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INTRODUCTION

In some recent literature regarding Portfolio Selection Theory,
mathematical models expressed as Fractional Quadratic Problem
or rather constrained problems in which a function subject to
linear constraints is optimized and expressed as a ratio between a
quadratic and a linear function have been suggested [11,13,14].

For a number of classes of these kinds of problems, interesting
methods of solution applied to appropriate parametric quadratic
problems have been proposed [4,5,6]; the strict convexity of the
quadratic function plays an essential role in these methods, and as
a result, they are not applicable in cases where the quadratic form
is positive semi-definite.

All this has led to research which aims at the identification of an
algorithm able to solve the fractional quadratic problem when the
quadratic form is convex,

Taking into account that a convex quadratic programming
problem can be transformed into a Linear Complementarity
Problem as well as recent developments in the Linear
Complementarity Problem field as regards both the theoretical
and algorithmic- computational aspects, in this paper we will, first
of all, prove how a Fractional Quadratic Problem can be expressed

by means of a parametric complementarity linear problem and



then how it is possible to generate a sequential method for solving
this problem by means of some optimality conditions established

in section 2 and a post-optimality analysis.

1. LINEAR COMPLEMENTARITY PROBLEM

As we have just outlined the aim of this paper is to solve a
quadratic fractional programming arising in portfolio selection
theory by means of a suitable complementarity approach.

In this section we will review one of the most popular methods
for solving a linear complementarity problem, i.e. Lemke's
algorithm. |

Let us note that the sequential method that we are going to
describe in section 3 does not depend on the algorithm used for
solving a Linear Complementarity Problem, since it can be easily
adjusted to any other complementarity method.

Before giving the main steps of Lemke's algorithm, we will
recall the general formulation of a Linear Complementarity
Problem [10]:

(1.1.a) w - Mz =g

(1.1.b) z, w 20

(1.1.¢) 2T w =0

where M is a n x n matrix, w, z, q eIR»,

Lemke's Algorithm
Let us assume that one or more components of vector q are less
than O, otherwise w = q, z = 0 is a solution of (1.1). An artificial
variable associated with the column vector -en {en € IR is the
column vector of all 1's) is introduced so that system (1.1)

becomes:



(1.2.a) w - Mz -e 2z =g
(1.2.b) z, w 20
(1.2.¢) zg =20
(1.2.d) zT w =0

The Complementary Pivot Algorithm moves among feasible
basic vectors for system (1.2.a,b,c) by means of simplex-like pivot
operations.

We say that a feasible basic vector for (1.2.a,b,c) is a
Complementary Feasible Basic Vector if there is exactly one basic
variable for each complementary pair (wj,z;) and a feasible basic
vector for (1.2.a,b,c) is an Almost Complementary Feasible Basic
Vector if it satisfies the following properties :

i) There is at most one basic variable for each complementary

‘pair of variables ( wj, Zj };

ii)lt contains exactly one basic variable for each of (n-1)
complementary pair of variables, and both the variables in
the remaining complementary pair are non basic;

iii) zy is a basic variable in it.

Let us note that all the basic vectors obtained in the algorithm
with the ‘possible exception of the final basic vector are almost
complementary feasible basic vectors and the algorithm generates
a finite sequence of almost complementary feasible basic vectors.

The main property of the path generated by the algorithm is the
following. Each Basic Feasible Solution obtained in the algorithm
has two almost complementary edges containing it. We arrive at
this solution along one of these edges and we leave it by the other

edge. So the algorithm continues in a unique manner. It is also



clear that a basic vector that was obtained in some stage of the
algorithm can never reappear.

There are exactly two possible ways in which the algorithm can
terminate:

1. At some stage of the algorithm, zg may drop out of the basic

vector, or become equal to zero in the basic feasible solution

of (1.2). If (w', 2, zy' = 0) is the basic feasible solution of (1.2)

at that stage, then (w', 2z') is a solution of the Linear

Complementarity Problem (1.1).

2. At some stage of the algorithm, zg may be strictly positive in
the Basic Feasible Solution of (1.2), and the pivot column in
that stage may turn out to be non-positive, and in this case
the algorithm terminates with another almost
complementary extreme half line (distinct from the initial
almost complementary extreme half line). This is called ray
termination.

Let us observe that when ray termination occurs, in the general
case the algorithm is unable to solve the Linear Complementarity
Problem, even if a solution to the Linear Complementarity
Problem exists . However, when M satisfies some conditions (in
particular when M is positive semi-definite matrix) it can be
proved that ray termination in the algorithm will only occur when

(1.1) has no solution.

2. SOME OPTIMALITY CONDITIONS FOR THE QUADRATIC
FRACTIONAL PROBLEM

The quadratic fractional problem, that is the problem of

minimizing the ratio between a quadratic and an affine function,



is important since it naturally arises in many fields of economics
and finance (such as Portfolio Selection Theory [11,13,14] ).
We will consider the quadratic fractional problem in the
following form:
Q (x)

P: mnFx)= ———_ | xe R={xe IR0 ;Ax2b,x =0}
D (x)

where: Q (x) = 12 xT Q x +qT x + q, Dx)=dT x+dy,Q is a
symmetric positive semi-définite n x n matrix, ¢, d, x € IRn, do,
do €IR, Ais areal m x n matrix and b € JRm,

In order to avoid trivial cases, we will suppose that dT x + do >0
V xe R.

Problem P has some interesting properties, which are
summarized in the following Theorem [1,2,3,12] :
Theorem 1.1 : Let us consider the minimization problem P .
The following properties hold:
i) The objective function F(x) is semi-strictly quasi convex!;
ii) .The set of all optimal solutions of P is convex?;
iif) A local minimum point for P is also global;
iv) A feasible point for which the Karush-Kuhn-Tucker conditions
are verified is an optimal solution for P.
The fractional quadratic problem has been studied by some
authors  [4,5,6,9] when Q (x) is a strictly convex quadratic
function; for this particular case, a sequential method, which finds

the optimal solution in a finite number of iterations, has been

1 A real-valued function f defined on a convex set X is called semi-strictly
quasi-convex if for all x1, x2 € X such that f(x1) * f(x2 ) the inequality f(x)
< max (f(x1),f(x2 )) holds for all x on the open line segment ] x1,x9 [.

2 We suppose without loss of generality that the empty set is convex.
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suggested in [4,5,6]. In this method the non-singularity of matrix
Q plays an important role, so that it cannot be extended to the
convex case. It is for this reason that we will generalize some
ideas given in [4,7,8,12] and suggest a new algorithm for solving
P by means of complementarity approach.

With this aim in mind let us note that an optimal solution x of
problem P is also optimal for the problem:

(1 min Q(x)
{ D(x)

L D®)=D(), xe R

so that solving problem P is equivalent to finding the optimal
value § = D(x) in the parametric problem:

PO): Z(6)= {min L Q(x), xe R(9)}
0

where R(0)={xe R: D(x)= 6 }.

We say that 6 is a feasible level if R(0)= & .

Let us note that P (8), for any 6, is a convex quadratic problem
and thus, as is well known, its optimal solutions, if one exists, can
be found by solving a suitable linear complementarity problem.

Now we will describe a procedure which, starting from a
feasible level 0y, allows us to verify, by means of sensitivity
analysis applied to problem P( 09 + 0 ) and by means of a suitable
optimality criterium, if 0, is the optimal level; if not, to find a
new level such that Z' < Zy where Z' and Zy are the minimum value
of the objective function of problem P (8') and P(8,), respectively.

To this aim consider the following linear complementarity

problem obtained by applying  Karush-Kuhn-Tucker conditions to
problem P ( 6, + 0 ):



u Q -AT -d «x q 0
(2) v - A 0 0 vy - b +0 0
Vo dt 0 0 A do -9 -1

where Agis  the Lagrange multiplier associated with the
parametric constraint D(x) =0, y and u are the vectors of Lagrange
multipliers associated with the constraints of the kind Ax > b and
with the non-negativity constraints, respectively, v = b-Ax is the
vector of slack variables associated with the constraint of the kind
Ax 2 b and voxido-eo— dTxo is the slack variable associated with
the parametric constraint.

At the beginning, we can choose 8, as the minimum value of
the linear programming problem {min D (x}, x € R}. Let us note
that 6, exists since D(x) is lower-bounded on R.

Solving (2.1) by means of Lemke's algorithm (or another similar
method), we find a solution of this kind:

(2.3.a) X (6 )= x9g + 9

(2.3.b) y(6)= yo + 36

(2.3.c) Ao(8)= X + Bo
where xo is the optimal solution of P (8g) and yg, Ay are the
Lagrange multipliers associated with. Obviously, x (8) is optimal
for P ( 6 ) for every 8 € H(8)={06:x(B)e R} n {0:y(6)=20}.
We will refer to such a solution as an optimal level solution.

Let us note that the multiplier Ao associated with the parametric
constraint is not restricted in sign.

Set 8;= SUP [ D (x) ] and observe that:
xe R

2.4) INF[F(x)]= INF INF[ F(x)]= INF [Z (8) ]
xeR 0 xe R(8) 3]



The first idea of the sequential method that we are going to
describe in section 3 is to generate all optimal level solutions of
the problem P (8), when the parameter 6  assumes increasing
values in the interval [64,0,], (or in the half-line) starting from 6,
until the optimal level 8 is found.

Now we are able to establish some optimality conditions for
problem P. The following Lemma and Theorem hold.

LEMMA 2.1: It results: .
i)dTa=1, Ma=0, ol Q xp = - a qT + A, alQa =8

1/2 Be2 + 7\,09 + CRYA
i) Z(e)=

8 + ©
where Zg = (1/2 x0T Q xo+ qT xy + Qo )/ 8y
Proof:
i) It follows from Karush-Kuhn-Tucker conditions for the
problem P (8), calculated in (2.3.a) (see [5h;
ii) It is obtained by substituting (2.3.a) in Z (0), taking into
account condition i),

THEOREM 2.1;
a) Xo is optimal for problem P if one of the following
conditions is verified;

i) B=0 and Ao = Zy;

ii) >0 and A < 0

i) B>0, A2Zy and A > 0

where A = B29g2 - 280y (%9 -Zp)

b) x (8*) is optimal for problem P if the following condition is



verified:
) B>0, Mo<Zy, A >0 and 6*e H(9)

where 9*=—60+1/_A /B

c) Z{B8)is a decreasing function in H ( 8 ) if one of the following
conditions is verified:

DB>0, o<Zy, A >0and 6*2 H(0)

if) B =0 and Lo < Zy; Furthermore if SUP [ H(B)] = + o

then the problem has not optimal solutions and
INF[Q(x)]1=2%g, x€ R,

Proof: Taking into account (2.4), the thesis follows from
inspection of the sign of function Z'(9), where:

112362 + B6oO +6p(Ao-Zp)
Z'(9)=

B + 0)

Let us note that , from i) of Lemma 2.1, we have 8 = aTQ o and it

results non-negative since Q is a positive semi-definite matrix;
furthermore, in the case ii) of c) we have:
Ao® *+ Bgzg
Z(6)= —_

0p + 6
so that lim Z( 6) = A

0 o5 + oo
3. A SEQUENTIAL METHOD FOR SOLVING PROBLEM P

The results given in the previous sections allow us to suggest a

very simple algorithm for solving problem P.
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For sake of simplicity we will refer to a compact feasible region.
The idea of the sequential method that we are going to describe
is to generate by means of a Complementary Method a feasible
basic solution for the problem P (6) and apply sensitivity analysis
in (2.3). If one of the optimality conditions given in Theorem 2.1
is verified, then an optimal solution of problem P is found;
otherwise we generate the next feasible basic solution.
Since the feasible basic solutions are finite, the method
converges after a finite number of iterations.

Now we are able to describe the algorithm steps:

STEP 0: Solve the linear problem { min D (x), x € R} =0 and
consider the linear complementarity problem:

u Q -AT -d «x q 0
v - A 0 0 y = -b +08
Vo dT 0 0 Ao do -9y -1

set k=1 and go to STEP 1;

STEP 1 : Solve the linear complementarity problem with a
complementarity method (such as Lemke's algorithm)!.
A solution of this kind:
x® (8 )= x90 + 00
y® (8 )= yo + 08
ME(EG )= Ao + PO
is found. Calculate H&)B8) = {98 :x(8)e R} n
{0:y(9)=01} and go to STEP 2;

1 At the first step, degeneracy occurs; in order to apply our method it is
sufficient to have  the multiplier Ag associated with the parametric
constraint as a basic variable.
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STEP 2 : If one of the following conditions is verified:
i) B=0 and Xrp2 Zj;
ii) p>0and A < 0
i) p>0, Ag2Zy and A > 0, where:
A= p2692- 2B8o(ho-Zo)
then xy is optimal for problem P and STOP;

If the following condition is verified:
B>0, Ao<Zy, A >0 and 6*e H(B),

where 6% = - go+ V A /B
then x%x)(6*) is optimal for problem P and STOP;

If one of the following conditions is verified:
i) >0, Ado<Zy, & > 0 and 6*¢ H(9),
i) =0 and Aip< Z,
then set 0k} = SUP [ HK®)( )] and update the Linear
Complementary Problem setting:
xo =x ® (80
yo =y ® (8)
Ao = Ao®I( B8K)
set k= k+1 and go to STEP 1.

5. A NUMERICAL EXAMPLE

Let us consider the quadratic fractional problem where :

X12
P: minF(x,x)=

» (x1,x20€ R

X5 + 1
where R={ (x;,x)e IR : 4x1-x225, 3/2< x1<3, x = 0}.

The parametric problem associated with this problem is :

PO): z(0) = min x42, (x1,%2)€ R(9)={ (x,x2)€ R: x2 = 0}.
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At STEP 0, we solve the linear problem {min (x, + 1), (x(,x2) € R}
= 0y and obtain 8y=1. The linear complementarity problem

associated with the parametric problem P(8 ) is the following:

u 20 -4 11 0 x 0 0
00 1 0 0 -1 0 0
v - 41 0 00 0 y = -1 +8 0
1 0 0 0 0 0 3 0
1 0 0 00 0 312 0
vo 0 1 0 0 0 0 X 0 1

Set k =1 and go to Step 1.
At STEP 1, we solve the linear complementarity problem with a
complementary method ( such as Lemke'Algorithm) and we get

the solution:
x1W (8) = 3/2
x2(0 (8)= 0
vitb (9) = 1 -6
voh (8) =32
yah (8) = 3/4
Ao (D(B) = 3/4

sothat HM @) = [0, 1].

At STEP 2, since B =0 and ko = 3/4 < Zy = 9/4, the optimality
conditions are not verified; set 61 = SUP [ H(D(@@)] = 1 and
update the linear complementarity problem setting:

X = x (D (D)
yo = y (M (8D)
ho= ho(D(BD)
Set k=k+1=2, go to STEP 1.
At STEP 1, we solve the updated linear complementarity

problem, whose solution is:
1D (8)= 32 +60/4
@ (6)= 1 +86
v (0)= 3/2 -0/4
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vi® (8) = +0/4
yi® (8)= 3/4 +6/8
Mo @ (0)= 3/4 +0/8

sothat H® @) = [0, 6].
At STEP 2, since § >0, Ag =3/4 < Zy = 9/8, A =1/4 >0 and

0% =-g0 + ]/—A / B=2€ H2)(B) , then the optimality condition
b) of Theorem 2.1 is verified and x®(6*) = (2,3) is the optimal
solution for problem P and the algorithm stops.

In the following picture, the feasible region for problem P is

depicted; the optimal level solutions, generated with the proposed
algorithm are represented by the bold line and the optimal

solution of P is circled.

X (3,7)

(2,3)

(3/2,1)

(3/2,0)
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