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Abstract

The problem of minimizing a non-differentiable fractional function on a polytope is
considered. The numerator is the sum of a linear function and the square root of a
convex quadratic form while the denominator is a linear function. Patkan and Stancu-
Minasian have studied the problem and, for the case of a bounded feasible region, they
have proposed different approaches for solving it. In this paper we will be discussing
a finite algorithm, which solves the problem by means of & parametric quadratic
programming, even when the feasible region is unbounded.

(*) The paper has been discussed jointly by the authors, A.Marchi has developed sections 3 and 4,
C.Sodini has developed sections 1 and 2.



1. The problem
The problem is:

cTxteyh/ LxTox
(1.1) infye s £(x)= 2

dTX+dO
where Q is a symmetric positive definite nxn matrix, ¢, d e RY, ¢p, dgpe IR,
S={xe R Ax 2b}!, A is an mxn matrix and b € IRM We will suppose that
dTx+dp>0, vxe S,
We will consider vectors (cT, cg) and (dT, dg) linearly independent, because, if
(cTyco) = A (dT.dp) with L e R, problem (1.1) becomes:

A (dTx+dg )+ W/ LxTQx ]{ Lyrox
infye 5 £(x)= 2 =+ L2
de+d0 dTX+d0
and this problem has been studied and solved in [1].

2, Theoretical properties

In [2,3,4] Patkar and Stancu-Minasian proved that the objective function f(x) is
"explicitly" quasi-convex. This property implies that any local minimum is also
global.

The function f(x) is non-differentiable in x=0. This implies that "a priorit" methods
based on validation of Kuhn -Tucker (K-T) conditions cannot be applied. We will
show that it is possible to define a procedure, based on validation of K-T conditions,
which solves the problem in a finite number of steps.

For problem (1.1) the following three cases can occur:

a) there exists an x°t%e S such that inf {f (x): x € S} = f(xow);
b) inf {f (x): x & S} =L > -c0, but the inf is not attained: then there exists a half-line

{x=x0+ku,k20,%0¢ S}c S such that;
lim f(xg+ku)=1L:
ko +ee

¢) inf(f(x): xe S} = -e0; i.e., there exists a half-line {x =x¢ +k u
» k20, xpe S} S such that:

lim f(xg+ku)=-oo
k—+e

These three cases will be shown implicitly by the algorithm proposed in section 4.

Iwe will suppose that S is non empty and the vertices of S are non degenerate.



Set Co=cTxp+co and Do = dTxg+dy.

Remark 2.1: Let us note that if S is a bounded region only case a) occurs. If § is
unbounded, let us consider a half-line {x = xg +ku, k > 0, x0eS) < S and denote
with ¢(k) the restriction of f(x) on this half-line, we have:

. cTo + LuTQu
) ifdTu>0 then lim o(k) = 2 =L
k— +oo dTu

C xpQu
ii) if dTu=0 and cTu + Wf—uTQu = ( then lim q)(k)— =0 <" o
2 Dy A/ T ’

k— +co Dy 211

iii) ifdTu=0and c¢Tu + V—uTQu <0 then lim ¢(k) =

k— 4o
iv)ifdfu=0and cTu+ '\/ LuTQu >0 then im oG =
k— 40
By applying the Charnes-Cooper transformations y=xt , t=—21 — to the
: dTx+dg

problem (1.1), we obtain :

(2.1) infy per Qy.t) =cTy +cot + 4 % TQy

where R = {(y, t) e IR*1: Ay-bt 20, dTy+dgt=1, t>0}.

The following theorems state some conditions which will allow us to solve problem
(1.1) through problem:

@.2) infyner 00 =Ty + e+ 4/ LT Qy

where R' = {(y, 1) € IR™1: Ay-bt 20, dTy+dgt =1, t 20}.

Theorem 2.1: To each ray u which verifies condition i) of Remark 2.1 corresponds
a (y,0) € R'such that ¢(y,0) = Lj and viceversa.
Proof: If u satisfies conditions i) of Remark 2.1, then

_ cTu + 1/ LuTQu
Auz0,Axg2b,dTu>0and lim k) = 2 =L
k— 4+ oo d u

it follows that in problem (2.2):

(u/dTu,0) € R and @ (u/dTy, 0) =L,
Viceversa, if (y,0) e R’ then

Ay20, dTy=1,94.0)= cTy +1/1yqy;

it follows that:



ey +1/1yTQy
A(xg+k y) 2b, x0€ S, VK20 and lim ¢(k) = 2 = ¢ (y,0)

k—+e dTy

being dTy=1. This completes the proof.

Let us denote with y() the restriction of @(y,t) on (y,1) = (vo, to)+0 (©,8), 620:
Theorem 2.2: To each point xg and ray u which verify condition i1) of Remark 2.1
corresponds a half-line {(y.t) = (yo,t0)+6 (©,8), 620, (yo.to) € R') <R’ such that:

lim ¢(k) = 11m y(k) =L,

k—4on 0o+
and viceversa.
Proof: If xpand u satisfy conditions it) of Remark 2.1, then

Au20, Axg2b,dTu=0, cTu+ 1/ ~uTQu =0 and lim o(k) =L,

k—+oo

It follows that in problem (2.2) there exists the corresponding half-line with:
Yo = Xo/Dg, ty = 1/Dg, ® =u/Dy and 3 = 0 such that:

Iim () =L,.

G teo

Viceversa, we must prove that if:

lim 'qf(e) =1,

0o +eo _
then there exists a half-line in § such that condition ii) of remark 2.1 is verified. Let us
consider a half-line (y,t) = (yg, to) + 6 ( ®,8), 620 such that: '
Ayo - btpz 0, Aw - b82 0, dTyp + dotg = 1, dTw + dyd = 0, then

if ¢Too + ¢T3 + 1/ 3 mTQco 0, hm Y(0) =cTygy + cTty +M—QC9-—

8o V2 6T Qu

Let us note that 6 must equal zero, in fact if 8+ 0 then:
A 0/§2b, w/§ e S, dTayg + dy = 0, contradicting the hypothesis dTx+dg > 0,
Ax e S.1It follows that yo/tse S, /1, s a ray of S such that :

lim o) = 11m y(k) =L,

k34w B> +oo

This completes the proof.

Theorem 2.3: To each point xg and ray u which verify condition iii) of Remark 2.1
corresponds 2 half-line {(y,t) = (yo, to) + 8 (®,3), 620, (y,t) € R'}J< R' such that:

lim o(k) = hm Y(k) = - oc

k-—+eo O +os



and viceversa.
Proof: Similar to proof of theorem 2.2.

Remark 2.2: As a consequence of the previous theorems we have that:

1) if (y',t) is a finite optimal solution of problem (2.2) then two cases can occur:
-t'>0; in this case, x%% = y'/t' is the optimal solution of problem (1.1);
- t' = 0; in this case, problem (1.1) is lower bounded on S but the inf is not

attained, in fact, inf(f(x): xeS) = ¢(y',0) on ray v";

2) if problem (2.2) is unbounded then problem (1.1) is unbounded;

3) if problem (2.2) is lower bounded, but the inf is obtained on the half-line
{(y,0=(y"t')+08(2,8),620,(y,t)eR') then also problem (1.1) is lower bounded

and inf{f(x): xe 8}= inf{¢(y,1): (y,)eR'} = Ty’ +c¢' + W% yTQy'
on half-line {x = y's' + k w'it, k>0)cS.

In [5] a procedure has been proposed to solve the followin g problem:
(2.3)  min g(z):qu+k0'\/~%—zTHz ,ze§’
when H is a symmetric positive definite pxp matrix, ge RP, kg e R, S'={z e RP,
A'z2b'), A' is an m'xp matrix and b' e R™, Let us note that it is not possible to
directly apfly this procedure to solve problem (2.2), since if we set :

1Y _f¢ Q0 _
Z= t sq“[c0:|aH:|:0 0},1(0_1,
-b
A 0
A'=| gTd, |.b' =] 1 land p=n+1
01 0

H is semi-definite positive. The procedure proposed in [5] solves problem (2.3) by
means of parametric quadratic programming. If we apply this procedure, we may have
the following results for problem (2.3):
1) there exists an optimal solution z,, e $"
2) problem (2.3) is not lower bounded;
3) problem (2.3) is lower bound but the inf is not attained.
The following is a brief description of this procedure, called SO (see [5] for further
information):
Step 0: Determine H-1,
If (2qTH1q) 2< kg and b' € 0, then set Zoie = ( and STOP.
IFQ2qTHI )2 = kpand §'(0) ={0: A" z@)2 b, 0 < 0}#0 where



2(8)=— B_T—H-lq then set z,; = z(8) for 6 € §'(®) and STOP.

q q
If (2 qTH-1q) 12 > kj and inf S'(8)= - oo then problem (2.2) is unbounded
and STOP.

If (2 qTH-1q) 12> kg and inf §'(B)= 6' 2 0 > - oo then set k=1, z ®= z(@"),
80=qT z ® and go to Step 2.
Otherwise, go to Step 1.
Step 1: Set k =1, let z&) be the optimal solution of the linear problem min qTz,
ze §'. If z&) = 0 then set zoy = 0 and STOP.
Ifz®s#0and SN z:qTz=qTz® } = z®} then set 89=qT z &) and go
to Step 2.
Ifz® 20 and S{z:qTz=qTz® } £ {20} then solve P'() = {min
z'Hz, zeS', qTz =0 ) with 6 = qT2%®); let z' be the optimal solution of this
problem, set z®)=z' and 69= qT 2% and go to Step 2.
If { mingl z, z e §'}=- oo, determine a solution z'e §' such that qf z'<0 and
let z®) be the optimal solution of P'(qT 2, set 8%= qT z®) and go to Step 2.
Step 2: Let M' z (0=b'y; the equations of the constraints binding at z®). If z® is not

' ) M
a vertex, select from the matrix B' = l } the submatrix B = } of
q*

qT
, . . . 3 M

maximum rank and go to Step 2. Otherwise, select a feasible bagis3 B =
gt

of the matrix B'and go to Step2.

Step 3: Solve the following system:
Hz-MTu-qup=0
(24) Mz=by
qT Z= 90 + 6
Let z(8)=z® 4+
W) =n® +5 0
bo(8) = ui +v6

be the solution of the system. If z®is a vertex of §', go to Step 5; otherwise

iB =[ zﬂ is a feasible basis if the basic solution of the system mT L+qup=H 28 verifies

conditions p20. In general, different bases correspond to the matrix B' = [MT J
q



Step 4:

Step 5:

3. The

go to Step 4.
If o 0 = 2 ( By 2 )/ ko? then set zy,=z and STOP.
If po &< 2 (0g-zg ) ko? then set U®) = H(®) M [0, + oo) where H(0) =
{8 :z(8)e R} N{B:(8) = 0); otherwise set U(0) = H(8) m(-oo, 0];
If U(B) = {0} then set z,,=z(% and STOP. Otherwise set :
2
g, (2K B)-V 2i82-K3B) I3 2B (z0-60))
kBB(2-k3B)

If 8 € H(B) then set zoy= z (0;) and STOP.
If inf U(8) = - and qT ot = -kg 1/ ~21—ch Qo theninf {g(z) ,ze §')=

1T
=qT z® + Koz Ha on ray o and STOP;

Y/ %aT Ho
If inf U(B) = -ee and qT o = -ko 4/ -‘%OLT Qo theninf { g(z),z€8') =-oc0
and STOP. Otherwise let 8¢+1) be the end point of U(8) different from zero,
set:

204 = 7 ( 91
D) = (g%
por) =po (0%
If z&+1) = 0 then set zyu=0 and STOP. Otherwise update the constraints
binding at z&+1) in system (2.4), deleting the constraint i such that [1;&+D= 0
and adding the constraint j such that a;z% > b; and a; 2&+1) = b; ( a; denotes

the j-th row of A), set k =k+1 and go to Step 3.
If there are two different bases By and B2 such that pog, *>2(8g-zg)/ko?

RoBg ®) <2 (8o- 2o ) ko? or Loy ®) < 2 ( 6¢- 20 )/ ko2, Hopy ® > 2(8¢- 79 )/
ko2 then set z,,=2(K) and STOP.

If we have U(B) = {0} for any feasible basis B, then set z,,= z*) and STOP.
Otherwise, go to Step 3.

algorithm

As we have just observed in section 2, procedure SO cannot be directly applied to

problem (2.2), since the quadratic form of this problem is semi-definite positive, in

fact:

1) Step O cannot be utilized, since H is singular,

2) at Step 3, a linear system, which contains H, must be soived. If H is definite



positive, certainly, the system matrix is non singular, but this is not, in general, true
when H is semi-definite positive as in this case.

In this section, however, we will show how it is possible to utilize however thig
procedure to solve problem (1.1) in the cases dg# 0 or dg= 0Oand cp= 0.

Let us observe that the matrix of system (2.4), in relation to problem (2.2) is:

Q0 MT 4 ¢
00 T
b -dy -cp
MS = M
M by 0 00
L cT C(()) 0 00 i

By rearranging columns and rows, the matrix can be put in the following form:

T
Q -M -d -¢ 0
M 0 0 0 -bM
MS =
GO 00 d
T 0 00 o
0 bR“/[ -dg -¢q 0

Since the sub-matrix [-MT,-d,-c] has full rank (i.e. the columns are linearly
independent) it is easy to show that, in cases do# 0 or do= Oand cg= 0, MS is

not singular and system (2.4) has solution.

Therefore, incases do# 0 or do= Oand co# 0, by utilizing procedure SO, we
can solve problem (2.2), starting from Step 1 instead of Step (. Taking into account
remark 2.2, the results of this procedure can be interpreted to solve problem (1.1).

In the particular case dg # 0, problem (2.2) can be transformed into an equivalent
problem where the quadratic form is definite positive. Procedure SO can be applied to
this new problem without any modification; in fact, by setting:

=L (q1.4T
t do(l d'y)



problem (2.2) becomes:

3.1 2 4 oinf fiy)= (cT-S0gTyy 4 /14T
GO gyt T gy Ty

n, M} S T L
yEIR.{A+ d y__do, doy__

where T =

1
dg

Problem (3.1) is equivalent to problem (2.3) by setting:

(3.2) z=y,p=n, kg=1, qT= cT—gﬂdT, H=Q, A'= do | and b=
0

Taking into account previous theorems, we can interpret the result of the procedure
applied to problem (3.1), for solving problem (1.1), in this way:
1) if problem (3.1) has optimal solution Zoy1» then two cases can oceur:

a) dTz o # 1; the corresponding optimal solution of problem (1,1) is given by:
2oy do
1 - dTzgy
b) dTz,, =1 (therefore t= 1y (dTx+do) = 0); problem (1.1) is lower bounded on
S on ray z,.

Xott =

2) if problem (3.1) is not lower bounded on T, it means that problem (1.1) is not
lower bounded on S,

3) if problem (3.1) is lower bounded on T, but inf is not attained, it means that
problem (1.1) is lower bounded on S.

Let us remember that problem (1.1) is non-differentiable in x=0. The following
remark give us a condition to remove this problem.

Remark 2: If point x = 0 belongs to the feasible region S (ie. b < 0), from the
condition dTx+dp >0 v x € S, it follows that dy is positive. As a consequence,

problem (1.1) can be transformed into problem (3.1) and procedure SO can be applied
without any modification.

4. An example
Let us consider the following problem:



X1+ X+ 3+v2x} +x3
%X1+%X2—1

where S = { (x1, xp) € IR?: X - %22 0, X1 + X9 2 3, x>0}

The feasible region § is depicted in fig.1.

(4.1) infeg f(x) =

N\ x

Fig.1

By applying the Charnes Cooper transformations, the problem becomes:

infry, yot)eR QD =y1+ya+3t+42y7+ 3
where R = { (1, y2 1) € IR y1 - 122 0, y1 +32-3 123,

Iy, +ly, (=
y220, N +2 y2-t=1,t>0)
Taking into account that dg = -1 = 0, by setting t=%y] %yz -1 , the problem
becomes:
(42 3 +infies 0 =3 y1+3y2 4217 +

where §' = { (y1, y2)e IR? : y1-y2240, -%m -%y22 - 3, ya20, %—yl %ygz 1}

The feasible region § is depicted in fig.2.



2,0\ Y

Fig.2

It is possible to apply the procedure SO to this problem, by setting:
1 -1

2 1.1 0

z=y, p=2,k=1, q= > |, H*[4O],A' 2 2| andb' =3
5 02 11

2 2 2 0
01
By applying the algorithm we obtain the following steps:

1y
-1__4'

Step 0, we determine H 0 1

2
Since (2qTH-1q) 12 = 75/8> ky =1 and S'(8) ={0: A'z(0) 2b',0<0} = @& where

e
2(8)=———H-1q= 0 [ 2/15, 4/15] T
q'Hq
Step 1, set k =1, the optimal solution of the linear problem min qTz,ze S'isz D =
(L) #0and SN[ z:qTz=qTz0 ) ={ (1,1) ) then set Bl=qT z(6) = 5.

Step 2, we solve the following system:
471 - -2 =0

27+ -2 19=0

Z1- Zg =0
%Zl'l‘% Z; =5+6

from which the solution:



141
Z](e) 1+ 5 0
=1+1
2(6) =1 + 1.6
ui®=1+Le

Megy=6_ 41
Ho (9) 5+50

Step 4, note that U(8) = {0} then zy,=21)is the optimal solution for problem (5.2)
and the procedure stops.

Since dTzy; =1 then the inf f(x) is not attained and Zoy = (1,1) is an optimal
extreme ray for which L = 2 + /3.
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