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1. Introduction

The results stated in recent papers [3-9] have pointed out that the image
space is a suitable framework in order to obtain a geperal approach for
studying different fields of scalar and vector aptimization; more precisely
the image space would seem to be the natural framework within which the
study of optimality conditions, duality, regularity, interior and exterior
penalty could be carried on.

In particular, the introduction in the image space of some suitable cones
[2,3,5,6,8], namely Tg , Tg , has been shown useful in studying optimality
conditions and regularity.

The aim of this paper is to investigate the relationships among Tg , Ty
and a new cone T, which seems to be appropriate for obtaining results in
the image space and in the decision space both.

The obtained results wilf allow us to deep some aspects studied in [4,7,8];
this will be the object of forthcoming papers.

2. Statement of the problem

As outlined in the introduction, the aim of this paper is the study of some
tangent cones related to a scalar or vector optimization problem.
More precisely, consider the following vector extremum problem:

P: max ¢x), ¥ €S={xeX; g(x) = 0}

where X < R™ is an open set and ¢ =(p...05) : X = R®, g=(g..gpy): X -R™
s 21, m 2| are continuous functions.

Let x° be a feasible point; since 9, g are continuous functions, we can
suppose, without loss of generality, that x° is binding at all the constraints
ie. gi(x®) =0, i=l..m.

Set

f(x)= p(x)- ¢(x® ), F(x)=(f(x),8(x)), K=F(X), H=U®x V where

UO-R;\(0) , V-R®, B-K-dlE.



We will refer to R" as the decision space and to R®™ as the image space.
Let Tg . Tg be the tangent cones at the origin to E and K , respectively; i.e.

Te=(t: 3{aglcR (en)CB, ap >+ ,en >0 with agen =~ t)
Tg-(1:3 {ay}cR, (Fap)cK, o, =40, Fxy)= 0 with o, F(x,) = 1)
The cones T . Tg has been introduced by several authors with different

aims [1,11,12] : in particular they have been used in [2-9] for the study of
optimality conditions and regularity.

On working in the image space, we must pay attention in establishing
conditions which permit also to deduce some results in the decision space.

From this point of view it seems to be appropriate the introduction of the
following cone Ty :

Ty=(t: 3 {eplcR, xy) € X,ap =+ ,x; =+ x° with ap Fzg) - t).
In the next section we will point out some relations among the cones Tg .
Tg , Ty and, for this reason , we will assume, from now on, that X is a

suitable neighbourhood of x°.
3. The tangent cones Ty , Tg , T,

It is well known that the tangent cone to a set S at z,&clS is a closed cone,
so that T, Tg are closed cones. The following Theorem shows that T, is a
closed cone too.

Theorem 3.1 T, is a closed cone.

proof. Consider a sequence {ty} C Ty with 1y = t,t € cITy. We must show
that teT; . Since ty €T, , there exist a sequence ng ~* +* and a sequence

i ‘
Ing™ X0, such that o o Flxp,) = 1 . Let S(1, ) Dbe an open ball
1 1
around t with radius - - then there exists h such that tpe S(t o) anda
, , 1
neighbourhood Iy, of ty, with Iy, c S(t, 'al") such that

|
o g FlXpy) € Iy, © (L, )



Setfp =ap, , 0¥y =3y, ;we have xy = x°, ByF(xy) = t and this
implies teTy. D

The following Theorem states a relation among the cones Ty, Tg and T,.

Theorem 3.2
i) Tl C TK
ii) Ty-cHcTg -clHCTg

proof.
i} it follows immediately from the given definitions of Tg and Tp . taking

into account the continuity of the function F(x).
ii) Lety € Ty - clH , that is y=t-h,t €Ty, h € clH. Since t €Tg , there
exists oy = +00, (F(xy)) €K, F(xp)— 0 with a4 F(x,) = t.

Set eq= Flxg) - QL € E; we have upe, = apF(xy) - h = t-h €T
n

This completes the proof. ]

The following example shows that the inclusion Ty - clH c Tg is proper.

Example 3.1

Consider problem P where s=1, 9(x) = x2 , m-2 ,81(x) =%, go(x) = -x*,
x € XcR, Xbeing a neighbourhood of x%= 0.
We have K - (F(x)- (2% . x,-x*), x € X) and

F(X) 1 2 4
= (x¢,x,-x*) sothat
| F(x)} lxl\/x2+1+x5

Tg-ciH - (k(0,1,0) , ke R} -clH = ((a,k,b), ab<0,k €R)

Consider now the sequences x,= "15 , hp=1{0, L —:lg ,0).

n
We have ( F(xy)-hy )= ( 1112 , :12 - 1114) so that n®( F(x,)-h,) » (1,1,0)
with (1,1.0) & Tg-clH . It is easy to show that Tg={(ab,c), ab &R , c<0).




In order to deep the relation among the cones, we analize, first of all, the
simple case Ty n intH # @, The following Theorem holds;

Theorem 3.3 Assume that Ty r intH«+ @ . Then:
TE = TK - cif - Tlh clH = RS*™,

proof. It is sufficient to show that Ty-cH - R¥*™ Since Ty intH = @,
there exists a=(ay, .., ag,q) € Ty such that a;> 0 i=1, ., s+*m.

Let z =(z, .., Zg, ;) € R*"™ and set I= {i: z; > 0} ; obviously there exists k>0
such that ka; > z; Vie I.Asaconsequence ka >z and so z=ka-h , h eclH.

This completes the proof. d

Taking into account the previous Theorem , the study will be carried on in
the case Ty n intH = @.
A sufficient condition in order to have Tg - Ty - clH is given in the

following Theorem:

Theorem 3.4 Assume that K clH = (0) and Ty~ ciH = (0} . Then
TE = TK -ciH .

proof. Let 0= t € Tg , that is there exist {F(x,)) €K, {h,} cciH,
en= Fxp)-hy =2 0, 0 py = +00 with

op (F(xp-hp) = t. (3.1)
First of all , let us note that F(x,) = 0 ; in fact {x,,} is a bounded sequence so
that! x, -z and, for the continuity of F(x) , F(x,) = F(z) € K ; on the
other hand F(z,) - hy » 0 implies hy, = z € clH and consequently 2z=0
since K clH = {0). O

I Since in a finite dimensional space any bounded sequence (z,,} has a convergent
subsequence, we will assume without loss of generality (substituting {z,)with a
suitable subsequence, if necessary), that Z,=72,



Now we prove that {u;, [F(x,l} is a bounded sequence ; if not , from (3.1)

‘-'- - -
we have Otn |F(I )l that is lim IF‘“(x ]l Z im |F(X )l s0 that
F(Xn)

t€Tgn cH , z# 0 since [F(z,)] Pelongs to the unit ball, and this
n

contradicts the assumption Tg i cIH ~{0).
Since {ap IF(xql} is a bounded sequence we have @ ,, F(x,) » t * € Ty and
consequentiy a, hy =+ t * - t € clH . This completes the proof. Ol

Now we will study some relations between Tg and T.
The following example shows that Ty = Tg

Examglg 32

Consider problem P where s=1, ¢(x{,x,) = xfxz ,m=2, g(x,xp)= Xy

82(x).%3) = -x5. (x1.3y)€ X, X being an open set containing x°=(0,0).
We have K={ F(x{,35)= ( xfxz Xy.-X3). (X,¥5) € X} and

Flx) = l —(xzx X5, -X5)
| F(x)] |xz|'\/x14*2 172 %2- 772

Since in a finite dimensional space the elements of Ty are obtained by
F(zy)

| F(xp)]

multiplying for a non negative real number the limit of for any

sequence { F(x,)} with [F(x,)| = O, we have
Tg-{(A(x;% 1,-1),A€R, (x;5,) € X)
On the other hand, the elements of Ty are obtained by multiplying for a

F(xq)
| Fxg)]
As a consequence, we have T, = (k (0, 1,-1), ke R) so that the elements

non negative real number the limit of for any sequence Xn -39,

of Tg with x; = 0 are not contained in T}



The following theorems characterize some classes of problems for which
T-Tg

Theorem 3.5 Consider problem P where 9 and g are linear functions,
Then T;-Tg.

proof. Obviously T; « Tg so we must prove that Tg c Ty . Let t € Tg ;
then there exist a sequence { F(x,)} with F(x,) #F(x°) and a sequence
(ap)CcR, a =40, suchthat a,Flz,) - t.

%0
XX

O+ == obviousty T - x° and furthermore, taking into

+

Set fn =X

account the linearity of F, we have o, nF( X3} = o, F(xy) » t, sothat
tETl. I}

Theorem 3.6 Consider problem P and assume that there does not exist a
sequence X, - x°such that F(x,) = F(z°) ¥ n. Then T,=Tg.

proof. It is sufficient to prove that F(xy) - F(z%) implies x, = x°.

The assumption implies the existence of a neighbourhood I of x°® such
that P(x) =F(x%) ¥xel,x=1°.

3ince ( x,) is a bounded sequence, we can suppose! that Xp = X.
For the continuity of F, we have F(x,) = F( T ) so that F(¥ )-F(z°) and,

necessarily, ¥ = x°. O

Corollary 3.1 We have T;-Tg when one of the following conditions hold:

i) x0 is a locat optimal sotution and there are not alternate solutions.
ii) x% is a local optimal solution , there exists a sequence { X} of alternate

solutions with x;, = x° and there exists an index i such that
gi(xp) = g;{ x°)=0 ¥n,



Taking into account the results given in Theorems 3.4, 3.6. and in Corollary
3.1 we have the following Theorem and Corollary:

Theorem 3.7 Assume thatKriclH - {0) , Ty ol = {0) and,
furthermore, that there does not exist a sequence Xp x° such that

F(xy) = F(x®) ¥n.
Then Tg=Tg-clH = T,-clH.

Corollary 3.2 Assume that K n clH =(0) , T; n clH=(0) and ,
furthermore, that one of the following conditions hold:
i) 39 is a local optimal solution and there are not alternate sofutions.
ii) x° is a local optimal solution , there exists a sequence { Xp) of alternate
solutions with x, - 1© and there exists an index i such that
8i(Xy) # gi(x°)=0 ¥n
Then T£ = Tx -ClH = Tl - ¢IH.

4. Characterization of T, in the differentiable case

In this section we will give a characterization of the tangent cone T; when
P is a differentiable problem. Assume thai in problem P, 0 and g are
differentiable functions at x°.

We have

F(x)- F(x%) = J(x-x°) + o(x, 1°) (4.1)
0(x,x°)

|x-x°|

where ] is the Jacobian matrix of F at x° and - 0.

Set:

K- (J(xx%,x e R?)

A-(1eTy/(0): 3 x5~ 2%, ap >+ with ay Fx,) - t,
o

Ep-X
0| -~ yand J(y)=0}

I XR_I



The foliowing Theorem holds:
Theorem 4.1 Consider problem P where ¢ and g are differentiable
functions at x°. Then

proof. First of all we prove that Ty DK .If 0=z e K|, . there exists

x*-x°
x* € R™ such that z = J(x*-x°) . Consider the sequence ( Xp= X0 pad !
! 0
We have x;, » 3° and F(xp) - F(z°) = 1 J&*-1°) + olxy, 3°).
o(x,, x0)
Taking into account that n o(xp, x°) = [x*-x0| ~—~——— = 0 we have
xn—x

nF(xp) >z €Ty.Since ACTy itresults Ty K WA,
Now we prove that Ty € K; W A.

Let 0+ t € T, ; then there exist a sequence Xn = x° and a sequence

g+ witha g, F(x,) =+ t. Since the unit ball in R™ is a compact set ,
0

we can suppose! that - y.If Jiy)=0 theny & A, otherwise we

0
XnX°|
0
RN o(x,, x0)
0

)

have a4 F(Xp) = & 5] X5-x°) ( )

Since J(y) = 0 , necessarily we have « ,(x,-x°|= k =0 and t=k}(y) , so
thatt e K, .
The proof is complete. [J

In the following Theorems we will give necessary and/or sufficient
conditions in order to have A=@ in (4.2).

Theorem 4.2 If rank] =n then T,-K,, .

proof. The assumption implies that J(y)=0 is verified if and only if y=0.
Consequently A-@ | 0



Theorem 4.3 Suppose that there does not exist a sequence x, -x° such
that F(x,)=F(x°) ¥ n. Then T,- K, if and only if rank]-n.

proof. Suppose that there exists y »# 0 such that J(y)=0. The sequence

| . . o
X~ x° + o Y s contained in X, for n arbitrarily large ; we have x, - x°,
F(xp)
Flx,) # F(x9)=0 , Fx)] ~ ¢ €TI\O) . so that A = @ and this is a
n
contradiction. 0

Theorem 4.4 Consider problem P where @ and g are linear functions.
Then T,-K, .

proof. Since K = F(X) - J(z-x%) , we have Tg= J(x-x°). The thesis follows
from Theorem 3.5. O

The following example shows that the condition rankJ-n is not necessary
in order to have T4= K, .

Example 4.1
Consider problem P where s=1, g(x; xy) = xy+15, m=2,

81(%1.%3) = X1+%y . 8p(Xy. Xp) = - X{-Xp, X0=0.
Since the problem is linear, from Theorem 4.4 we have T =K, but
rank]= 2. : 3
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