictly convex quadratic function,the problem min f;(x)=aq
XCEk
has a unique solution x*; furthermore for every @ £[Q, M-wpl, the

corresponding problem P(8) has a unique optimal solution since Ri(8) is a
compact set.

Taking into account Theorem 1.1, the set E of all efficient points of P
becomes:

E= L} s(90)
fe [0, M-qp]

Let us nole that, when M =y . E reduces to the singleton set { x*}

The idea of the sequential method that we are going to describe is to
generate all optimal solutions of problem P(6) for every © in the interval
[ 0, M-ug ], by means of post-optimality analysis starting from 8 = 0.

Since P(8) is a strictly convex quadratic problem the optimal sofution x(9),
the Lagrange muitipliers A(8) associated with the constrainis and Lagrange
multiplier A¢ associaled with the parameiric constraint are linear functions
with respect to 9 .

As we will see, A9 turns out 1o be a linear non-negative decreasing
function of 8 and we will point out that Ay will play the role of a parameter

instead of 0. This choice will allow us to obtain a simple sequential method
for generating E.

With this aim in mind, let xX} be the optimat solution of the problem
P( 6{K)), the matrix A and the vector b can be partitioned as: A =[ B ] and
b=1{bg]l L N
[ by ]



where B is the submatrix of A corresponding to the set of the 1 constraints
binding at x(K) (ie Bx®) = bg) and N is the submatrix corresponding to
the set of the constraints not binding at x%K) | je. NxK) > by

Taking into account Proposition 1.2, the Karush - Kuhn - Tucker conditions
for problem P{ 9) can be written in the following way:

(21a) Qx-BTA-2c=-gq

(2.1b) Bx = hp
(21.c) Nx > by
(2.1.d) cTx = M-8
(2.1e) A0 g 20

and the muliiplier Ap associated with the parametric constraint is positive

for every 8 €[0, M-ag ] . Let us suppose that the matrix B has full rank
p< n; the particular case of rank equal to n will be discussed in Remark 2.1.

Let us note that, setting:

[ ¢ -DT]
D = | |
[l D o |

where DT= {BT:c], {2.1. 3 b, d)can be rewritten as:

1 [ g1 [o0]

[ 3
D*| A} =1 bgl +0]0]
L 20 | M| | -1]

D* is not singular if and only if DTQ-1D is not singular. Since D has full rank
and Q is symmeiric definite positive , then DTQ-1D = DO is a symmetric
definite positive matrix. This implies that system (2.2) has a unique sofution
and furthermore the Lagrange multiplier Ag is of the kind: Ap = -a; 0 +ap
where a; is positive since it is the reciprocal of the (1 +1, 1 +1} element of
DO. This remark points out that Ag is a piece-wise linear decreasing function
of 6 and thus Ap can play the role of the parameter instead of 8 ; in other
words post-optimality for problem P(8) can be carried on by studying the
variation of X and A as funciions of Aq.



With this aim in mind, from (2.1.a) and (2.1.b}), we have:

Hl 2 1. a0l ¢1 + T-q1
L& | LOJ L bgl
where:
[ @ -BT]
H= | l;
L B 0 |

and, since H is not singular, we get :

{23a) x = Ay up+ vy
(23b) 2 = Ag ug + V2
(23¢) 8 = -cTup &y - cTvi+ M

where u = [ug ] . H! [¢] and v-lvl- H!l-ql
[ w2 | L o) L va L bgJ

It is important to note that for Proposition 1.2 when Ap hecomes 0, the
linear constraini is not yet binding so that the current solution is not an
efficient point and the algorithm stops.

Starting from the optimal sofution xK), given by (2.3.a), with the value
A(K), we want to decrease the value of g and find a value AgiK+D &[0, %) ]
which guarantees not only the non-negativily of the solution and of the
Lagrange multipliers A, but also the feasibility of the current solution with
respect to the non- active constraints, i.e.:

(24a) x (A )= Ay up + vy 2 0
(24b) A(ho)= A9 up+vpz2 O
(24¢) X (A0 )ER

This allows us to claim that all the solutions :

x (Ap }= Ag uy + Vi



with Ag & [ AplK+i} 29(K) 1 are optimal for the problem P(0) with 8 =
cTx(Ag)+M and, at the same time, they are efficient points for the
bicriteria problem P.

The following theorem gives us a condition in order tofind AgK+1) | given
x &) and the corresponding Aok} Set v3= N vy - by, uz =Nu; and consider
the following sets of indices:

Ji=(j: vy < 0) withj=12,...,n
o=0j: vy <0} withj=12,...,]1
Ja= Ui vy <0} withj=12,..., mI

where vy , vy, vs denote the j-th component of the vectors vy, va, v
respectively; we have:

THEOREM 2.1 The vector x{ Ag) is optimal for the problem P(0) with
=cTx(Ap)+M forevery Age [ 2K+D 2gK) ] where apK+t) =
max {Ag;, Aoz, Apz) and

[ max - vij / uyj if Ji =0
Mg = 1 iEd
L o otherwise

{ max - Vi / Uy if o=@
Az =1 i€z
L o otherwise

{ max - V3 / u3j if J3=4
o3 = | i€J3
L o otherwise

where uyj, vy, uz; denote the j-th component of the vectors uj, up, Uz
respeciively.

Proof: From the Karush - Kuhn - Tucker conditions applied to problem P (8 ),

taking into account (2.3), x (A¢) is optimal for P(0) with 6 = c¢Tx (Ag )+
M if the following conditions hold:



a) x(dg) = Apuy + vy 20
b) L{4g) dog Uz + Vg 20
c) N x(ig) = A9 N u + Nvy =by thatis: Ag uzz Vs,

Now, we will show that a) holds for any g€ [ Ap1- 20'K) 1 In fact, if vy; »
Oand ug 20,then xi{Ag)=0 forany A9 20; ifvy > 0 and uy <
0 then x;(Zg) =20 istrueforany Ag < -vyj/ uy and since xl&} is optimal
for P (0K)) with 6Kl = ¢T x (K} + M, then condition a) is satisfied for &g =
Ao) sothat A ® <-vy/uy and xi{Ag) =0 forany Ap = Ag®).
Consider now the case vy = 0. Since X (Ap &) 2 0 we necessarily have
uy> 0,sothat x (Xg) 20 for any A9 &) > - vy/ ug;. As a consequence,
condition a) is satisfied for any Ag €[ Apq . ApK} 1. In a similar way we can
prove that conditions b) and ¢) hold for any A9€ [ 455, 4pK) 1 and for any
Ao EL A3, 20'K) ] respeciively. Obviously, all the conditions a), b) and ¢) are

satisfied for any Ap €[ A¢K+1) 25K)] where Ao®+1) = max { A1, A2, Lo3 &
This completes the proof.

Remark 2.1 : When B has full rank equal 1o n, (2.3) become:

X = B-lbg
A = [ -(BT)yic]hg + [ (BT)-iq+(BT)-1QB-bg]
8 = -cT Blpg + M

Let us note that x and 8 are non-negative and they are independent of Aq.
The non-negativity condition on Lagrange multipliers allows us to know the
constraint which must be deleted; so that the new matrix B’ corresponding to
the binding constraints again has rank less than n and we are in the
previous case.

Remark 2.2 : Taking into account Theorem 2.1, if we know xk) we can
obtain xk+1). In order to find the starting point, we calculate the optimal
solutiont x0 of the linear problem Pp = {max cTx, ¥ &€ R ). Since we will
suppose that P;, has a unique solution3 , then the matrix B has full rank
equal to n and we are in the case of Remark 2.1 with 8 =0.

Let us note that x{9) is optimal solution for problem P(0), since the feasible
region R(0) reduces to the singleton set { x{0) ),

3 The case of alternate optimal solutions will be considered in section 5.1.
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3. THE ALGORITHM

In the previous sections, we established some theorical results, which now
allow us to propose a simple algorithm to solve bicriteria problem P. The
algorithm steps are siated with the aim of clarifing the computational
aspectsd.

We will suppose, for the sake of simplicity, that degeneracy does not occur
and that the linear problem Py, has a unique solution. Some special cases will
be discussed in the following section.

STEP 0: Solve the linear problem Pp={ max c¢Tx,x € R). Let x(® be the

optimal solution, B the matrix of coefficients of constraints binding
at x{0) Nthe matrix of the other constraints, bg and by the
corresponding right-hand side. Set K=0 and goto STEP 1.

STEP 1: Build the matrix:

[ Q -BT]
H= | |
| B 0]
and thevectors: ni= | ¢l ha- [-q]
[ 0] L bg
Calculate the inverse of matrix H and the vectors:

p=lulapgtlel v-TIlvilopgtl-ql,
[ up | L 0] L vy | bg |

vy= Nvy-by and u3=Nuy. GotoSTEP 2.
STEP 2: Calculate AgK+1) = max {49, Apz Ae3) Where:

((max - vy /uy if ]y =0
My = 1 € Ui

Lo otherwise

{ max - \ AT if Jp=+60
Aoz = 1 1€ D

L o otherwise

4 AFortran implementation of this algorithm isrunning on IBM 30/90-VM computer of
CNUCE Institute of Pisa.
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[ max - vy / Uz il J3=0
Aoz - | i€l
L o otherwise.
V3= NV]-bn,U3=NU1,J|=(j:V1i<O],j=l,2 ..... n

Ja= Ui vy <03, j=12 ...,
Jo= {j:vs <03, j=12,., m-1. The new solutionis x K+1) =

Ag ®+D) uy + v .Go1oSTEP 3.

STEP 3: If x (K+1) js equal to x (K), set Slk+1)={ 3 (K+1) } and go to STEP 4;
otherwise, set St+D={x:x = Ag vy +v(], 2K+ < Ag < oKD} and
go 10 STEP 4.

STEP 4: If Ag K+1)= 0, the points of the set E={ L};S @ i=1__K+1)are
efficient for the problem P, STOP ; otherwise go to STEP 5.

STEP 5: If Ao (K+<1) js equal to Ap2, delete the constraint corresponding to
Ao &+1) in matrix B and add it in matrix N, set k=k+1 and go to
STEP 1; otherwise, add the constraint corresponding to 3¢ (K+1) in
matrix B and delete it in mairix N, set k=k+1 and go to STEP 1.

4. A NUMERICAL EXAMPLE

Let us consider the problem:
Py: (max x;+23X2, min X(2+%92-8 x¢-8 X3 ),

with YER-{xEIRZ: 2<%, 10,3 <125 12).

Applying the algorithm, the following sequence of steps is obtained:

At STEP 0, the linear problem:
P: max 3y +2%, XxER=(x€IRZ:2 5%y < 10,3 <% 12)
has the unique solution x{0)=( 10,12 ), thus we have:
B- [-10] bg= [ -10 ]
Lo -1] | -12 |

[2



N~ [10] bn- [ 21
Lo 1] L3 |
Set K-G and goto STEP 1.

At STEP 1, we built;

2 01 01 hi=T17n2=1"T 817
H=l 0 2 0 1| [ 2 ] | 8 |
-1 0 0 6| 10| | -10 |
Lo -1 0 0 ] Lo ] L-12]

H-l=

[ e — —

50 that we have:

u= 101 v= [ 10] us= 1 01 wv3=T8]
| 0 | I 12 L O] [ 9]
| 1] | -12 |
[ 2] [-16]

At STEP 2, 2!V = max { Ay, Aoz, Aoz ) =12, since Agr= 0, Agg-

max { 12,8 )= 12, A¢s =0. The new solution is:
x( =[07] a2 . T10] = {10]
Lo L12] { 12]

At STEP 3, since x (1) is equal to x (0}, set §(D- { (10,12) } and go to
STEP 4,

At STEP 4, since Aot is not equal 0, go to Step 5.

At STEP 5, since Ao{!) - 292 we must delete the row of B corresponding
to x; < 8 and add it in matrix N, i.e.:
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B=[0 -1] bg=1-12] N-T1 01 by 2 1]
-1 0| | -10 |
Lo 1] L 3]
set k=1 and go to STEP 1.
At STEP 1, we have :
2 0 071 far=T17 pna=1T2817
H=]0 2 1| | 2] | 8 |
Lo -1 o | Lo ] -12 ]

The inverse of H is:

{172 0 0]
H-t=| 0 0 -1|
L 0o 1 2]

50 that we have:

u= (1721 v=T 47 3= T17217 wva=T 21
| 0 | | 12 ] |-1/2 | | 6|
L 2| | -16 ] L 0] L 9]

At STEP 2, 252 = max {Ag, Apa, Aoz ) =8,since Agr = 0, Apz = max
{8)=8, Ap3 = 0.The new solution is:
2 =[1/27 22 ,T47 .T8]
L o] L1zl L12]

At STEP 3, since x(2) = x(t} set
S u(x:x=T1/21 2 + 47 ,8shp<12).
[ 0] [12 ]

At STEP 4, since Ay{}is not equal 0, go to Step 5.
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At STEP 5, since Ag(® = 8 = App, we must delete the row of B
corresponding 1o the constraint - 2 > -12 and add it in matrix N, ie.

T1 0] [ 21

N= |-1 0] by =1 -10 |
1o 1 | | 3 |
Lo -1] [-12 ]

Set K=2 and gotoSTEP 1.

At STEP 1, we have:;
H- T2 01  h= T1] p2- T8]
Lo 2] | 2] | 8]

The inverse of H is:
H-1= [ 172 0]
L o0 1/2]

so that we have:
u= (121 v=T47 wa= T1721 wv3= 2]

L 1] [ 4] l-172 | | 6 |
b1 [ 1]
{ -1 {8 ]

At STEP 2,103 = max (Ag;, kg2, Aoz ) =0, since Agy= 0, Agy =0,
Aoz = 0. The new solution is:
13 =717271 2B +[47 =741
L1 ] L4] L4]

At STEP 3,x(3) = x(2) then set:

SBra(x:x =T1/27 2 ~[47,0<2p< 8)
L1 ] L4]

At STEP 4, since 43} = 0, the points of the set E={ J;$®,i=123) are
efficient for the problem Py, the algorithm stops.
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In the following picture , the feasible region R is depicted. The efficient
points of Py generated with the proposed algorithm are represented by the
bold lines,

 §

2ad {10,12)
\\
(8.12) S

~

RN

(4l4)

5. SPECIAL CASES

In this section, we will consider the following special cases which are
important because they can be found in many applications;

1) Problem Py, has alternate optimal solutions,
2) Some of the linear constraints are in equality form.
5.1 Alternate optimal solutions

As we have pointed out in Remark 2.2, the starting point of the proposed
algorithm is the unique solution of the linear problem Py, since it is also an

efficient point for P. When Py, has alternate optimal solutions, set Sp={ x €
R : max ¢T x }, we must choose a point, belonging to So, which is also efficient
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for P, it is easy to verify that now the starting point is the minimum of the
quadratic function over the set Sp.

Let us note that, taking into account Remarks 2.1 and 2.2 for every x £S5,
we have:

X = Blbp
A = | -(BT)tc]rg + [ (BT)-1q+(BT)-1QB-1bg]
B =0

Let x;, be a solution of PLand set Ja={j:uz =0 and vy< 0); if ], is
empty, taking into accouni Theorem 2.1, we can find A9 which verifies
conditions (2.4) and xy, turns out to be an efficient point for P. The algorithm
can be applied, setting x(0)= x;

Otherwise, if J, is not emply , there is one or more Aj which assumes
‘negative value indipendently by 2.

In order 1o find x(0}, the idea (see [6]) is to perturbate the linear objective
function in such a way that the corresponding linear problem has a unigue
solution. Consider the problem:

Py’ :max(c+ec)x
where ¢' 3 is such that xy, is the unique solution for P

The solution of the perturbated problem Pel 9 ) becomes:

x ()= Ao (EUG) + vy
A{R)= Ag (up, guy) + vy

where [uy 1. g!lc]
Lug | L 0]

Theorem 2.1 can be reformulated in the following way. Set;
Jr =0jowyp> 0 ,vp<0 ) with j=12,....n

Jo =i wy>0.jeh ) withj=12.. 1

3 Asuitable choice for ¢’ may be ¢’ = % ;ali), which ali) denotes the gradient of the i-
th linear constraint binding at x|,
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Js = (i w3 0, v3 <0} with j-1,2,..., m-]

where u'3=Nu'y and vyj,vaj, v3, U'(j, U'gj, u'3; denote th j-th component of
the vectors vy, va, v3 , UL, U2, U'3 respectively.
We have:

THEOREM 5.1 The vector x (Ag) is optimal for the problem P(0) with

0=(c+ec)Tx(Ro)+M forevery Ag€ [ Ag.A0" ] where Ag - max
{201, Ao2. Aos), Ag" is the previous value of 4 and

[(max - vy /evy if Jy=8
Aag =1 1€ Jy
{0 otherwise

((max - vy /Uy if J2=0
Ao =1 i€J2
| o otherwise

[ max - ¢ RALE if J3 =@
Aoz = ] i€J3
Lo otherwise

Proof: the proof is the same as Theorem 2.1. Taking into account the
arbitrary of €, it is sufficient to note the maximum is reached when upj = 0.

Corollary 5.1 : If g is equal to 0, then x (A'p) is the optimal solution for
P{9) with 9=0.

Proof ; Taking into account Theorems 5.1 and 2.1, the statement hold since
A'g minimizes the quadratic function for every x £8y.

Remark 5.1 : Taking into account Corollary 5.1, until A’y >0, we must add
or delete a row to or from B, respectively if 'g= A'ozori'py andset A7g= 2.
When 2’9 becomes equal to 0, x (1'g) is an efficient point for problem P . thus
setting €=0, x(0)- x(d'g). The algorithm, proposed in section 3, can be
restored.
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5.2 Linear equality constraints

Now, we will show how to solve problem P when R is defined by one or
more linear equality constraints.

Let us note that if for every equality constraint we introduce the
corresponding two inequalities, the matrix H becomes singular and the
proposed algorithm cannot be applied.

Thus, we will suppose that the matrix A and the vector b can be partitioned
as:

A =TAl, b = Ibf] where A; is the submatrix of A corresponding to

[A5] | bg_l
the set of the m, equality constraints (i.e. Ajx=by ) and Ay is the submatrix
of A corresponding to the set of the m-m, inequality constraints {ie.
Arx Xz bal

Since all the solutions of problem P must be binding at all linear equalily
constraints, at every iteration of the algorithm, the matrix B must contain
the submatrix Ay, even if the Lagrange multipliers, corresponding to these
equality constraints, become negative.

So that, at the Step 2, the set ]y becomes:

Jo= U jrvy<0and j& J°), j=12,...]

where ]* is the set of the indices corresponding to the equality constraints.
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