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Abstract

The aim of this paper is to suggest a unifying approach for studying general classes of
scalar optimization problems related to a bicriteria problem. More exactly we will point
out how the knowledge of the set E of all efficient points of a vector optimization
problem having two objective functions fi, fa, can be used in finding the optimal
solutions of the class of functions:

Hx) =h {F[f1(x)), G[ f2(x)] }, x € XCIRD
where F, G are increasing functions and h is a suitable real-valued function. Recently,
results given in [3,6,8,11] establish that E can be expressed as the union of suitable sets
of optimal level solutions so that it is possible to generalize the approach suggested by
Geoffrion in [4] for the class of concave bicriterion mathematical programs.

1. Bicriteria Problems: preliminary results
For what concerns multi-objective programming, particular importance has been
attributed, the last few years, to the solution of bicriteria problems [1,3,5,6,7,8,9,11].
These researches have led to the characterization of the set of Pareto solutions, with
special attention to both the study of the connection of the efficient boundary and the
determination, for special classes of functions, of sequential methods able to generate it.
Let fy, f> : IR? = 1R be continuous functions and let XCIR! be a compact set; we

can associate with said functions the following bicriteria problems:

Pg1 : (max fi(x), max fo(x)),xe X Pp3 : (min fj(x), min f7(x) ), xe X
Pgy : ( max fj(x), min f3(x) ), xe X Pp4 : ( min f1(x), max fa(x) ), x € X

Taking into account the obvious relationships, min f = - max (- f ) and max f =
- min (-f), problems Pg3 and Pp4 may be formulated as problems of the kind Pg1 and
Pp2, respectively, and "viceversa". For this reason, without loss of generality, we
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associate with the functions f1 and f2 only the bicriteria problems Pg1 and Ppy,

As it is well known, characterization of efficient points via scalarization is not
possible when the bicriteria problem is not concave, so that, in order to generalize
Geoffrion's results, we will refer to the approach given in [3,6,8,11]; such an approach
points out the existing relationship between the set E1 of the Pareto solutions of problem
Pg;l and the set S1(B) of the optimal solutions of the following scalar parametric
problem:

Pi(9):Z;(9)= max fi(x), x€ Ry(8)={xeX: fax) 2 0}
(where one of the two objective functions plays the role of parametric constraint),
~ Let us note that Pg1 and Py have different properties; in fact, if Pg1 is a concave
or generalized concave problem, Pgj is not. In order to determine a relationship
involving both these problems Pp1 and Pgp, we denote by E» the set of Pareto solutions
to problem Pgy and by S2(8) the optimal solutions of the scalar parametric problem
P4(6), where: |

Pa(0):Z2(8)= max fi(x), x€ Ry(0)=2{x€ X: £,(x) < 0 }.

Set ap=max f; (x), 01 =max fr(x), 8 ¢ = max f5 (x),
xeX fi(xX)=ag, xe X xeX
0, =min f,(x) and ©3=minf;(x).
fi(x)=ap, xeX X
The results given in [6,8] can be easily extended to the pair of problems Pgj,
Ppy, in order to obtain the following theorem:
Theorem 1.1: If f1 does not have local maxima different from global ones, then the
following properties hold:
la) P1(®) has optimal solutions for each & €[ 63, Og};
1b) each optimal solution to P1(8) with 0 [ 01, 8g] is binding to the parametric
constraint f5(x) = 0;

1c) Ei=U Si(6y
0ec [91 ' 90]
2a) P,(8) has optimal solutions for each® & [ 03,08 ];

1 Let us note that a bicriteria problem consists of optimizing, in the sense given by Pareto, a pair of
functions and that a point xO¢ R is called a Pareto solution or efficient solution for the bicriteria
problem Pgj [ PR3, if there does not exist a point xe X such that the following inequalities are
simultaneously verified: '

fi) 2 669, e 2 HEY)  [HE 2 /60, hE < HEY)
with at least one stricily verified.



2b) each optimal solution to Py(6) with 8 €[ 83, 85] is binding to the parametric
constraint f5(x) € 0;

2¢) E,=U S,(0).
6 [03,065,]

Taking into account the previous theorem, the following remark shows how Pg
and P can be solved through a unique parametric scalar problem.
Remark 1.1: Let us consider the scalar parametric problem:

(L) P(6):Z(0)= max fi(x), x€ R(B)=E{xe X: ) =0}
According to the properties 1b) and 2b) of Theorem 1.1, if fi does not have local
maxima different from global ones, each optimal solution of P(0) is binding to the
parametric constraint f2(x) 2 8 when 6 e[ 8y, 8p)], while each optimal solution of P»(6)
is binding to the parametric constraint f2(x) £ 6 when 0 [ 83, 6,]. Therefore, P1(0) is
equivalent to P(9) for every 8 €[ 8, , 6y ] and P5(0) is equivalent to P(8) for every 0
ef03.,05].

Now we will establish a condition which ensures that sets Ej and Ej are
connected. Set Sy = {xe X : fi(x) = ag}, the following theorem holds:
Theorem 1.2:
i) E1 NE; = Sy € the restriction of f, on Sy is constant:

ii) EfyVE, = U s { 0 ) € the restriction of f> on Sy is constant,
6e [03,0¢)
where S () denotes the set of optimal solutions to problem (1.1).
Proof: The restriction f; on Sy is constant if and only if 6, = 8;. For properties 1¢)
and 2c¢) of theorem 1.1 and remark 1.1, we have ii) and E; N E, #. In particular,
E1 N E;y = Sy from which 1).

Under suitable assumptions of generalized concavity, we obtain some properties
for the functions Z; and Zp. The following theorem holds:
Theorem 1.3: If ] is a semi-strictly quasi-concave function and 3 is continuous on the
compact set X then Z;(0) is non-increasing on X and Z,(9) is non-decreasing on X.
Specifically, Z(8) is constant in the interval [ 63,0;] and Z»(B) is constant in the
interval [ 9, , 8g).
Proof: For what concerns the monotonia of functions Z,(0) and Z,(0) it is sufficent to
observe thatif 0'< 8" then Ry(8") D Ry(8") so that Z,(6") = Z;(0") while if 0'<
8" then Ry(8") C Ry(6") so that Z3(0") < Z»(8"). The fact that Z1(0) is



monotonically decreasing in the interval [0,,8g] (and the fact that Z,(0) is
monotonically increasing in the interval [63,0;]) is a direct consegnence of
properties 1b) and 2b) of theorem 1.1. The rest of the proof is straightforward.

2. Non-linear programming problems related to bicriteria problems

In this section we will consider a wide class of non linear optimization problems
involving functions f, fa, whose optimal solutions are efficient points of the previous
bicriteria problems . With this aim, let us consider these classes of scalar extremum
problems:

~ Ph1: max Hy = hy (F[fi(x)], GIf26:)]), x e X

Ppz ¢ max Hp = hg (Flfi(x)], Gffa(x)]),xe X
where hy: IR2 -+ IR is an increasing function in each argument2, hy: IR2 = IR is a function
which is increasing in the first argument and decreasing in the second one, f1 and f; are
real-valued and continuous functions defined on the compact set XCIR?, F and G are
continuous functions defined on the subsets X;,X,C IR containing, respectively, the

outcomes of the functions f; and f;.

Let us note that the class Py reduces to the one studied by Geoffrion in [4], if f1, f2
are concave functions and F, G are increasing functions.

If Sp1 and Sy denote the sets of optimal solutions for the problems Phq and Pp,
respectively, the following theorem points out the relationships between Sp; and Ej,
Snp and Ej.

Theorem 2.1:
i) If F and G are increasing functions then $,; C E;,

ii) If F and G are increasing functions then Sy» C Es.

Proof: i) We must prove that, if x0 is an optimal solution for Py, then x© is an efficient
solution for Pg1. Let x© be optimal solution for Py then
hy { F[fi(x)], G [f20)] } <hy { F[f1(x9)], G [f(x0)] } for each xe X.
Let us suppose ab absurdo that x0 is not a Pareto solution for PRy, then there exists

xle X such that:

19 < fi(x!) and f(x0 < fo(x1)
or

f1(x0) < fi(x1) and £,(x0) <fr(x)).

Since F and G are increasing functions, it follows that:
(2.L.a) FIfi(x0] < F[f;(x1H] and G [£,(x%] < G [f(x1)]
or

2 Letus recall that ¢(x,y): DCIRZ-IR, is an increasing function in each argument if ¢(x1,y) < $(x2,y),
for each (x,y)e D such that x;<x3 and ¢(x,y1) < ¢ (x,y2) for each (x,y)e D such that y1<y3.



2.1b) F[fix9] < FHH] and G [f,(x0] < G [f2(x1)].

Since hy is an increasing function in each argument, taking into account (2.1.2), we
have:

(2.2.3) hy { F[f;x0], G [2(0] } <hy ( FIf(xY)], G [f2(x)] }, V x e X,
(22.b) hy { FIfi()], G [£2x9]1 } <hy { F[£ix)], G [f2(x1)] }, V x e X.

In particular, (2.2.a) holds for x = x and (2.2.b) holds for x = x!, so that we have:
hi { F [f100)], G [f2x9] } <hy { F[f(x1)], G [£,(9)] }

and
hy { F[fi(xD)], G [L(x9] } <hy { F[f(xD)], G [fax1)] ).
That contradicts the optimality of point x0 for problem Pp;. In the same way we will
prove that (2.1.b) contradicts the optimality of x0.

ii) The proof is similar to the one given in i).

The previous theorem allow us to characterize particular classes of problems to
which it is possible to apply the obtained results; consider, for instance, the following
subclass of problems:

(23) P*=max {F[fi)]1*G[f2x)] },xeX
where F, G are increasing functions and * denotes an algebraic composition law (+,
ERERDL |

Let Sa, Ss, Sp and Sq be the sets of optimal solutions of the type P* problems,
when * is, respectively, + , -, - , : . Recalling that E; is the set of Pareto solutions for
Ppj and E; for Pgy, the following corollary points out the relationship between Sa, Ss,
Sp, Sq and E;, E,.

Corollary 2.1:

i) Sao CE;.

i) If f1(x) > 0 and fa(x) > O for every x € X, F(0) 20 and G(0)2 0 then Sp € Eq.
iii) S5 € E,.

iv) If f1(x) > 0 and f(x) > 0 for every x € X, F(0) 20 and G(0)= 0 then Sg € Ea.

In remark 1.1 we noted that bicriteria problems Pgy , Py may be related by means of the
unique scalar parametric problem (1.1). Such a problem can be utilized even to solve the
class of problems (2.3) how the following remark shows.

Remark 2.1: If x0 is an optimal solution of the problem P* then it is also the optimal
solution of the problem:

max F[f|(x)]
Glf2(x)] = Glf2(x0)] , x € X
Therefore, solving P* is equivalent to find the optimal level G| fé(xo) 1=G[6¢] in the



parametric problem (1.1).

3. Algorithmic aspects

The previous theoretical results point out that the optimal solutions of the scalar
problems Ph1 and Py are contained, respectively, in the sets E1 and E3 of all efficient
points of the bicriteria problem Pg1 and Ppa. In order to outline this important aspect, let
us note that a problem belonging to the class:

P'= max Z(x) = [ f1(x) 1% * [ f2x)]P ,xe X, 0, R

where * is an algebraic law (+, - , -, 1), f{, fp are fractional functions or f is a linear
function and f7 is quadratic function, is not easy to solve since the objective function
does not have particular properties (except trivial cases), so that we can have several
local maximum not global; on the contrary it is possible to generate all efficient solutions
of the related bicriteria problem{1,6,9] which can be utilized to solve every problem of
the class P'. More precisely, from an algorithmic point of view, taking into account the
previous results, it is possible to propose a unifying approach to solve problems of the
kind Py and Pys.

Let us consider, for instance, the following problems:

P; = max Yf2(x) + k f1(x), xe X, ke IR
P> =max [fi(x}- 3], xeX, aelR

Py=max [f%(x) - 5], xe X, 0,Be IR
which are structurally different but they are related to the same bicriteria problem, that is
Pp or Pga.
Algorithms, based on different theoretical results, have been proposed to solve,
in particular case, problems P1, P» [2,12,13]. With our approach we are able to solve _

P, P2, P3 and each problem of the type Py and Py with a unique algorithm, only

applying different optimality conditions.

More exactly, the idea is the following one: starting from an algorithm which
solves Ppj or Ppa, at each iteration we determine a subset of E1, E; and we verify, by
means of suitable optimality conditions, if such a subset contains the optimal solutions of
problems Py, P2, P3 or one of the type Ph and Ppy. If it does not happen we perform
another iteration and so on. That is synthetized in the following picture.



Algorithm for

Pg1,Pg)
| d
i)

Ll !
Optimality Optimality Optimality
condition condition congition

for for for
P P, P3
d d l
Optimal Optimal Optimal
solution solution solution
for for for
P P, Pq

Furthermore, we want to outline that, when a sufficient optimality condition for a
particular problem of the kind Py and Py is not easy to find but, at the same time, the
set of all efficient points of the related bicriteria problem has a particular structure, for
instance, when it is the union of segments, taking into account that we have:

max Hi(x) = max Hi(x) max Ha(x) = max Ha(x)

xe X xe E; xeX xe By
it is possible to solve the considered problem through one of the known basic descendent
methods applied on the set of all efficient solutions, for instance, as it is suggested in
[10].

4. An illustrative example
For sake of clearness, the following example shows an application of the

previous results. Let us consider the bicriteria problems:

Pgi1 : (max fi(x), max fa(x)),xe X

Pg2 : (max f1(x), min fa(x) ), x e X

where fi(x)= 5 - 25[ X1+ x3, fa(x)= 2- %)q +x2 and X = {x € IRD, x;+x; 21,
X1+%2€£2,x1 20, x 20}.
The sets of all efficient points are, respectively:

Er={A} and Ej= {seg[AD], seg[DC], seg[CB1},
where A = (0,2), B = (2,0), C=(1,0), D = (0,1).
Taking into account the previous results, we know that the optimal solutions for the
problems belonging to the classes:



Pp1: max Hy =hy (Fif1(x)], G[fs(x)]), xe X
Pp2 : max Hp = hy (FIfj(x)], G[f2(x)]), xe X
are in the sets Eq, B, respectively.
In particular this happens for the following problems of the type Pny:

P; = max Yf(x) +k f;(x), xe X, ke IR
Py =max [f§(x) - fg], xeX, a,pelR*
P3=max [f{(x) In (f)], xe X, aeIR*

and for the following problems of the type Ppy:

Py = max [fi(x) - f2(x)], xe X

Ps=max [fi(x)- 55(x)], xe X

60 e x

f2(x)

Since the set Ej has a unique element, the optimal solution of Py, P, P3 and of

Pg = max

each problem of the type Ppj is A, while the optimal solutions of Pi, _Pz, P3 are,
respectively, seg [AD], E = (3/2,0), B and these elements are contained in the set E;
because of theorem 2.1.
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