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1. introduction

In the second half of this century, the following three classes of mathematical models
have been given particular attention in the management and economics literature:

— mathematical programming problems

— complementarity problems

— variational inequality problems.

In the analysis of marhematical programming problems, convexity of the model is
often assumed. Fortunately, it holds in many applications. For the other two classes of
models, complementary problems and variational inequality problems, the traditional
assumption is monotonicity which also can often be found in applications.

However, one encounters numerous problems in management and economics where
these classical assumptions of convexity and monotonicity do not hold. We realize
that they are just sufficient conditions to guarantee certain properties of these models
important in the solution process. They are by no means necessary. One can say that
they pose an artificial limitation on the usefulness of these three classes of models.

In case of mathematical programming, this was realized almost from the beginning.
As the result, a theory of generalized convex functions has been developed. Many of
the results are summarized in the first monograph on generalized convexity by Avriel,
Diewert, Schaible and Zang [3].

However, the situation is very different for the other two classes of models,
complementarity problems and variational inequality problems. Several isolated
results have become known over the years. Among these is the existence result by
Karamardian in 1976 derived for complementarity problems; see [12]. But a rigorous
study of generalized monotonicity still remains to be done. The subject has received
renewed attention during the last few years. In this report, we try to summarize some
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of the major developments. The presentation is mainly limited to those results which
the author himself has derived in collaboration with others.

As it will be seen, most of these results are related to conceptual matters, i. e. the
definition and characterization of various kinds of generalized monotonicity. The use
of these new concepts is currently under investigation.

2. Thr | f model

The mathematical programming problem, pioneered by Dantzig in the 1940's, is

given as follows

MP min { f(x)|xeC}. 2.1
Here f:C—R for CcR". Often C is given by a system of inequalities

C={xeR|g(x)<b, i=1-m}. (2.2)

Application of linear and nonlinear programming problems are found in such diverse
fields as management, economics, applied mathematics, statistics, the natural sciences
and engineering.

The limitations of the use of MP's in economic equilibrium planning led to a more
rapid development of the other two models, complementary problems and variational
inequality problems [11].

The complementary problem, first pioneered by Cottle and Karamardian in the
1960's, is given in its simplest form as



CP x20, F(x)20, x"F(x)=0. (2.3)
Here F:R] >R where R denotes the nonnegative orthant of R”. The CP
is called a lipear complementary problem if F is an affine map

F(x)=Mx+q where M isan nxn real matrix and g e R".

The generalized complementarity problem is defined with respect to a closed convex
cone CcR” as

GCP xeC, F(x)eC', x"F(x)=0. Q2.4)

Here C'={ye%"

vx=0 forall xeC } is the dual cone. It has also been

studied in infinite-dimensional topological linear spaces.

Regarding applications, we first mention that every differentiable MP gives rise to a
CP through the first-order optimality condition by Karush-Kuhn-Tucker. In this case

. (xl ), F(x) = {Vf(x1)+ (V’g(.’c1 ))szJ

X, —g(x,)+b

where x, is the vector of variables in the MP min { f(xn)| g(x)s b} and x, is

the vector of Lagrange multipliers. A linear or quadratic program leads to a linear
complementarity problem.

There are also other problems in economics and management that can be formulated
as 2 CP such as Nash-equilibrium problems of non-cooperative games, bi-matrix
games or certain economic equilibrium problems. We mention in passing that some
equilibrium problems in mechanics give rise to complementarity problems as well.
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gradient map if and only if M is symmetric; then f(x)=4x"Mx +4"x. Thus most
affine maps are not gradient maps.

In summary, we can say that the three classes of models are related to each other as
follows:

MP - GCP - VI
& o
unless

(2.6)

( is a cone

This shows that the most general, and thus the most flexible model is the variational
inequality problem.

For the above models, theoretical and algorithmic results hold only if certain
regularity assumptions are made. We will contrast here the most special with the most
general model, namely MP's with VI's, in terms of such assumptions.

For MP's (2.1}, the classical assumption, apart from convexity of C , is convexity of
the objective function f . Then the following properties hold:

— the set of optimal solutions is convex

—- a local is a global minimum

— a solution of the Karush-Kuhn-Tucker conditions is a minimum

— a minimum (if it exists) is unique, if f is strictly convex.
Furthermore, most algorithms converge to a minimum under convexity of f.



For VI's (2.5), the classical assumption, apart from convexity of C ,is monotonicity
of the map F . This is not surprising in case of a gradient map F =V ,since a VI
can be understood as the necessary optimality conditions of a MP with f as the
objective function, and monotonicity of F is equivalent to convexity of f .

For monotone VI's , the following properties hold, regardless of whether F is a
gradient map or not:

— the set of solutions is convex (though possibly empty)

— a solution (if it exists) is unique if F is strictly monotone

— a solution exists and is unique if F is strongly monotone,
Moreover, many algorithms converge to a solution if F is monotone.

4. Weakened r lari mption

Convexity in MP's and monotonicity in VI's are sufficient conditions for the above
properties to be true. The question arises to what extend these assumptions can be
relaxed such that the same properties still hold. This problem has extensively been
studied for MP's where a rather elaborate theory of generalized convexity has been
developed; see the monograph [3] and the conference proceedings [21], [22], [5].
One important type of such a generalized convex function is the pseudoconvex
function [3}.

On the other hand, for VI's only very few results are known so far in answer to the
question to what extend properties of monotone VI's still hold in the nonmonotone
case. One of these results is an existence theorem by Karamardian [12] for so-called
pseudomonotone GCP's (2.4). It was recently extended to more general GCP's and
to VI's ; see [9], [11]. A central assumption for the existence of a solution is
pseudomonotonicity of F. It can easily be shown that for such VI's the set of



solutions is still convex [11]. The proof shows that pseudomonotenicity is a very
suitable concept in connection with VI's.

As Karamardian showed in [12], a gradient map F =V f is pseudomonotone if and
only if f is pseudoconvex. This extends the corresponding result for monotone maps
and convex functions. Pseudoconvex functions are central in the theory of MP's . It is
conjectured that pseudomonotone maps will play an important role in VI's.

The comparison of pseudomonotone VI's and pseudoconvex MP's opens up a
number of interesting questions:

— What other existence and uniqueness results can be established?

— Which algorithms do still converge to a solution?

— What kind of applications give rise to such VI's ?

The author is confident that the experience with generalized convex MP's in the last
few decades will be a helpful guide in answering some of the above questions
regarding generalized monotone VI's . Since it proved to be necessary to work with a
variety of generalizations of convexity {3] rather than just one, it is expected that a
variety of generalized monotone maps is needed as well. Some steps have been taken
in this direction as we will see below. In {13] the authors introduce and discuss seven
kinds of monotone and generalized monotone maps which are related to each other as

follows:
monotone - pseudomonotone — quasimonotone
T T
strictly monotone  ~»  strictly pseudomonotone 4.1)
1 o

strongly monotone —  strongly pseudomonotone

In case of gradient maps, they correspond to the following convex and generalized
convex functions:



convex - pseudoconvex — quasiconvex

T T
strictly convex —  strictly pseudoconvex 4.2)
T T

strongly convex -> strongly pseudoconvex

We report on these results in the following section.

..Seven kin f monotone and generalized monotone ma
Throughout this section we assume that F denotes a map F:C — R* where

C < R". In the special case of a gradient map F =V, f denotes a differentiable
function f:C-—>R where C isopenand convex.

5.1 Monotone, strictly monotone and strongly monotone maps

The notion of a2 monotone map F from R" into R" is a natural generalization of
an increasing (non-decreasing) real-valued function of one variable.

Definition 5.1
F is monotoneon C if for every pair of distinct points x,ye C we have

(v =)' (F(») = F(x)) 2 0. G.1)
F is strictly monotone on C if for every paif of distinct points x,ye C we have

(y-x) (F{y)~ F(x)) > 0. (5.2)



F is gtrougly mopotone on C if there exists S>0 such that for every pair of
distinct points x,ye C we have

(y=x) (F() - F(x)) = By - . (5.3)
Convexity of a function and monotonicity of its gradient are equivalent [3].
Proposition 5.1
f is convex (strictly convex, strongly convex) on C if and only if Vf is monotone
(strictly monotone, strongly monotone) on C .
We now present different generalizations of monotone maps. In case the map is the

gradient of a function, such generalized monotonicity concepts can be related to some
generalized convexity property of the underlying function.

5.2 Pseudomonotene maps
In [12] the concept of a pseudomonotone map was introduced.

Definition 5.2
F is pseudomonotone on C if for every pair of distinct points x,yeC we have

(y—x) F(x)20 implies (y-x) F(y)=0. (5.4)

Obviously, a monotone map is pseudomonotone as a comparison of (5.1) and (5.4)
shows. But the converse is not true. See, for example,

F(x)=1/(1+x), C={xeR|xz0}. (5.5)

We recall the following definition [3]:
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Definition 5.3
A function f is pseudoconvex on C if for every pair of distinct points x,ye C we
have

(y-=x)Vf(x)20 implies f(y)2 f(x). (5.6)
The following proposition was shown in [12].

Proposition 5.2
[ is pseudoconvex on C if and only if Vf is pseudomonotone on C.,

Before we introduce new kinds of generalized monotonicity, we will show that in
(5.4) both inequalities can be replaced by strict inequalities.

Proposition 5.3
F is pseudomonotone on C if and only if for every pair of distinct points x,yeC
we have
(y—x) F(x)>0 implies (y-x) F(y)>0. ;.7
Proof

In view of (5.4), pseudomonotonicity is equivalent to

(y-x)"F(y)<0 implies (y-x) F(x)<0. (5.8)
Thus,
(x —-y)T F(y)>0 implies (x-y) F(x)>0. (5.9)
Q

As we see from Proposition 3.3, replacing both inequalities in (5.4) by strict
inequalities as in (5.7) will not give rise to a new type of generalized monotone map.

11



In the following two sections, we replace only one of the two inequalities by a strict
inequality, and in this way we shall generate two new types of generalized monotone
maps. As it turns out, they characterize two well-known types of generalized convex
functions.

5.3 Strictly pseudomonotone maps
Let us introduce the following definition:

Definition 5.4
F is strictly pseudomonotone on C if for every pair of distinct points x,yeC we

have
(y=x) F(x)20 implies (y-x) F(y)>0. (5.10)

Obviously, a strictly pseudomonotone map is pseudomonotone as a comparison of
(5.4) and (3.10) shows. But the converse is not true. See, for example,

0 ifx<0
Fly) = =%, 5.11
(x) {x ifx>0 G.11)

Furthermore, every strictly monotone map is strictly pseudomonotone, as can be seen
by comparing (5.2) and (5.10). The converse is not true as example (5.5) shows.

We now prove the equivalent of Proposition 5.2 for strictly pseudoconvex functions.
Before, we recall the following definition [3]: |

Definition 5.5
S is strictly pseudoconvex on C if for every pair of distinct points x,y € C we have
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(y-x) Vf(x)20 implies f(y)> f(x).

Then we can prove the following proposition:

Proposition 5.4

f is strictly pseudoconvex on C if and only if Vf is pseudomonotone on C.

Proof

Suppose that f is strictly pseudoconvex on C .

Let x,ye(C, x#y besuchthat

We want to show that

Assume to the contrary that

Given (5.13), strict pseudoconvexity of f implies that

On the other hand, (5.15) can be writte

(V- x) Vf(x) 2 0.

(v— x)TVf(y) >0,

(v~ x)"Vf(y)<o0.

F)> f(x).

n as

(x-2) Vf(»)20.

From strict pseudoconvexity of f, it follows that

Fxy> £(),
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which contradicts (5.16).

Conversely, suppose that Vf is strictly pseudomonotone on C .
Let x,yeC, x=#y besuchthat

(v~ x) Vf(x)2 0.
We want to show that
f(¥)> f(x).

Assume to the contrary that

fy) = f(x).
From the mean-value theorem, we have

FO) = fx)=(y-x) VF(3)

where

:lx+(1—}t)y,

=}

for some 0 < A < 1. Now from (5.19), (5.20) and (5.21) we have
(x - 2Y VF(¥)20.

Since Vf is strictly pseudomonotone, we conclude that
(x-x) Vf(x)>0.

Because of (5.21), this implies that
(x =) Vf(x)>0,

which contradicts (5.18).
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5.4 Quasimonotone maps

In view of Definition 5.2, Proposition 5.3 and Definition 5.4, there is still the case to
be considered where the first inequality in (5.4) is a strict inequality.

Definition 5.6
F is guasimonotone on C if for every pair of distinct points x,ye C we have

(y~x)"F(x)>0 implies (y-x) F(y)=0. (5.24)

Every pseudomonotone map is quasimonotone as Proposition 5.3 demonstrates. But
the converse is not true. See, for example,

F(x)=x*, C=%, (5.25)

The term “quasimonotone” suggests a relationship to quasiconvex functions, which
indeed exists. We recall the following definition [3]:

Definition 5.7
f is quasiconvex on C ifforall x,yeC, i€[0,1],

f)sf(x) implies f(Ax+(1-A)y)< f(x). (5.26)

For differentiable functions, the following characterization of quasiconvex functions
holds [3]:

Proposition 5.5
f is quasiconvex on C if and only if for every pair of distinct points x,ye C we

have

f(y)< f(x) implies (y-x) Vf(x)<0. (5.27)
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We now show the following proposition:

Proposition 5.6
f is quasiconvex on C if and only if Vf is quasimonotone on C.

Proof
Suppose that f is quasiconvex. Let x,ye C be such that

(v-x) VF(x)>0. (5.28)
The inequality
f)<f(x) (5.29)
is not possible, since then
(y-x) Vf(x) <0,

according to (5.27), which contradicts (5.28). Hence, we have
f(y)> f(x). ‘ (5.30)
According to (5.27), f(x)< f(y) implies that
(x=») VF(») <0,
(y—x)"Vf(y)20. (5.31)
Since we have shown that (5.28) implies (5.31), Vf is quasimonotone.

Conversely, suppose that Vf is quasimonotone. Assume that f is not quasiconvex.
Then, there exists x,ye C such that

F) 2 f(x), (5.32)

and A €(0,1) such that, for T=x+1(y—x)
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F@)> f(xy2 £(y).
The mean-value theorem implies the existence of ¥ and x" such that
f®)-£0)= (% -y) VF(3),

@)= f(x)=(x-x)"Vf(x)

where X
F=x+A(y-x), =x+A(y-x), 0<cl' <A <A<l,
Then (5.33) implies that
(x-y) Vr(2) >0,
(% -2) VF(x') >0,
This yields

(x* ~2) V£ (2)>0,

(3-x) Vr(x)>0,
in view of (5.36). From (5.40), we obtain

(x* - J‘c)TVf(x*) <0

(5.33)

(5.34)

(5.35)

(5.36)

(3.37)

(3.38)

(5.39)

(5.40)

(5.41)

which together with (5.39) contradicts the quasimonotonicity of V£ . Thus (5.33) does

not hold for any pair x,ye(C ,ie. f is quasiconvex on C.

-

We mention that there are also the concepts of semistrictly and strictly quasiconvex
functions [3]. But it seems to be difficult to characterize these functions with help of

the gradient only. Hence, no attempt is made here to introduce corresponding maps.

Instead, we turn to a subclass of strictly pseudomonotone maps.
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5.5 Strongly pseudomonotone maps
We introduce the following definition:

Definition 5.8
F' is strongly pseudomonotone on C if there exists >0 such that for every pair
of distinct points x,ye C we have

(y-x) F(x)20 implies (y-x) F(y)= B Iy~ x| (5.42)

Every strongly monotone map is strongly pseudomonotone, as a comparison of (5.42)
and (5.3) shows. The converse is not true. See, for example,

F(x)=1/(1+x), C=[0,1]. (5.43)
Every strongly pseudomonotone map is strictly pseudomonotone, as a comparison of

(5.42) and (5.10) shows. But the converse is not true, as illustrated by the example in
(5.25)with C={ xe R|x20}.

We will now relate strongly pseudomonotone maps to strongly pseudoconvex
functions. From [3] we recall:

Definition 5.9
f is strongly pseudoconvex on C if there exists a >0 such that for every pair of
distinct points x,ye C we have

(vy—x)" Vf(x)2 0 implies f(y)> f(x)+ ey - x|. (5.44)

We can prove the following result:
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Proposition 5.7

f is strongly pseudoconvex on C if Vf is strongly pseudomonotone on C , where

a=4%f.
Proof
Suppose that Vf is strongly pseudomonotone.
Let
(v-x) Vf(x)z 0.

Consider

o(A) = flx+A(y~x)), Ael01]
Then

' (A)=(y—x) Vf(x+A(y~x)).
Let

x(A)=x+A(y-x).

Because of (5.45),

(x(1) -—x)T VF(x)20 for A €[0,1].

Since Vf is strongly pseudomonotone, this implies that

(x(A)-x) VF(x(3))2 B |x(2) - for 1 [0,1].

Hence,

A(y=x) Vf(x(A)) 2 B Ay -,
implying that

¢’'(A)2BA|y - x| for A e[0.1].
Then

1 1
#(1)~9(0)= [¢'(A)dA 2 [BAly~da .

i.e

FO) = F(x) 2 3By - .
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The reverse of Proposition 5.7 is currently under investigation.

Now we have arrived at the end of this section. We presented seven kinds of
monotone and generalized monotone maps and their relationship to each other, as
summarized in the diagram (4.1). Furthermore, in case of gradient maps we related
(generalized) monotonicity of the gradient to (generalized) convexity of the
underlying function. For nondifferentiable functions, similar relationships have
recently been shown by Komlosi [16] who uses directional Dini derivatives.

We also point out that Castagnoli and Mazzoleni study generalized monotonicity
from a geometrical point of view using order-preserving functions [6], [7], [8], [17]. It
is somewhat similar to the amalysis in the following section, a more detailed
presentation of which including additional results appears in [14], [15].

. The differentiabl

Before we present first-order characterizations of differentiable generalized monotone
maps, we provide a geometrical characterization for the one-dimensional case. This is
significant because of the relationship between maps and the one-dimensional
restrictions of their projections.

6.1 One-dimensional generalized monotone maps
As in the previous section, let F:C —> R” where C c R”. We use the abbreviations

QM, PM and SPM instead of “quasimonotone”, “psendomonotone” and “strictly
pseudomonotone”, respectively.
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For every veR" and xre(C we define the one-dimensional restriction of the
projectionof F on v by w:I_, - R where

V)=V F(x+n)and I, ={1eR|x+tveC}. (6.1)

The following theorem, whose proof is straightforward, establishes the relationship
between F and v, ..

Proposition 6.1

F is QM,PM and SPM on C if and only if for every veR" , xeC the
function ¥, is QM ,PM and SPM on [, ,respectively.

v

The next proposition, whose proof again is straightforward, establishes the
relationship between the sets C and I, .

Proposition 6.2

We have _
(1) 1., is open (closed) forall xeC and veR" if and only if C is open

(closed);
(ii) I,. isconvex (i e. an interval) forall xeC and veR” if and only if C is

CONVex.
(i) I,,=%R forall xeC and veR" if and only if C =R".

Before we give a geometrical characterization for one-dimensional generalized

monotone maps (functions), we introduce the following sign-preserving notions:

Definition 6.1
Let IC®R and F:1-R. F issaid to have the sign-preserving (SP) property on I

if forany xel we have
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(SP) F(x)>0 implies F(y)20 forall yel,y>x. (6.2)

Fis said to have the strict sign-preserving (SSP) property on I if for any xe1 we

have

F(x)>0 implies F(y)>0 forall yel,y>x 6.3)
(SSP) and

F(x)<0 implies F(y)<0 forall yel,y<x. (6.4)

It is easy to show that (6.2), (6.3) and (6.4) are equivalent to (6.5), (6.6) and (6.7),
respectively, where forany x el

F(x)<0 implies F(y)<0 forall yel,y<x, 6.5)
F(x) <0 implies F(y)<0 forall yel,y<zx, (6.6)
F(x)>0 implies F(y)20 forall yel,y>x. 6.7

The next proposition provides geometrical characterizations of one-dimensional QM,
PM and SPM maps.

Proposition 6.3
Let IR and F:I1->R.

(i) F is QM onlif and only if F has the SP property on I,
(i) F is PM onlIifandonlyif F hasthe SSP propertyon I
(iii)  F is SPM onlif and only if F hasthe SSP property onIand F{x)=0 has

at most one real root.

The proof of this proposition is straightforward and follows from the definitions.
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Geometrically, Proposition 6.3 states that F is QMon IR if and only if it has
the property that, once F(x) is positive for some x , it can never become negative
for any y> x; or equivalently, if F(x) is negative for some x , it could not have
been positive for some y<x . Similarly, F is PM on [ if and enly if it has the
property that, if F(x) is positive for some x , it will remain positive forall y> x,
and if F(x) isnegative for some x, it must be negative for all y < x.

As already mentioned, geometrical properties of generalized monotone maps have
been the starting point for research in different and more abstract directions by
Castagnoli and Mazzoleni; see [6], [7], (8], [17].

6.2 Relationship between QM and PM maps

As seen in Section 5, every PM map is QM, but the converse is not true. For the
sake of completeness, we mention in passing a characterization of those QM maps
which are PM. The interested reader is referred to the proof in[15].

Proposition 6.4
Let C cR" be open and convex,and F:C — R" be continuous on €, Then F is
PM on C if and only if
(i) Fis QM on C,and
(i) forevery xeC with F(x)=0 there exists a neighborhood N(x) of x such
that (y-x) F(y)=20 forall ye N(x)nC.

From this result it follows immediately:

Proposition 6.5
Let CcR" be open and convex, and F:C = R" be continuous and QM on C. If
F(x)=0 forall xeC ,then F is PM on C.
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6.3 Ditferentiable QM , PM and SPM maps

We now present first-order necessary conditions and sufficient conditions for a map
to be QM, PM or SPM. Let C c R”" be open and convex and the map F:C —R"

be differentiable with Jacobian matrix J.(x) evaluated at x. . We consider the
following three conditions where xeC and veR" :

(A) VIF(x)=0 implies  v'Jo(x)v20 (6.8)
(B) VIF(x)=v"J(x)v=0 there exists 7 >0, fel,, (6.9)
implies  such that v F(x+mv)=0
<0,V F(x+1v)>0 forall 0<¢<7

© VIF(x)=vTJ(x)v=0 implies there exists 7 >0, fel,, (6.10)
such that v/ F(x +n) 20
forall 0<¢<¥.

By making use of the results on one-dimensional generalized monotone maps above,
the following necessary and sufficient conditions for QM and PM maps can be
established [15]:

Proposition 6.6
(i) F 13 QM on C if and only if (A) and (B) hold;
(i) F is PM on C if and only if (A) and (C) hold.

We point out, that (A) is not sufficient for a map to be QM or PM. See, for example,

F(x)=~4x’, C=%R. (6.11)
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Condition (A) holds, but F is neither QM nor PM since F=Vf and f(x)=-

is neither quasiconvex nor pseudoconvex on C.

The next proposition gives a somewhat different sufficient condition for F to be PM
[14]:

Proposition 6.7
F is PM on C if in addition to (A) forevery xeC and veR"
VIF(x)= v (x)v=0 implies there exists £>0 such that v'J,(x+mw)v=0 for
all rel,, [f<e.

This condition is not necessary for F to be PM. See, for example, F =Vf, C=%NR,

where
—j§4(2+sin%)d§ if x<0
f@=1 " o if x=0 6.12)

‘[54(2+sm ) if x>0.

0

The derivative of F changes its sign in every neighborhood of x =0, but
nevertheless, F is PM.

In addition to proposition 6.7, we have [15]:

Proposition 6.8
F is SPM on C ifforevery xeC and veR"

TF(x}=0 implies v'J,(x)v> 0. (6.13)

In the next section, we turn to the special case of affine maps. Just as the criteria
above extend second-order characterizations of generalized convex differentiable
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functions [3] (see also [1], [2], [4], [10]) to differentiable maps, the criteria below
extend second-order characterizations of generalized convex guadratic functions ([3],
see also [19], {20]) to affine maps.

7. The affine case

Let F(x)=Mx+q where M isareal nxn-matrix and g€ R”. We consider F
on an open and convex set C < R". As mentioned before, F =Vf if and only if M
is symmetric; then f(x)=1ix"Mx+q x.

For affine maps, condition (A) becomes

(A" vI(Mx+4q) =0 implies v/ Mv>0, (7.1)

since J.(x)=M does not depend on x. Also, condition (B) and (C) are always
satisfied by affine maps. Hence, Proposition 6.6 yields:

Proposition 7.1
F(x)=Mx+q is QMon C ifandonlyif F is PM on C if and only if (A") holds.

From this it follows easily:

Proposition 7.2
F(x)=Mx+q is QM on the closure C of C ifandonlyif F is PMon C.

Furthermore, Proposition 7.1 implies:
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Proposition 7.3
Suppose there exists x° € R” such that F(x") =Mx’+¢=0.Then F is monotone

on R” (ie. M is positive semidefinite) if and only if there exists an open
neighborhood N(x") of x° where F is QM.

Thus, we conclude:

Proposition 7.4
If F(x)=Mx+gq is QM, but not monotone on C, then F(x)=0 forall xeC.

Finally, for the special case C =R" it can be shown:
Proposition 7.5
F(x)=Mx+q is QM on R" if and only if F is monotone on R" (i.e. M is

positive semidefinite).

We conclude this survey with some results on invariance properties of generalized
monotone maps. The reader is referred to [18] for proofs and additional results.

. neralized mon ici n variable fransformation

Consider the variable rransformation z = Ax+5b where A is an mXxn-matrix and
beR” .Let DR be aconvex set and

C={xeR"[ax+beD}. 3.1)

It can be shown:
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Proposition 8.1
If G(z) is QM (PM) on D, then F(x)= A"G(Ax +b) is QM (PM) on C. If G(z) is
SPMon D, m=nand detA#0 ,then F(x)is SPMon C.

In the special case of an orthogonal matrix A (i, e. A™ = A7) we have:

Proposition 8.2
If G(z) is QM (PM, SPM) on D, then F(x)=A"'G(Ax+b) is QM (PM, SPM) on
C.

We focus now on affine maps G(z)= Mz + ¢. From Proposition 8.1 we obtain:

Proposition 8.3
If G(z)=Mz+qis QM (PM)on D, then F(x)=(A"MA)x+(A"Mb+A"q)is QM

(PM)on C.

In the special case of D =R7 and linear maps Mz we have:

Proposition 8.4
If G(z)=Mzis QM (PM) on R, then for any nonnegative m X n-matrix A
F(x)=(A"MA)x is QM (PM)on R]. F(x)=(A"MA)x is SPM on R if in

addition m=n and detA=0 .

Letuscall M QM if Mz is QMon R} . Proposition 8.4 can be used to generate
QM matrices. Given a QM matrix M, then

N=ATMA, A20 (8.2)
is again QM.
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This result can be used to obtain numerical examples of QM matrices either of the
same size m Xm (if n=m) or of larger or smaller sizes nxn (if n# m).

To demonstrate this, we use the matrix

0 2
M=(_1 0). (8.3)

It is easy to see, either from the definition or Proposition 7.1, that M is QM.

Consider any nonnegative 2 X n matrix A, i. e.

AT=(dd®),d 20 i=12 , deR" (8.4)
Then
¥

N=A"MA= (Za}af —a2a1) (3.5)
is QM.
Additional results on invariance properties of generalized monotone affine maps have
been derived in [18]. We currently study the question which properties of generalized

monotone affine maps, known for the symmetric case of M , carry over to the
nonsymmetric case.
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