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1. Introduction
In this paper we consider the problem

min f(x) = cTx + (dTx +dg) (qTx + qp) (1.1)
subject to xeX

where X={xeR": Ax=b , x 20}, A is 2 mxn matrix, ¢, d, ge R",be R™, ¢, dg,
qo€ R. Problem (1.1) has been studied by Konno and T. Kuno [4] who have proposed
an algorithm that solves the problem when X is bounded. For earlier methods see the
references in [4]. The algorithm of Konno and Kuno is based on the idea of embedding
the original n-dimensional problem into an (n+1)-dimensional master problem which is
solved parametrically. More recently Konno, Yajima and Matsui [5] have shown that for
a compact feasible region X problem (1.1), can be solved by means of a parametric
linear programming problem. For a survey of these and related results see [6].

In the following we establish some theoretical properties of problem (1.1) which
allow us to propose a finite algorithm that solves the problem also when X is
unbounded. The algorithm is similar to the one proposed by Konno, Yajima and
Matsui, but it uses different optimality conditions. As we will show in Section 5, even
when X is compact, the two algorithms are not equivalent, i.e. starting from the same
feasible vertex, the optimal solution is obtained through a different sequence of points



and a different number of iterations.
2. Theoretical properties

Problem (1.1} is not a quasiconvex program in general {1]. This implies that a local
minimum is not necessarily a global minimum.
The following theorem holds:

Theorem 2.1
If problem (1.1) has an optimal solution, then at least one optimal solution belongs to an
edge of X.
Proof. If x' is an optimal solution of problem (1.1), then it is also an optimal solution of
the linear program
min f(x) = cTx + (dTx +dy) (qTx + qp) @0
subjectto  xeX'

where X'=Xn{xeR": dTx = dTx'}. Clearly, at least one vertex of X' is an optimal
solution of (2.1). Since a vertex of X' lies on an edge of X, the theorem is proved.

3. Optimality conditions

If we add the constraint dTx + dy= &, EeR, to problem (1.1), the following linear
program is obtained:

P(E) 2(§) =min cTx +& (qTx +qp)
subjectto  xeX(€)

where X(£)=XN{xeR" : dTx + dg = &}. The parameter £ is said to be a feasible level if
the set X(&) is nonempty. An optimal solution of problem P(£) is called an optimal level
solutien, [1], [2], [3].

Clearly, problem (1.1) is equivalent to problem P(£), when & is the level
corresponding to an optimal solution of problem (1.1).

In this section we give some optimality conditions which allow us to detect if an
optimal level solution is a local minimum of problem (1.1).

Let x' be an optimal basic solution of problem P(§") and let Ay be the corresponding
basis. Since x' is an optimal basic solution, we have
(c'NT +§&' q’NT) >0, where
on'=cn' -cpTAp AN, qNT =an" - agTA Ay,

Let us consider the parametric program:

P(E'+0) z(5'+6) = min cTx + (£'+8) (qTx + qp)
subject to xe X(E'+0)



where X(§'+8)=Xn{xeR": dTx + dy = £'+6}.
Set

- X7 = ('5(0), OT, x5(6) = x'g + 0, 0= Ag-lem], em+1T=(0,0, .0,1);

- ET(0) = T+ &' qyD) + 0 aNT;

-F={0eR:xg+ 0a20},0={0eR: fT@® 20}

- FO =FnO.
Clearly, x'(6) is an optimal level solution for 8e FO. Set z'=z(£"), z(0)=z(§'+8).

The following lJemma gives an explicit form for the function z(8), 6e FO.
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Lemma 3.1

If FO#{0}, then z()=B6%+y6+2' where ﬁ:qBTOL, 'y=cBT0L+ E_,'qBT(x+qBTx'B+q0.
Proof. We have z(0)=cp T (x'g+00)+(E'"+0)(qgT(x'g +601)+qg)

=g Tx'g+0cy Ta+E'qp Tx 5 +0E g TotE /gy +0qp Tx' +02q5 Tat+0q,
=qpT0®%+(cy Tart+ E'qpTorqp Tx'p+qg)0+2"

Now, the following lemma can be derived.

Lemma 3.2
If v>0 (y<0), then z(6) is increasing (decreasing) at 6=0,

Proof. We have %(9)=2BB+~{. Hence, g—zé(O)fy.

Set

U = FOMN[0,+e0), if y<0;
U = FON(-20,0], if v>0;
0'=-(y/2P), if B>0.

The following theorem holds:

Theorem 3.1
a) If ¥=0 and (320, then x'is a local minimum for problem (1.1).
b) If 8'e U, then x'(0") is a local minimum for problem (1.1).

2
Proof. a) y=0 and f=0 imply (—%—(0)1-0 and Q—%(O)=2B20; hence x'(0)=x' is a local
do

2
minimum. b) We have &—‘3(9'):0 and 2(9)=2p>0; this implies that x'(8) is a local
de

minimum for problem (1.1).

Though x' is a vertex of X("), it is net a vertex of X, in general. If x' is a vertex of
X, then x' is a degenerate basic solution for problem P(E'+6). It follows that different



bases with nonnegative reduced cost correspond to the solution x'. A basis Ay, is said to

be feasible if the corresponding reduced cost are nonnegative. To point out the

dependence of z(8), F, etc. on the basis Ag, we write z5(8), Fp, etc.. |
If x' is a vertex of X, then the following theorem holds:

Theorem 3.2
a) If there are two different bases Ag 1 and Ag y such that either yg e 0, sup FOB1> 0,

'sz< 0, inf FOB2< 0 orvyy < 0, inf FOp i< 0, TBoy> 0, sup FOB2> 0, then x' is a local

minimum for problem (1.1).
b) If we have Up={0} for any feasible basis Ag, then X' is a local minimum for problem

(1.1).
Proof. a) In view of Lemma 3.2, condition VB l>0, 732<0 (TBI<0, 7§2>0) implies

z(6)2z' in a neighborhood of 0. Hence x' is a local minimum for problem (1.1). b) This
follows directly from the definition of Ug.

4. A finite algorithm for problem (1.1)

Since problem (1.1) is nonconvex, in general, it is necessary to solve problem P(€)
for all feasible levels in order to find a global minimum, assuming one exists. In this
section we will show that this can be done by means of a finite number of primal and/or
dual simplex iterations, using the results of the previous section.

Let Ag be a basis corresponding to the optimal solution of problem P(£") and
suppose that x* is the incumbent global minimum for £<&', i.e. x* is the best optimal
level solution for £<&'. Clearly, UB=f(x*) is an upper bound for the value of z(£) for
328

Let
- X'B=AB-1(bTa (t’;'—dQ)T,

- C'NT= CNT'CBTAB.'IAN,

- ay=anT-apTAp A,

_ 0L=AB-1‘3m+1’

- quBTu”

- y=cp o+t 'gp Tarqg Tx g+ gp,

- 2'=cgTx'p+ £'(gp X'g+qq),

- 0'=-(y2B) if >0,

- Emax = sup {dTx +dg, xe X }(Of course &, may be equal to +co),

Let us consider the parametric problem P(¢'+0) for 620 and determine the sets F,
O, FO as well as sup F, sup O. If sup F and sup O are finite, let

sup F=-x'g /o, = min {-x'g./oy;, 0;< 0} and
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sup O = '(C'Ns"'q'Ns)/q'Ns =min {-(c‘Nj-t-q‘Nj)/q'Nj, q'Nj<0}.
For each 6e O, z(0) is a lower bound for P(E'+9), since x'(@) is a dual basic
solution (primal if 8 F). The following four cases can occur: '

Cl)

C2)

C3)

C4)

B>0, y<0; three subcases need to be considered:

Cla) @' F, sup O =+oo, problem (1.1) is solved; in fact, if UB<z(@"), then
x* is a global minimum; otherwise x'(8") is a global minimum;

Clb)8'e F, sup O =0">0"; if UB>z(8", then x*=x'(8") and UB=z(8"); in
any case, set £'=E'+0", x'= x'(8"), and if £'2E
solved and x* is a global minimum; otherwise:

- if x' is feasible, do a primal simplex iteration with XN, a8 entering variable;

then problem (1.1) is

max’

- if x' is infeasible, apply the dual simplex algorithm with Xp, a8 leaving
variable,

Clc) sup FO=0"<6"; if UB>z(8"), then x*=x'(0") and UB=z(8"); in
any case, set £'=£'+8", x'= x'@"), and if £>E__ , then problem (1.1) is
solved and x* is a global minimum:; otherwise:

max*

- if 8"= sup O, do a primal simplex iteration with XN, 28 entering variable;
- if 8"= sup F, apply the dual simplex algorithm with xg, 25 leaving
variable.

B=0, y20; two subcases need to be considered:
C2a) sup O =+oe, problem (1.1) is solved; x* is a global minimum;
C2b) sup O =0"<+o0; set £'=E'+0", x'= x'(0"), and if £'2E
(1.1) is solved and x* is a global minimum; otherwise:
- if x' is feasible, do a primal simplex iteration with XN, 28 entering varable;

max» then problem

- if X' is infeasible, apply the dual simplex algorithm with Xp, as leaving
variable.

B<0, y<0; two subcases need to be considered:

C3a) sup FO =+eo; problem (1.1) is unbounded, i.e. inf f(x)=-co;

C3b) sup FO =0"<+eo, set £'=E'+0", x'= x'(8"), and if &'
(1.1) is solved and x* is a global minimum; otherwise:

max: then problem
- if "= sup O, do a primal simplex iteration with Xy, a8 entering variable;

- if "= sup F, apply the dual simplex algorithm with xp, as leaving
variable,

B<0, v20; let sup F =01, sup O =62 and 6* be the positive root of the equation

z(8)=UB; four subcases need to be considered:

Cda) 01<0*<02; set E'=E'+6*, x'= x'(6*), and if £, then problem (1.1) is
solved and x* is a global minimum; otherwise apply the dual simplex
algorithm with Xp_as leaving variable.



C4b) 6*<01<62; set £'=E'+0], x'= x'(B1), x*= x'(81), UB= z(0!), and if
g'zz‘;max, then problem (1.1) is solved and x* is a global minimum;
otherwise do a dual simplex iteration with Xp, as leaving
variable;

C4c) 82<8!; set £'=E'+02, x'= x'(62), do a primal simplex iteration with XNg
as entering variable, and if UB>z(82), then set x*=x'(82), UB= 2(02);

C4d) sup FO =+o0; problem (1.1) is unbounded.

Starting from the solution x' and the level &', we arrive at one of the following
situations;

i) x*isan optimal solution;

i) the problem is unbounded;

iii) a new optimal level solution corresponding to a level greater than &' has been found
together with the best incumbent solution. The new solution corresponds to a new
vertex or to a new edge of the feasible region.

In order to propose a finite algorithm to solve problem (1.1), it remains to consider an
appropriate initialization.
Let us solve one of the following linear programs:

Pp min dTx +dg, xe X;
(P3) min qTx +qq, xe X;
(P3) max dTx +dg,xeX;
(Py) max qTx +qqp, xe X.

If x' is the unique optimal solution of (P) ((P,)) and &'=dTx+dy (§'=qTx+qg) is the
corresponding level then X(&)={x'} and clearly x' is an optimal level solution; in this
case x*=x' and only increasing values of £ need to be considered. Analogously, if x' is
the unique optimal solution of (P3) ({(P4)) and &'=dTx+dg (&'=qTx+qq) is the
corresponding level, then x*=x" and only decreasing values of & need to be considered.
In any of these cases, if x' is not a unique optimal solution, then X(£"={x'} and x' is
not an optimal level solution in general; in this case we can start from the optimal
solution x' of P(£'") setting x*=x'. Otherwise we can start from the optimal level

solution x' corresponding to a feasible level &'; also in this case x*=x": but it is
necessary to consider either increasing or decreasing values of the parameter.

We give now a formal description of the algorithm, called SS, under the assumption that
problem (Py) has a finite optimal solution. The modifications necessary for an
unbounded problem (P)) are straightforward.

The algorithm SS
Step 0 (Initialization) Find an optimal level solution x' and the corresponding level
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&' by solving problem (Py). Set x*=x', UB=f(x*); go to Step 1.
Step 1 According to the four cases C1-C4 discussed above, if the problem is solved
or unboundedness is found, then STOP; otherwise go to Step 2.

Step 2 Update x', x*, £' and go to Step 1.

Clearly, the proposed algorithm is finite, since at each step a new vertex or a new
edge is reached. :

5. A comparison with the algorithm of Konno, Yajima and Matsui

The algorithm of Korno, Yajima and Matsui [5], called KYM, solves problem (1.1)
in the case of a bounded feasible region. In this section we give a formal description of

algorithm K'YM in order to show how it differs from the algorithm SS. Let € min
{dTx +dy, xe X}, &, = sup {dTx + dyy, xe X}; since X is bounded, it follows that

= inf

Eminand & are finite.

The algorithm KYM

Step 0 (Initialization) Find an optimal level solution x' and the corresponding level
£’ by solving problem (P;).Set x*=x, UB=f(x*); go to Step 1.

Step 1 If &=t _...then STOP; x* is an optimal solution. Otherwise, let §'=sup FO
and z(6%) = min {z(8), 0<0<0'}. Set £'=£'+0’, x'=x'(0") and if z(6*)<UB,
x* =x'(8%); go to Step 2.

Step 2 If 6'=sup F, then do a dual simplex iteration with Xp, 8 leaving
variable and go to Step 1; otherwise, do a primal simplex iteration with XNg
as entering variable and go to Step 1.

Clearly, algorithm K'YM finds the optimal solution by solving problem P(E) for all
the feasible levels from the minimum level £ ;. to the maximum level &_ . and stops
only when condition &=§ . is verified.

The differences between algorithm SS and algorithm K'YM are the following:

1) algorithm KYM works only for problems with a bounded feasible region while
algorithm SS can also be used for the unbounded case;

2) algorithm KYM terminates when the level Emax 18 reached; algorithm SS can
terminate in three different ways:
i) case Cla;
ii) case C2a;
iii) condition §2E_ ;

3) algorithm K'YM generates a sequence of feasible points while algorithm S8
can generate also infeasible points.

The following examples demonstrate the differences between the two algorithms.



Example 1:

min f(x) = X1 + (X3~ X9+10)( X + X9-6)
subjectto  -xy + 2x9 < 18,

3x; +4x92 12,

X1 + X2 < 13,

Xq- 4X2 < 8,

x12 0, x9 2 0.

First, we apply algorithm SS. Starting from the optimal solution x'=(0,9) of the linear

program

min {x1- xp+10: -xq +2xy <18, 3xy +4x9 2 12, %120, x7 2 0},

we obtain the following steps:

- x'=(0,9), x'(6)=(0,9-8), sup O=+co, sup F=6, z(6)=-62+20+3, UB=3, £'=1,
x%*=(0,9); hence 8*=2, sup F=6 >0*=2, §'=7, UB=z(6)=-21, x*=x'(6)=(0,3) and a
dual iteration is done;

- x'=(0,3), x'(0)=(4/70,3-3/70), sup O=+co, sup F=7, z(0)=1/702-10/76-21,
9'=5€ F, 2(5)=-172/7 < UB; hence UB=-172/7, x*=x'(5)=(20/7.6/7);

- x*=(20/7,6/7) is a global minimum while (0,9) is a local minimum.

Now we apply algorithm KYM. Starting from the optimal solution x'=(0,9) of the linear

program

min {X;- Xo+10: -x; +2x9 €18, 3%y +4x5 2 12, x420, x5 20},

we obtain the following steps:

- x'=(0,9) , x'(8)=(0,9-68), UB=3, &'=1, x*=(0,9), sup O=+00, sup F=6,
8'=sup FO=6, z(6)=min{z(6)=-02+20+3, 0<8<6}=-21< UB; hence §'=7,
x'=x'(6)=(0,3), x*=x'(6)=(0,3), UB=2(6)=-21 and a dual iteration is done;

- x'=(0,3), x'(0)=(4/70,3-3/78), £'=7, sup O=+co, sup F=7, 6'=sup FO=7,
z(5) = min{z(0) = 1/702-10/768-21, 0<0<7} = -172/7 < UB; hence &'=14,
x=x'(T)=(4,0), x*=x'(5) =(20/7,6/7), UB=-172/7 and a dual iteration is done;

- x=(4,0), x'(6)=(4+6.,0), £'=14, sup O=+o0, sup F=4, 8'=sup FO=4,
z(0)=min{z(®) = 02+136-24, 0=8<4}=-24 > UB,; hence &'=18, x'=x'(4)=(8,0)
and a dual iteration is done;

- x=(8,0), x'(0)=(8+4/30,1/30), §'=18, sup O=+co, sup F=3, 8'=sup FO=3,
z(0)=min{z(8)=5/30%+100/30+44, 0<6<3}=44>UB; hence £'=21, x'=x'(3)=(12,1)
and a dual iteration is done;

- x*=(20/7,6/7) is a global minimum.

The paths followed by the two algorithms are depicted in fig. 1.
Algorithm S8 finds the optimal solution generating the sequence of points (0,9),

(0,3) with one iteration; algorithm KYM finds the optimal solution generating the
sequence (0,9), (0,3), (4,0), (8,0), (12,1) with four iterations.
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Example 2:

min f(x) = xq + (2x1- 3xp+13)( Xy + x9-1)
subjectto  -x; +2x9 <8§,
Xn 2 3,
X1+ 2x2 < 12,
-Xp + 2X2 23,
x120,xp20.

First, we apply algorithm SS. Starting from the optimal solution x'=(0,4) of the linear

program

min {2x)- 3Xo+13: -xy +2x3 €8, Xp 2 3, Xy + 2x9 £ 12, -x1 + 2%, 2 §, X120, X, 20},

we obtain the following steps:

- x'=(0,4), x'(6)=(0,4-1/36), sup O=+eo, sup F=6, z(0)=-1/302+8/36+3, UB=3,
&'=1, x*=(0,4); hence 6*=8, sup F < 8*=8, £'=9, x'=x'(8)=(0,4/3);

- x'=(0,4/3) is an infeasible point, by two dual iterations the new infeasibie point
(7,6) is obtained and condition §2€__ is verified;

- x*=(0,4) is a global minimum.
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Now we apply algorithm K'YM. Starting from the optimal solution x'=(0,4) of the linear

program .

min {2x- 3xp+13: «x] +2x3 <8, X923, x1 + 2xp < 12, -xq + 2%y 2 5, %20, Xq 20},

we obtain the following steps:

- x=(0,4) , x'(0)=(0,4-1/30), UB=3, £'=1, x*=(0,4), sup O=+co, sup F=3,
6'=sup FO=3, z(0)=min{z(8)=-1/362+8/30+3, 0<08<3}=3; hence &'=4,
x'=x'(3)=(0,3) and a dual iteration is done;

- x'=(0,3), x'(0)=(1/20,3), &'=4, sup O=+eco, sup F=2, 0'=sup FO=2,
2(0) = min{z() = 1/262+9/26+8, 0<0<2) = § > UB; hence £'=6, x'=x'(2)=(1,3)
and a dual iteration is done;

- xX'=(1,3), x'(0)=(1+26,3+0), £'=6, sup O=+co, sup F=5/4, §'=sup FO=5/4,
2(0) = min {z(8) = 302+230+19, 0<6<4} = 19 > UB; hence E'=29/4,
X'=x'(5/4)=(7/2,17/4) and 2 dual iteration is done;

- x*=(0,4) is a global minimum.

The paths followed by the two algorithms are depicted in fig. 2.

Algorithm 88§ finds the optimal solution generating the sequence of points (0,4),
(0,4/3), (7,6) whith two iterations; algorithm K'YM finds the optimal solution generating
the sequence (0,4), (0,3), (1,3), (7/2,17/4) with three iterations.

X2

(7.6)
* 2y - 3x5 +13=1 ,"

T 2X) - 3xg + 132204 %

e R0

04 . .
’O.: ’d

©03)
' 13 -
1 -
: _,4" ——p» path of algorithm KYM

V).~ === path of algorithm SS
043y 7

X

fig. 2
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Example 3:

min f(x) = 20x;+ 2X9 + (X1+ X9+ 2)( -2x 1+ X+ 3)
subjectto  -xy + Xy <0,

-X1 +3x9 2 2,

X12 O, X 20.

Applying algorithm SS starting from the optimal solution x'=(1,1) of the linear program

min {Xp+ Xo+ 2: -x] +Xp S0, -x3 +3x222, x120,x%xp 20},

we obtain the following steps:

- x=(L1), x*=(1,1), x'(8)=(1+1/20,1+1/20), sup O=2, sup F=+ee, UB=30, £'=4,
2(8)=-1/262+116+30, 6*=22; hence €'=6, x'=x'(2)=(2,2) and a primal iteration is
done;

- the point x'=(5/2,3/2) is obtained with x'(0)=(5/2+3/46,3/2+1/40), sup O=+oo,
sup F=+co, sup FO=+oo, z(0)=-5/402+15/20+50; hence the problem is
unbounded and x*=(1,1) is a local minimum.

The path followed by the algorithm is depicted in fig. 3.

X

fig. 3

Algorithm KYM cannot be used in this case since the feasible region is unbounded.

6. Conclusion

For the problem of minimizing the sum of a linear function and the product of two
linear functions over a convex polyhedron a finite algorithm is proposed that either finds
a global minimum or detects the unboundedness of the objective function. A sequence
of primal and/or dual simplex iterations is employed. The method differs from the one in
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[5] in several ways.

In [5], also the problem of minimizing the sum of a linear function and the ratio of
two linear functions is considered and an algorithm similar to the one in case of the
product is suggested. In the same way, the algorithm in the present paper can be
modified to solve the problem of minimizing the sum of a linear function and the ratio
rather than product of two linear functions. In contrast to {5], we do not need to assume
compactness of the feasible region. For related algorithms and applications of
generalized linear fractional programming see [1], [3), [4], [6].

We mention that the problem of minimizing the sum of two ratios of linear functions
can be reduced to a generalized linear fractional program with help of the variable
transformation by Charnes-Cooper, as shown in [1], [5]. Hence the sum-of-two-ratios-
problem can be solved by a method similar to the one proposed in the present paper as
well.
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