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1. Introduciion

In this paper we will consider the vector optimization problem
P: max B(x)=(9y(X), ... ,0s(X)) ; X €S=(x €X C R™: g(x)=(g)(x), ...8 4 (X) 20}

which reduces to a scalar problem when the objective function has only
one component,

It is known (see for istance [2,5,7,10]) that a feasible point x° is a local
optimal solution for P if and only if K n H - @, where K and H are
suitable sets in the image space RS*0,

Since K does not have in general properties which are useful in the study
of such a disjunction, some authors [5,7,10] have introduced suitable sets
instead of K with different aims ( for instance in studying regularity and
proper efficiency),

The aim of this paper is to point out that the study of optimality in the
vector and in the scalar case can be carried on jointly in the image space:
more exactly any logical consequence of K n H = @ becomes a
necessary optimality condition, while any condition which ensures

KN H = @ becomes a sufficient optimality condition.

In this order of ideas, we will define a suitable tangent cone T,, which
allows us to find necessary and/or sufficieni optimality conditions in the
image space.

The obtained results can be used to deduce necessary and/or sufficent

optimality conditions in the decision space, whenever a characterization
of T, is established.

The characterization of T, for differentiable problems given in [4], atlows
us to find, in a unified approach, new optimality conditions as well as
F. John and Kuhn- Tucker conditions.



2. Statement of the problem

Consider the following vector extremum problem

P: max o(x), x €S- (x € X: g(x) = 0}

where X CR™ is an open set and ¢=(p,..0): X =+ R®, g=(8;..85) : X -R™
s &1, m 21 are continuous functions.

We recall that a point x° €S is said to be a (Pareto) optimal solution to
the problem P if there is no x&$ such that

p; (x)-p; (x®) 20 i=1..5 {2.1)

where at least one inequality is strict.

We say that x° is a local Pareto optimat solution if (2.1) holds in a suitable
neighbourhood of x°.

Let us note that when s=1 problem P reduces to a scalar optimization
problem and (2.1) collapses to the ordinary definition of a local maximum
point.

Since we are interested to investigate local optimality conditions, for sake
of simplicity, through the paper, X will play the role of a suitable
neighbourhood of x°.

Let x° be a feasible point ; since 0, g are continuous functions, we can
suppose, without loss of generality, that x° is binding at all the constraints
ie. gi(x%) =0, i-1..m.

Set

f(x)= o(x)- ¢(x° ), F(x)- (£(x),g(x)), K=F(X),H=U°x V where

0o~ R)\0), V=R

Let us note that x° is either a local Pareto optimal solution or a local
maximum point {s=1) if and only if

KnH-0@ (2.2}



so that the study of optimality in the vector and in the scalar case can be
carried on jointly by studying the disjunction between K and H.

More exactly any logical consequence of (22} becomes a necessary
optimality condition, while any condition which ensures (2.2) becomes a
sufficient optimality condition.

Taking into account the aforesaid considerations, from now on, we will
refer to X° as a local optimal solution .

Since K does not have in general properties which are useful in the study
of disjunction between K and H, some authors [2,3,5,7] have considered
suitable sets instead of K with the aim to study such a disjunction,

As we will see in the next sections the cone T, , defined as

Ty={t: Jay=+0 x;, - 3% with a, Flz,) - t)

seems to be appropriate in order to obtain optimality conditions in the
image space and in the decision space both.

The properties of Ty and its relations with some other cones has been

studied in [4].

3. Optimality conditions in the image space

In order to find necessary and/or sufficient conditions in the image space,
we premize the following Lemma

Lemma 3.1 IfK~ intH =@ then Ty intH=-1

proof.,
Assume t* € Ty~ intH, that is t*>0 ; then there exist 2 sequence

{1n) X with F(z,) - F(x°) = 0 and a sequence « n = +% . such that
@p F(xp) =+ t* Hence 3 m : ey F(xy) >0 and this implies F(xp) >0 , that
isKr intH= @ and this is a contradiction. 0O

The following Theorem states a necessary optimality condition.



Theorem 3.1 Let x? be a local optimal solution for problem P, Then
Tl ™ intH = @

proof.
The thesis follows immediately from Lemma 3.1, taking into account that
the assumption implies that K H = @. ]

The foliowing example shows that Ty~ intH = @ is a necessary but not
sufficient optimality condition.

Example 3.1

Consider problem P where s=1, ¢(x) - x*. m=1, g(x)=x , x%=0.
It is easy to show that Ty={A(0,1),2 € R) so that condition

Ty nintH-@ hotds but x°=0 is not an optimal solution for P.

The following Theorem gives a sufficient optimality condition.

Theorem 3.2 Consider problem P. If

then x°is a local optimal solution for P.

proof.
If x° is not optimal for P there exists a sequence X, - x° such that
F(zp) € H.

Since the unit ball S is a compact set, we can suppose! that the sequence

Flig) *40,1" € Ty On the other hand — 02
| Fxg)] converges at 1* =0, 1" € Ty. On the other han [F(x,)|

that t*€ clH and this is a contradiction. ]

€ H so

I Since in a finite dimensional space any hounded sequence {z,, ) hasa convergent
subsequence, we will assume without loss of generality (substituting (z,)} with a
suitable subsequence, if necessary), that zy 2.



The following example shows that (3.1) is not a necessary optimality
condition.

ample 3.2
Consider problem P where s=1, ¢(x) - -x%, m=1, g(x) = x, 3°=0.
It is easy to verify that T;=((0,1), 2 € R} so that Ty clH= {0) but

¥°=0 is the optimal solution of problem P.

The following Theorem states a necessary and sufficient optimality
condition.

Theorem 3.3 Consider problem P. The feasible point x0 is a local
optimal solution for P if and only if condition I holds:

Condition I:  Assume that 0 #t € Ty nclH . Then for any sequence

X~ X% such that there exists o, - +% witha n F(¥p) = 1, we have
Fixg)e H ¥

proof.
if. The thesis follows immediately from (2.2).

only if. The proof is similar to the one given in Theorem 3.2. O

4. First order optimality conditions in the decision space

When P is a differentiable problem , it can be shown [4] that the tangent
cone Ty can be characterized as Ty~ K,/ A where

Ky - (J(x-x°), 3 R" )}, ]is the Jacobian matrix of F at x°,
A-{1eTy/{0): 3 xp= 1% , @y =+ with o F(xg) > t,

40
Xn X

| xn“xol

= yand J(y)=0}



This characterization will allow us to obtain in a very simple way new
optimality conditions as well as the Fritz John optimality conditions either

in the vector case or in the scalar case.
First of all we need to find a hyperplane T which separates K -ciHH and

ciH such that (K -ctH )~ cH = T~ clH.

In order to be able to find such a hyperplane, we must prove , first of all,
that K, - clH is a closed set.

As regards to this last problem we will consider a linear subspace W of

RP and we will use the following notations:
if I=liy,...ig) is a set of indices, we will denote with z(I*) the vector

z(I"‘)=(zi1 s zis) il 2=(zy, 7,,...., zp) and (I*,J*) is a partition of {1,2,..,p},

without loss of generality, eventually by performing a rearrangement of
the components of z , we set z=(z(I*), z(J*)).

Theorem 4.1. Let W be a linear subspace of R? . Then W - Rf is a

closed convex cone.

proof.
If W int Rf #@ , then W - Rf = RP and the thesis is obvious.

It is easy to show that W - Rf is a convex cone. In order to prove that

W - R is closed , let {wy) and {ry) be sequences such that (wy) c W,
Y

4 1)

) Rf with wy - ry = 7. In order to show that ze W -R, , we will

find weW, re Rf such that w -r - z.

The proof is obvious when 2=0 or when at least one of the sequences
(Wi}, {ry) is convergent or , equivalently , when the intersection of the

recession cones [10] 0*( W-RY ) and 0*( R} ) = R® | is the singleton

b

set(0}.-



Consider the case fwyi >+ and set J= (i: Wy, < M), sothat ( wi(}) )} or
one of its subsequences is convergent !, i.e. wi(}) = w(])).

Set Io={i: Wi; —+ o } | taking into account that ry 2 0 and Wi Ty —
necessarily we have [, = @ and Iy ] = (1, ..,p).

Now we will construct, by recurrence, a finite sequence of vectors

wl & afinite sequence of sets of indices Iy, ..., I, and a finite

sequence of sequences [Wk(l)}, ,{wk(S)] . Where s is the first index
which verifies I = @.

Consider
D o k(Do
\ "k.l..lal?-so welly) Li={iely wi' " =0); (4.1.a)
wk(l)_ Wi IWK(IO)I W( 1)
and, if s»>1
(h-1)
() _ o Yk . w0y,
(4.1b) w ~k£|:£oo Iwk(lh-l)' ;o Iy {IEIh_l.Wl 0} {4.1b)
Wk(h)= Wk(h-l)_ lwk(lh-l)l W(h) h=2, ... s.

We will prove , by induction, the following properties:

wbew h=1, .. s (4.2.2)
w0 -0 h-1, .. (4.2.b)
wh1y) -0 he1, .., s-1 (42.0)
w1 - 10050 hel, ... (42.d)
wi W) - wy () hel, .5 (42.)
wi'B1p) = wy (1) h=1, ... s-1 (4.21)



wiWi1,-10) = 0 hel, .. (4.28)
wi® = (0, w() ew. (42.0)
Case h~1. Consider the sequence:

Wi willy)  wg()
(I ™ g (I Iw (1))

Si Yk _ » 0
ince IWk(Io)I — 0 and l

(4.3)

Wi .
wi(l,)] Pelongs to the unit ball, the sequence

(4.3) or one of its subsequences! converges to W) such that w'l) () =0
furthermore w'l’e W since W is a closed cone . |
Properties (1.2¢,e,f} follow from the given definition of I, and ] ; since
w20, w0, we have (4.2d) while (4.2g) follows by (4.2d) taking
into account the limit in (4.1a).
Now assume that (4.2) holds for the index h ;: we will show that (4.2)
holds for the index h+! too.
With this aim consider the sequence
Wk(h) Wk(h)'[lo-lh) Wk(h)(lh) Wk(h)(.])
wiIpl ™" iwgIpl (Tl Ty (Il

(4.4)

Let us note that (4.2f) is equivalent to state that

wki(h’ =W e YV iely

From (4.2e.g) we have
wk(h)
Iw(Ipl

Wk(h)(lo—lh)
fw (1)l

- 0= w(h"l)(J] ,

o ()

—K - : |
Furthermore W (Ip) belongs to the unit ball so that it converges! to

the non-negative element w(h*“(lh) and (4.4) converges to w81 which

belongs to W since W is a closed cone.
Taking into account that wB*1(1, 1)-0 , we have wit1)(] h~Ip+1) >0 and

consequently W(h*l)(ln~lh+1) — 0. This last result, together with the

- 0= W(h+1)(10-1h) )



relation wh*I(1,-1y) - 0, implies (4.2g) ; (4.2ef) follows from the
definitions of Iy, and .

At last , let us note that Wk(h)EW h=1,..s, since W is a vector space; on
the other hand since Ig = @ , from (4.2e,g) we have wk(S)(Io) — 0 and
Wk(s)(]) = Wi (J) = w(]) ; then (4.2h) holds since W is closed.
Now we are able to find weWw, reRf such that w-r=z , where

= kﬂll_gm (wy-rg).

Since wi(]) — w(]) and wi(]) - r(]) = 2(]) , necessarily we have
t(J) = () = w(]) - z()).

]

Consider now w*= 2 wll) eW : from (4.2d) we have w*(1,) » 0 and so
i=1
there exists a scalar k>0 such that

kw*(Iy) = z(I,). (4.5)

We have, taking into account that from (4.2b) w*(])=0, that
kw* + (O,w(])) = (kw*(1,), w(])) -w eW.

Set r=(kw*(I5)-z(I,) , 1(])) where r(])= k{iﬂlm ridJ)= kl_i)ll_;.-loo wi()=-weW.

Let us note that reR  since (4.5) holds and rg(}) 2 0.

It is easy to verify that w-r=z and this completes the proof. O

Assume now that W ry int Rf % @ ; then (W—Rf )y Rf = Cis a face of

R} with dimC=k , 0 <k < p-1. The following Lemma holds :

Lemma 4.1 The face C is contained in any hyperplane which separates
W-RY and R? .

10



proof.

Since ‘W~R£l is a closed convex cone , it is also the intersection of its

supporting half-space at the origin [8] . On the other hand , it is easy to
show that any supporting hyperplane is also a hyperplane which

separates W~Rf and Rf . Consequently the face C is contained in the

intersection of all hyperplanes separating W-Rf and Rf : M

Theorem 4.2 There exists a hyperplane T separating W—Rf and Rf .

such that T m Rf =C.

proof.
Lete!, .., eP be the edges of Rf where el is the vector whose i-th

component is equal to | and the others are equal to 0 , and suppose |,
without loss of generality , that e! , .., eX (0 ¢k < p-1) are those
contained in C. From Lemma 4.1 , there exists a hyperplane
Tj={zeRP:(al)T2-0) withol>0, oix0andsuchthatel @ T; ie.

a; 0 i=k+1, .., p.

Consider the hyperplane T whose equation is

i=k+1
It is easy to verify that I separates W-Rf and Rf .s0thatCcC I'ry Rf .

P
If Ty Rf # C, there exists y- z B; ¢! suchthatye T'n Rf and
i=k+1

Bi , i=k+1, .., p, are non-negative and at least one is positive.

11



On the other hand , since

p p p

aTy= D BiaTel) and aTel-( 2, of )Tel > adi x50
i=k+1 j=k+1 j=k+1

wehaveaTy> 0, sothaty € I and this is absurd. [

The optimality conditions given in the image space will allow us to
deduce some results in the decision space.

Theorem 4.3 Consider problem P where p and g are differentiable
functions at the local optimal solution x°. Then i) and ii) hold,

1] KL NnintH-=-6

.. s+m

i) 3 a=( ay..ogn)€R ", a0 suchthat

all=0 (4.6)

proof.

i) It follows immediately from ii) of Theorem 3.1 taking into account that
T1= KI. WA,

ii) Since Ky, and clH are convex sets and i) holds, there exists a
hyperplane of the form o7 z=0 which separates K; and H, such that

a’zz0 VYzecH (4.7a)
a’z20 ¥Yizek, (4.7b)
s+m
Consequently ae R, , a=0 .
Since "] (x-x%)= 0 ¥ x € R? | necessarily we have (4.6). O

Corollary 4.1 ( Fritz- John optimality conditions)
Consider probiem P where ¢ and g are differentiable functions at the local
m

. . ) 5+
optimal solution x° Then there exists a vector =(a [ s & s+m) € R,

o« (0 such that

12



s m
z a;Ve;(x%) +Z g, iV8;(x0) =0 (4.8)

i=1 i=1

Remark 4.1 (unconstrained problem)
Consider the vector optimization problem

max ( 9((x), ... 95(x)) , x € X , 522

where X is an open set of R® , ¢;: X = R, i=l..s are differentiable

functions at x°,
It is obvious that all the previous resuits are valid setting H= U°,
As a consequence (4.8) becomes

S
Z a;V;(x%) =0
i=1
which is a necessary condition for x° to be an interior local optimal
solution.

The following thecrem states a necessary and sufficient condition in order
to have «;>0, i-1,.., s in(4.6) or in (4.8).

Theorem 4.4 We haveq;>0,i=1,..,5,in (4.8) if and only if K, mH = @

proof

if.Ifze K, mH,then zjz 0,i=1,.,m, and furthermore there exists |
with with 1 £ j % s such that i >0 . Consequently 'z > 0 and this

contradicts (4.7 b). _

onlyif. K;nH-0@ implies K; n ciH ¢ {0xV) and

( Ky~ clH) mclH ¢ {0xV). Set C=(K;- clH)nclH . From Thorem 4.2 ,
there exists an hyperplane T such that C = I'my ¢lH < (0xV) : this
inclusion implies ;> 0, i=1,...., 5, in (4.8). [

13



Corollario 4.2 Consider problem P where o and g are differentiable

functions at the local optimal solution x°. Then (4.8} holds with a; > 0,
i=1,..., 8, if and only if K ,nH=-12 .

Remark 4.2 Consider the scalar case s-1;then K, nH - @ becomes a

necessary and sufficient condition in order to have the Kuhn-Tucker
conditions. From this point of view any condition which ensure K, r H-@

becomes a regularity condition. In a forthcoming paper we will deep this
aspect.

In section 3 we have seen that Ty ~ cIH = {0} is a sufficient optimality
condition; taking into account relation Ty~ K; W A , we obtain the

following:

Theorem 4.5 If A-@ and K; n clH = {0}, then x© is a local optimal
solution for problem P.

Corollary 4.3 Assume that condition (4.8) holds with a;> 0,i=1,..., s.
If rank]=n then x° is a local optimal solution for problem P.

proof.
The assumption rank]=n impties T,=K, [4], so that A-@ ;

on the other hand the validity of (4.8) with @ > 0,i=1,.., 8, implies
K, M cll= {0). The thesis fotlows from Theorem 4.3, N

Consider the linearizing problem Pp:

Py : max Jp(x-x,)
Jg(1-35)20 ,x€X

14



Let us note that KL nH -@ becomes a necessary and sufficient
optimality condition for problem P, and consequently a necessary and
sufficient optimality condition for the class of problems P where pand g

are linear functions.
Now, we will see that K mH =@ becomes a sufficient optimality

condition for the class of generalized convex problems.

Theorem 4.6 Consider the differentiable problem P where ¢ , i=1, ....s
are pseudo-concave functions at x? and gj are quasi-concave functions at
x°. If K, nH =@ then x° is an optimal solution for P.

roo0i.
If x° is not an optimal solution there exists x* such that
0i(x*) 2 9;(x%) i=1,..5, where at least one inequality is strict (that is

3§, 12 j< ssuchthat gi(x*)> 9;(x°)).

Since 9 is pseudo-concave we have

Vo;(x)x*-1°) >0 and furthermore Vo;(x°)(z*-x%) 20 i-1,..5, i%]

The assumption of quasi-concavity for g implies Vg;(x®)(x*-x%) = 0
i=1....m, so that J(x*-x°) € H and this is a contradiction. 0

Corollario 4.4 Consider the differentiable problem P where ¢; , i=1, ...
are pseudo-concave functions and gj are quasi-concave functions at x°,
If (4.8) holds with @; » 0, i=1...., s, then x° is an optimat solution for P.
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