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Introduction

An as yet unsolved problem of modern mathematical demography is the so
called “problem of the sexes”, that arises every time we try to extend Lotka’s
notion of stable population (see Lotka and Sharpe (1911)) to sexual populations.

As we know, a stable population is an ideal object, achieved by assuming the
existence of a one-sex world. At the moment that an attempt is made to remove
this unrealistic feature from the model, by coupling two distinct Lotka’s stable
equations, one for each sex, a lot of unresolvable inconsistences arise. These
inconsistences, initially observed at the empirical level, have also been studied
from a theoretical point of view in important papers by Karmel (see Karmel
(1947a}, (1947b)),

The work of Karmel gave rise to a strong debate about the need to redefine
the notion of stable population, particularly in relation to the problem of the
interaction between individuals of the two sexes. One of the most important
conclusions of this debate, was that the process of “internal metabolism” (see
Ryder (1964)) of every population cannot be regarded as fully linear, as
postulated by Lotka, because of the indisputable presence of nonlinearities in the
mating process.

The need to clarify the nonlinear mechanism of the mating process has
opened up many interesting and important research fields. Many of the first
investigations in this area tried to develop simple explanations of the equilibrium
existing in the ratio between the numbers of male and female individuals over
time. The most elementary of these are, of course, the models that study the
interaction between individuals of the two sexes by means of a couple of
differential (or difference) equations, one describing the state of the male, the
other the state of the female populations (see Kendall {1949), Goodman (1953)
and Keyfitz (1965), (1968)). Though very rough (disregarding age structure as
they do), these models nevertheless proved to be useful for the understanding of
many qualitative features of the real world process.

In our paper we examine one mutualistic model of “random mating
interaction”, with a fertility function of the type known in the literature as the
“harmonic mean fertility law”. This model has been the object of attention, for
instance, in Keyfitz (1968) and especially in Schoen (1983), although they limited
their analysis to stable (in Lotka’s sense) solutions.

What we point out here is that the role played by homogenecity of the
formulation, coupled with its analytical simplicity, allows one to determine the
general solution of the model in closed form. This solution is simple enough to
be studied in a straightforward manner by means of the implicit functions
theorem.

In this way it has been possible to highlight the behavior of the model during
the adjustment process to the stable state, and also in all the non-stable cases,



In particular, we have shown that, among Lotka’s stable patterns, the steady
state equilibrium is structurally instable.

1. The Model

Following Schoen (1983), let us consider the model defined by the system of
autonomous differential equations:

X=Flxp)=—ax+ o ?_}
}’ (1.1)
V= C(w)——by+ﬂx+y

with (x,p) € R2 — {(0,0)} and initial conditions x(0) = x, and y(0) = y, . The system
is undetermined in the origin but it is sufficiently reasonable to assume
F(0,0) = G(0,0) = 0. The coefficients a, o, b, § are real and positive; furthermore,
they will be supposed time-invariant.

The quantities x and y are functions of time describing the number of male
and female individuals, respectively, existing in a given sexual population at time
L

System (1.1} defines a model of ecological interaction in which the growth
rates x ¢ y depend only on the number of males and females actually present at
time 7. In particular, the linear terms —ax and —by define the mortality of the
two groups; the parameters @ and b are to be intended as istantancous mortality
rates 1.8. as the forces of mortality of the male and female population.

The nonlinear term xy/(x + y) represents the istantaneous rate of mating
between individuals of the two sexes, i.e. the rate at which couples are formed.
The parameters o and f may be intended as fertility coefficients, defining
respectively the average number of newborn male and female babies for each
couple. Of course o and f§ are supposed to apply istantaneously. The so defined
fertility law, known in the literature as the harmonic mean fertility low, is generally
recognized (see Keyfitz (1968), Fredrickson (1971), Schoen (1981), (1983)) as the
ideal formulation at least {or the class of models we are considering.

Model (1.1) is defined as a “random mating” fertility model, because it is
assumed that all individuals present at time t are capable of contributing to
natality. Otherwise a third equation would be necessary describing the number
of married couples, or simply, of mated couples.

Our model is a Lotka-Volterra system of the cooperative type (i.e. mutualistic
or symbiotic), because the effect of the interaction is positive for both species (in
this case, male and female subpopulations). It differs from the traditional
Volterra model in that the interaction is not characterized in terms of the product
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xy, that describes the number of possible meetings between individuals of the two
sexes, but in terms of the relative number of meetings, given by the ratio of the
quantity xy to the total population. That is to say that the effect of natality on
the relative growth rates x[x , pfy, depends not on the absolute number of
individuals of the other sex, but on their proportion of the total population.

For x # 0 and y # 0, the model may be rewritten in the form:

X _ . x o

x ax+y s a)x+y (1.2)
= bt (B

Y x+y x+y

which shows that the relative growth rates of bothes sexes depend on two distinct
quantities. One of these is always negative (and hence related to mortality), and
dependent on the frequency of the individuals of the same sex; the other can be
either positive or negative, depending on the frequency of the individuals of the
other sex,

The parameters upon which, in the final analysis, the behaviour of the model
therefore depends, are, apart from a and # , the differences o, =a —a and
6, = f —b , which represent the survival abilities of the two sexes.

2. Equilibrium seolutions

The functions F and G which define the system (1.1) are C= in the feasible
region EP = {(xy)e R x =0, y =0} with the exception of the origin. Hence,
the existence and unicity theorem guarantees us that for every point of
EP — {{0,0)} passes one and only one phase curve (see Arnold (1979)). In the
origin only the existence of the solution is guaranteed.

Observe that, if x=0, Vy>0, then x=0 and y=— by. We may conclude
that, in the absence of males, the female population will diminish exponentially
at rate 5. An analogous conclusion holds in the case of absence of females. Of
course in the trivial case x =y =0, by our assumption, the system will remain
indefinitely in the origin.

Last observations permit us to say that EP and its boundary JEP are
invarignt, i.e. evety solution starting here for ¢ =1, will remain Vi>f, (see
Hofbauer and Sigmund (1988)). This is not true for the interior intEP,

Apart from the origin, the system will admit other equilibria for x >0 and
y>0,if and only if the homogeneous system

—~ax + oy =0
oyx —hy =10



has a non trivial solution. This will obviously happen if the determinant

—a a,

£ =

o, —b = ab — 0,0, (2.1)
is zero. This condition is satisfied when a, > 0, o, > 0 and « = fifa,. It is easy to
verify that all other combinations of values of the parameters are not compatible
with the existence of equilibria.

For any given combination of the parameters such that £ =0, every point
of the line

¥
p=== = X 2.2)
is a rest point for the system. This is a direct consequence of the first degree
homogeneity of the functions F and G.

The reader may notice the demographical meaning of the equilibrium
condition: not only must both sexes exhibit a positive survival ability but
mortality and fertility must also balance, keeping the products of survival abilities
and forces of mortality equal.

Finally, with regard to the directions of motion in the phase space, we have:
*#20 > y&ix

X
o (2.3)

»y20 - ”f"x%}’

3. System solutions

The functions F and G being homogeneous, the system (1.1) is invariant with
respect to the one-parameter group of transformations g¥(x,p) = (e'x, e*y). This
means that every phase curve of our system is transformed by the action of g in
another phase curve of the same system,

The existence of g! guarantees us that the solution of (1.1) may be obtained
by quadratures (see Arnold (1989)) operating in polar coordinates or either in the
ratio between the variables.

So, in order to find the solution in the phase space, we divide the two
equations for  # 0, obtaining the homogeneous differential equation:

& _ o=y

dx g xy—ax®

(3.1)



Setting y = zx, with j' = z’x +z, we have:!

,._ Zladz—bn)

zZx
— Gy Z+ a

(3.2)

where { = (o, +b)/a and 1 = (o, +a)/b .

The analysis of the equilibria has shown the existence of two qualitatively
different situations. We believe nevertheless that a more detailed inquiry of the
behaviour of the model should be done by considering a somewhat finer
classification based on the possible values of the survival abilities. Resolving
(3.2} in correspondence of each one of these cases, it has been possible to draw
the relative phase portraits of fig. 4.

Because of its greatest interest, in what follows we explicitly present a detailed
analysis of the positive survival abilities case (case A in the sequel). Among the
remaining cases, we have Jeft in appendix those characterized by @, <0, a,>0
and o, =0, o,>0. We omit any treatment of the respectively symmetric cases
0,>0, 0,<0 and 0,>0, 6,=0. We also did not report any analitical
consideration about the cases of non positive survival abilities, in virtue of their
absolute simplicity.

With regard to case A, previous results about the sign of Q suggest us to
distinguish among three subcases.

Subcase A.1 :

Suppose Q> 0. In this case, the derjvatives x and y may be either positive or
negative as shown by (2.3). If % #0, since 4 >0 and & >0, we may write {3.2)
as:

.. akz(z—9)
) 3

with 6 = bmfaf > 0. 1z +0 and z # 8, the implicit form solution will be:

| At (e 4 -
Dx,p k) = m:[ 5 log +(e —ax) log IY—B']—logx-i—k-_O (3.4)

with & € R. Differentiating @ with respect to x and y, we obtain;

! System (1.1) may be solved also in the time domain. In elfect, operating the substitution
Py = 2()x(s), it may be converted into the following single separable equation in the ratio
between the variables:

i= 1+z[a§z by] .




B oy x — by . O = ax — o,y
T abx(y — 8x) ’ Y aby(y - 6x)

The derivatives ®, and @, are positive or negative depending on the respective
position in the phase space of the three lines:

(3.5)

a Ty
=g x ; V2= ; V3 =0x

Since, by assumption, « > afi/s,, we have:

— oo, +aff

hm=T x<0
Furthermore:
Y= _.__________.;xu(r:’ x—:_:)ﬁ x <0
and
g, ﬁaﬁ

=2 x50 .
yZ y3 b(ﬂ'x—b)x>

The line y, divides the positive quadrant in two regions that can not be
“connected” by any phase curve. In the region above y, is defined, by the
Implicit Function Theorem, a smooth function p(x) that presents only one
minjmum point x*. Let us observe that (x, p(x*)) lies on the line y,. It may be
shown by means of simple calculations that y{x) is convex. Analogously, in the
region belove y, is defined a convex function x(y) which unique minimum point
is the solution of x(y) = y,.

Keeping in mind that the sign of the derivatives x and y, informs us on the
direction of motion, we can draw the following phase portrait:



Figure 1. Phase portrait of subcase A.1.

Subcase 4.2

Since Q = 0, the three lines y, , y, and p; collapse into the single line y*. From

(2.3), it follows:

x20 o y=2y* <>

So, we see that all the points of the line y* (of course, in the admissible region)

are rest points for the system.
The equation (3.1) simplifies into:

b _ Y
de a4 x -
Integrating, for y # 0, we obtain:
y=rkx" vl k>0,

(3.6)

A simple study of (3.6) and the preceeding remarks give us the following phase

portrait:



Figure 2. Phase portrait of subcase A.2.

Observe that every phase curve is the union of three different characteristic lines
corresponding to distinct motions,

Subcase A.3

Assume Q < (. Analogously to subcase A.1, the signs of x and y have to be
determined from (2.3) and both ¢ and » are positive. For z+# 0 and z # 0, the
solution of (3.2} is given by (3.4). The partial derivatives (3.5) are positive or
negative, as before, in refation to mutual position of the lines y,, , and 3, . In
virtue of the assumptions made on the parameters, we find:

=¥ 5 =y 5 <)

The same reasoning as in subcase A.1, leads to the following diagram:



Figare 3.

Phase portrait of subcass A.3.

For the sake of completeness we summarize in the next diagram the phase
portraits relevant to all cases.
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Figure 4. Global picture of the phase portraits relative to afi possible values of the survival abilities:
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1} 6,>0,0,>0 2) .20, 0,=0 3) ¢,>0, 0,20 4) ¢,=0, ¢,>0 5) Gy=0, 6,=0 )
9y=0,0,<0 7) ¢,<0,0,>0 B #,<0,0,=0 9) 0,<0, g,<0 .

4. Behaviour of the model

Previous results permit us a straightforward study of the stability of the
equilibria. The origin is always globally asymptotically stable, with the exception
of cases A.1 and A.2. In the former case the zero equilibrium is unstable while in
the latter is stable. Moreover, each one of the equilibrium points lying on y* is
stable.

It is interesting to notice that this last case is structurally instable ie. a
“small” perturbation in the values of the parameters modifies the topological
image of the phase portrait of the system (Arnold (1989)). In fact, the set
{o,>0, 0,>0, 0,0,=ab} is a closed subset (the bifurcation ser) of codimension
one (Guillemin and Pollack (1974)) in the parameter space, that separates two
open subsets associated to the cases A.1 and A.3. This means that if the system
is in the case A.2, then a small perturbation would push it into one of the two
contiguous cases in which, instead, the system will persist under further
sufficiently small perturbations (for more details and a deeper treatment, see
Hirsch and Smale (1974), Arnold (1989)). _

It is possible to give a global view of the behaviour of the model with respect
to the parameters fixing two of them, and drawing in the plane of the survival
abilities the phase portraits relative to the cases considered. For instance, fixing
a and b, we can show the way in which the phase portraits of the system evolve
by varying « and f. The following picture shows what is going on when a = b.
This situation is characterized by positiveness of ¢ and ».
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Figure 5. Phase portraits evolution depending on the survival abilities values for @ and b fixed and @ = b.

Inside each region the qualitative behaviour of the phase portraits does not
change by varying the values of the parameters, but only a continuous
deformation in the shape of the trajectories is observed. Instead, every transition
from a region to another determines also a modification in the qualitative
behaviour of the orbits.

For example, suppose o, > 0 and o, < 0. Every rightward mouvement along
the o, axis gives rise to a compression towards the y axis of the characteristics
lying above y, which will assume, when a exceeds @, the wave shape,
Analogously, every downwatd deplacement along the o, axis generates a similar
process for any orbit lying under y,. Moreover, when « (#) increases the stable
line becomes more (less) flat. Completely similar effects are observed by varying
aand b,

When a>b or a< b the last picture will be slightly modified because the
cases characterized by ¢ <0 or # < 0 will appear.

From a demographic point of view, quite important are the so-called stable
solutions (in the Lotka sense). This are exponential solutions characterized by a
time invariant sex composition.

To study their existence, we substitute the trial solutions x = Xe* and
Y= Jyet in (1.1), obtaining;

X,
AxO = — axo -+ a_x_"(}%)l"“
) byo + B o @D
Jo = Vo X0 F 30

12



1€, = 0, the system is satisfied for 4 = — & that represents the rate of exponential
decay of the female population, as previously pointed out .
If x, # 0, eliminating A from both equations of (4.1), we obtain:

Jo

Equation (4.2) admits one and only one demographically meaningful solution if
and only if £ and # are positive. In fact, a unique solution there exists if and only
if & # 0 . Furthermore, if £ < 0, we have: o, +a > 8 + a > 0 which implies 4 > 0.2
So:

[ __J’__o_=6
o+ f Xp

where 1 is the stable rate of growth or decay, while y,/x, represents the sex
composition in the stable state.

Stable solutions are so given, from a geometrical point of view, by the line y,
in the phase space. As it may be realized from the phase portraits of the solutions
of the system, whenever a stable solution exists, every other solution internal to
EP tends to it as +—> + co. This means that the model exhibits the ergedic
property: whatever the initial sex composition is, it will be forgotten during the
adjustment process to stability.

In conclusion, the behaviour of the model is rather elementary. With the
exception of case A, the population will unavoidably disappear as a consequence
of the lack of survival ability of either sexes. The underlying demographical
mechanism is obvious: the interdependence between the sexes generated by (1.1}
is such that even if only one sex lacks survival ability, this will in the long run
inhibit the growth possibilities of the other via the reduction in the number of
partners on the marriage market.

Case A is the only one completely relevant, depending exactly on that both
sexes have a positive survival ability. As we have shown in the subcases A.1-A.3,
the model leads to all the possible cases of stable evolution: stable growth,
stationarity, stable decay. On the basis of the previous considerations on the
structural instability of case A.2, we conclude that a nonzero equilibrium can be
considered as an “exceptional” event.

Case A shows very clearly the homeostatic role played by the sex
composition. This fact may be easily noticed from (1.2): as we expect from the
real world process, if one sex is “scarce” relatively to the other, then its numerical
amount will experiment an upward pressure coupled with a downward pressure
on the other (these forces operate trough the marriage market).

2 Conversely, if n < 0, ¢ is positive,
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To directly realize the way in which the compositional forces do act, let us
consider for instance the diagram relative to case A.1. Suppose the system starts,
for r=1, in the region under y,, in which the initial sex composition is strongly
unbalanced. The very low frequency of women coupled with the too high
frequency of men sets in motion forces which rise the number of women and
diminish at the same time the number of men, generating in this way a balancing
trend on sex composition. This process will continue until line y, is crossed: at this
moment the sex composition will be sufficiently balanced so as to permit the
growth of both sexes. Since in the region between y, and y, the percentage growth
rate of the female population is still larger than the corresponding male rate, the
equilibrating process of the sex composition will end only once the stable state
has been reached. If the initial condition lies in the region above y,, we will
observe a similar process exchanging the role of women and men,
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Appendix

§1. Ife, <0 and o,> 0, inside EP x is always negative while 20 if and only if
»2Zy. The origin is the only admissible equlibrium point. Beeing # always posi-
tive, we distinguish three subcases in relation to the possible values of £,

Subcase 1.
If £ =0, ie. b=g,, equation (3.2) becomes:
byz
zh+a

’

ZX =

Integrating, for z # 0, we obtain in implicit form:

2

b ln%-i—lnx%-kmo

N
D k) =5+
where & e R. Partial derivatives with respect to x and y, are:

__ Y Latb I
Pr=- gt byx Yoomx gy

where @, is always positive and @,20 if and only if y,22p. BEach phase curve is the

diagram of a function y(x} increasing for y > y,. It is possible to show that p(x)
changes concavity on the right side of the maximum point.
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Figure 6. Phase portrait of the cases 1. and 3..

Subcase 2.

Supposing £ > 0, i.e. o, > —b, the equation (3.3) has the solution (3.4) for
z#0 and z+ 8. Since o, <0, taking partial derivatives (3.5), it follows that
®,20 when y2y,. Moreover, being:

x[fo, —bo]

— = 0
CEECI YOS

®, is positive in the region {{xy): y >} M {{xy): ¥ <y} The behaviour of the
sojutions in the phase space is represented in the following diagram.



Figure 7. Phase porirait of subcase §1.2 and §2.
Notice that y, is a characteristic line.

Subcase 3. ‘

In this case £ <0, i.e. o, < —b, and so 8 is negative too. For z+ 0, we can
operate exactly as in subcase 2., obtaining an identical expression for @, where
P, is positive or negative depending on whether y — y, is positive or negative and
P, is always positive. The phase portrait of the solutions behaves in the same
way as in subcase 1..

§2. If 6,=0 and 6,> 0, x is always negative, while y > 0 if and only if y > y,.
The equation (3.2) takes the form:

z'x = —%z(z — 1)

with # > 0.* So, z=0 and z =% are solutions. Integrating, for z+ 0 and z # ¥,
we obtain:

ly—nel

5 kxP? = ¢ k>0 . (1)

D(x,p k) =

that may be rewritten in closed form.
For y > nx, we have:

3 If we assume o > £ as is usual for human populations, we would have n > 1.
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y ‘P('x) kxb'”“ .

“The- graph of‘ ¥isa subset of EP 1f and only ifx<kom=x. Iti isa sunple task
to verify that ‘I’(O) e :

T’(x)

s For y <na, ( 1) becomes

J’=‘1’(x)=—-——.. .. k>0
1+ ke g

where Tim, ;o T(x) 0+ and lim, ., '¥(x) = 0* . A._simpl-e study of the first deri-
vatlve. . - L

W)= 1__ (i X xb"’“)

(1 + kx™ “) 2\ @

- shows the existence of a unique maximum point x* = (afke,) at which O(x)
crosses the line y,.- The corresponding phase portra1t behaves as the one of
subcase 2 of the case §I ' : :

Abstract: In this paper the continuous random mating two-sex model with
“harmonic mean” fertility function, partially investigated by Schoen (1983), is
studied. Its closed form solution in the phase space is obtained in virtue .of the
homogeneity of the vector field considered. By introducing the notion of survival
ability it has been clarified the balancing role played by the “marriage market”.

Key words: Two-sex problem - Homogeneous equatlons - Stable population -
Structural stability
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