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An Approach to Optimality Conditions
in Vector and Scalar Optimization

ALBERTO CAMBINT and LAURA MARTEIN!

The implication of concavity in economics have suggested in the scalar case several kinds of generalization
starting from the pioneering work of Arrow-Enthoven (1961)
The aim of this paper is to point out the role played by generalized concavity and by the tangent cone 1o the
feasible region at a point, in stating several necessary and/or sufficient optimality conditions for a vector and
scalar 0pt1m1zat10n problem.

Furthermore, in deriving F.John optimality condmons the role of separations theorems is analyzed in order t0
suggest suitable formulations of Kuhn-Tucker conditions and a way for studying regularity conditions.

1 Imtroduction

The implication of concavity in economics have suggested in the scalar case several kinds of
generalization starting from the pioneering work of Arrow-Enthoven (1961) where, for the first
time, the earlier concavity assumption on utility and production functions was relaxed to
quasiconcavity.

Nevertheless the study of generalized concavity of a vector valued function is not yet
sufficiently explored and some classes with related properties have been suggested mainly for
the paretian case.

In this paper we 1ntroducc some classes of generalized concave functions with respect to any
cone in order to obtain sufficient optimality conditions in a general form, which can be specified
both in the paretian case and in the scalar case.

The followed approach points out the role played by the tangent cone to the feasible region at
a point in deriving, for a differentiable and non differentiable multiobjective problem, necessary
and/or sufficient optimality conditions which can be expressed by means of the directions
belonging to such a tangent cone.

Furthermore, in deriving F.John optimality conditions, the role of separations theorems is
analyzed in order to suggest suitable formulations of Kuhn-Tucker conditions and a way for
studying regularity conditions.

2 Statement of the problem
Consider the following vector optimization problem:
P:U-max F(x),x €S X

where X be an open set of R? | F: X — R%, and U c R® is a non trivial cone with vertex
at the origin 0€ U.

Set U= U\{0}.
?point XoE€ S is said to be a (global) efficient point for problem P with respect to the cone U

F(x) & F(xo) +U° » VXE S (.1a)

If (2.1a) is verified in a suitable neighbourhood I of xg, i.c.

1 The paper has been discussed jointly by the authors. Cambini has developed sections 1,2,7; Martein has
developed sections 3,4,3,6.



F(x) & F(xg) +U°: VxelINns (2.1b)

X is said to be a local efficient point. _
If there is no points x in (2.1b) such that F(x)=F(xp), i.e.

F(x) ¢ F(xg) +U» VxelN § , x#xp {2.1¢c)

xpis said to be a strict Jocal efficient point
Let us note that in the scalar case (s=1, U=R ) (2.1b), (2.1¢) collapse to the ordinary

definitions of a local maximum and a strict local maximum point, respectively, while when Us
Rf_ , problem P reduces to a vector Pareto problem.

In the next sections we will establish several optimality conditions involving generalized
concavity and/or semidifferentiability and/or differentiability of the objective function.

3. Generalized concave functions

In finding conditions under which a local maximum point is also global, an important role is
played by the concept of generalized concavity at a point introduced by Mangasarian (1969) for
a scalar optimization problem.

Let us note that thare are different way in generalizing to the vector case the definitions of
generalized concave functions given in the scalar case. For the aim of this paper we limit
ourselves to define some classes of generalized concave vector valued functions which will
allow us to state several optimality conditions,

With this aim, let us consider an open set X of the n-dimensional space R", a function
F:-X-R® and a non trivial cone U - R® with vertex at the origin 0& U. Set U%= U\O).
A set S X is said to be locally star shaped at x,€ S if there exists a neighbourhood I of xg
such that for every x € INS we have: -
[x, Xg] = {tx+(1-t}xq: t€[0,1]} C S.
Definition 3.1

The function F is said to be U-goncave at x, (with respect to the locally star shaped set S at Xp)
if: .

F(xg+A(x-Xg)) € FxoH+MEX)-Fxg+U VA€ (0, 1), Vxe$§
Defihition 3.2

The function F is said to be U-quasiconcave (UJ-q.cv.) at xo (with respect to the locally star
shaped set S at x) if:

x €S ,F&x) € F(xp) +U = F(xgtAMx-xp))€ Flxpd+U  VAe(0, 1)
Definition 3.3 '

The function F is said to be U-semistrictly quasiconcave (U-s.s.q.cv.) at Xq (with respect to
the locally star shaped set S at xg) if:

x €8, Fx) € F(xg) +U® = Fxp+Ax-xp))e F(xg) +U° VA& (0, 1)



Definition 3.4
Let F be directionally differentiable at xq ; F is said to be U-weakly pseudoconcave (U-w.p.cv)

at x,, (with respect to the locally star shaped set S at xo) if:

oF X-X
x €S, F(x) € F(xg) +U° = S0 € uo, dzﬁﬁgﬂ
Definition 3.5 ’
Let Fbe directionally differentiable at x, and assume that intU # @ ; F is said to be
U-pseudoconcave (U-p.cv) at xg (with respect to the locally star shaped set S at xo) if:

x €S, F0) € Fxg) U0 = %E(XO) € intU, d=p “ix- Xoﬂ

Let us note that when s=1 ed U=R _, definitions 3.1, 3.2, 3.3 are the ordinary definitions of

concave function, quasiconcave function and semistictly quasiconcave function at a point x,
respectively, while definitions 3.4, 3.5 collapse to the ordinary definition of a psendoconcave
function at X (see Mangasarian (1969 )) .

In the scalar case an upper semicontinuous and semistrictly quasiconcave functlon is also
quasiconcave; this property is lost for a vector valued function as is shown in the following
example:

Example 3.1
Consider the star shaped set S=R, at xg=0 " and the function F: R — RZ defined as follows:

F(x)=(x sen% ,- X sen;lz) if x#0 ; F(x)=0 if x=0.
It easy to verify that F is continuous and Ri - 8.8.q.cv. at Xg but it is not Ri - q.cv. at Xg.

Remark 3.1
It follows immediately from the given definitions that a linear function F is U-concave and U-

weakly pseudoconcave with respect to every cone U with vertex at the origin 0& U but it is not
U-pseudoconcave.

Remark 3.2
With respect to the paretian cone U= Rj_ it is easy to verify that F is U-concave at x, if and

only if all its'components is concave at xq; such a property does not hold for the other given
classes of generalized concave functions.

With this regards it is sufficient to note that if at least one component of F has a strict local
maximum point at x,, then F verifies definitions 3.2, 3.3, 3.4, 3.5 without any other
requiremnent on the other components of F. A non trivial example is the following one:

Exampl

Let us consider the function F(x,x,)=(x,- x,, xlz- X5, —xlz— Xy), X6=(0,0), 8={(x,,x,): x,20
and the cone U= Ri .

We can verify that f,(x;,x,)= xlz- X, isnot $.s.q.cv.,q.cv.,p.cv. at Xp while F turns
out to be Ri- $.8.q.cv. , R.i- q.cv. ,R3- p.cv. and R’ LW.p.cv.at xg.

;Fuhe following theorem establishes ralationships among some classes of generalized concave
nctions:



Theorem 3.1 :
Let S be a locally star shaped set at xqand let U be a convex cone.

i) if F is U-concave at xq then Fis U-q.cv. atxg _
ii) if F is U-concave at xo and U is a pointed cone then F is U-5.5.q.Cv. at X,

proof .
i) Assume that F(x) € F(xg) +U , that is F(x)- F(xg)e U . Since F is U-concave at Xg we

have

F(xg+A(x-xg)€ FxoHMEX)-F(xp))+U C F(xo)+U Yie (0,1), so that Fis U-g.cv at Xg.
i) Assume that F(x)€ F(xg) +U° |, that is F(x)- F(xp)e U . Since F is U-concave at X we
have F(xy+A(x-%0))€ Fxg+MEx)-F(x)+U. The thesis follows taking into account that for a

pointed cone the property U +U= U° holds. ' ¢

The following example shows that ii) of Theorem 3.1 is false if U is not pointed .

Example 3.3 _
oS ‘
Consider the function F(x):{ 2 i: i zg and the non pointed cone U=R. It 15 easy to

verify that F is U-concave at X, for every xp€ R but F is not U-s.s.qv. at xp=1, since for
x¥=-1 we have:

FCL) € FQHRVOY, F(xg+ 5 (X¥%0) = F(0)=0 & F(xg+RV0).

4. Some properties of a vector generalized concave problem

~ The classes of the generalized concave functions introduced in the previous section, allow us to
investigate relationships between local and global optima and between local efficiency at a point
xg and local efficiency with respect to every feasible direction at xg .

The following theorem shows , as it happens in the scalar case, that the semistrictly
quasiconcavity or the pseudoconcavity of the objective function implies that a local efficient
point is also global; such a property holds for a quasiconcave function only on respect to a strict
local efficient point:

Theorem 4.1

Let us consider problem P where § is a locally star shaped set at x,,.

i) if xg is a local efficient point and F is U-s.s.g.cv. at X, then X is an efficient point for P
ii) if X is a strict local efficient point and F is U-g.cv. at X, then xg is an efficient point for P

iii) if x is a local efficient point , intU # @ and F is U-p.cv. at xg, then x, is an efficient point
for P.

proof.

i) Ab absurdo suppose that there exists x*& S such that F(x*) € F(x0)+UO. Since Fis
U-s.5.q.cv. at Xy, we have F{ xg+A(x*-xg)) € F(xg)+ 0% ¥ Ae(0,1) and such a relation
implies , choosing A small enough,the non local efficiency of x;.

ii) Ab absurdo suppose that there exists x*€ S such that F(x*) € F(xg)+U°. Since Fis U-g.cv.
at xg, we have F( xg+A(x*-xq)) € F(xq)+ U V Ae(0.1) and such a relation implies ,
choosing A small enough,the non strict local efficiency of xg.

iii) Ab absurdo suppose that there exists x*& S such that F(x*) € F(x0)+U°.Sincc F is



F(Xo"’rtd)"F(Xﬂ)
i

oF . X*“Xo . .
U-p.cv. at xg, we have -a—&(xo) € intl, dw--lm , that is t_lg}& +

this implies the existence of a suitable € >0, such that F(xg+td)-F(xp) € intU Vie,€).

. £ .
Set t=Allx*-xgll ; we have F(xg+A(x*-xq)) € F(xg)+intU V A& (0, m) and this

€ intU and

contradicts the local efficiency of | Xg: _ .

Remark 4.1 _ _
Property iii) of Theorem 4.1 cannot be extended to the class of U-w.p.cv. functions even if x

\ , 2
is a strict local efficient point; with this regard consider problem P where U= R°_,
F(x)=(x?, -x*+2x) and S={x € R: x20}. Tt is easy to verify that xg=0 is a strict local efficient
point for P but it is not efficient with respect to S; furthermore F is Ri-w.p.cv. but not

Ri-p.cv. at .xo.'

Corollary 4.1 ‘
Let us consider problem P where § is locally star shaped at xy, U is a pointed cone and F is
U-concave at x,,. Then a local efficient point x4 is an efficient point too.

proof.

It follows immediately from Theorems 3.1, 4.1. 3

Corollary 4.2
Let us consider problem P where S is locally star shaped at xg , and F is linear.

Then a local efficient point xg is an efficient point too.
proof.

It follows from Corollary 4.1 taking into account Remark 3.1. ¢

As is known, the property for which a local efficient point with respect to every feasible
direction of a star shaped set is also a local efficient point for P, does not hold for every

function F ( for instance consider the function F(x,y)= (y—x4)(x2-y) and the star shaped set S=
R at x=(0,0)).

Now we investigate the relationships between the local efficiency of x, and the local
efficiency of xywith respect to all directions starting from x, . With this aim we give the
following definition:

A point x; is said to be a local efficient point (strict local efficient point) with respect to the

N X-X , : :
direction d=7 x»xgli , X €8 and with respect to the cone U if there exists t*>>0 such that

F(x)  F(xg) +U> V¥ x = xgtt d , te (0, t%)

(F(x) & F(xg) +UV x =xg+t d , t€ (0, t*)).

The following theorem holds:



Theorem 4.2
Let us consider problem P where § is locally star shaped at xg.

X- :
i) if X is a local efficient point for every direction d=ﬁ ,x€$8 and Fis U-s.s.q.cv. at

Xg » then X is a local efficient point for P.

. X-X .
ii) if xg is a strict local efficient point for every direction d=m§ﬁ ,x€8 and Fis U-q.cv.
at Xg, then xq is a local efficient point for P.

. X-% . .
iii) if xgis a local efficient point for every direction d= W;}:g_n yX €S, intl # 3 and Fis
U-p.cv. at xg, then xg is a local efficient point for P.

Similar to the one given in Theorem 4.1 ¢

5. Optimality conditions (non differentiable case)

In this section and in the following one, we state some necessary and/or sufficient optimality
conditions stated by means of a general approach involving the directions belonging to the
tangent cone to the feasible region at x,.

We recall that the tangent cone to the set S at xp€ S , is the set:
TSxe=(v: 3 {a JCRix} S, @y = +9, x, = Xgc0n 0 y(xp-%e) = V }.

Let us note that T(S,xg)={0} if and only if xg is an isolated point and in such a case xgis
obviously an efficient point for problem P. For this reason throughout this paper it is assumed
that T(S,xp)#{0}. '

The following Lemma points out when the directional derivative of the function F with respect
to the direction v can be obtained by means of a limit involving a switable sequence converging
to Xo .

Lemma 5.1
Let F be directionally differentiable at x,, and locally lipschitzian at x, . Then for any sequence

{xn}, Xp — Xo, there exists a subsequence xnk -3 X, such that

Xn_ -Xo
Hm = =V (5.1a
S )

F(xnk)‘ F(XO) aF

im — A = £ (x 5.1b
S ORI 3y %o (5.1b)

proof
Xp-X
Set v,= l—’-)i—:;gﬂ ,
Fup)-Flxg) — Flxgttyv)-F(xg)
“Kn"XOH - tl'l ’
: a0 : . .
Since { M xnk"‘OH} is a bounded sequence, there exists a subsequence verifyng (2.2a). Since

th= X -xgll ; we have




F(x0+tnkvnk)-F(x0) F(X0+tnkV)-F(X0) N F(X0+tnkvnk)-F(X0+tnkV)
tnk ) tnk rl]k

and taking into account that the lipschitzianity of function ¥ implies

F(xo+tnkvnk)-F(x0+tnkv)

<K "nk"’" , we have

"
Hm F(xnk)‘F(xo) _ firm F(X0+tnkV)-F(K0) _ Q-E (xo) . .
xnk“"”‘o “xnk-xoll Xnk'—})(() tnk aV .

The following theorem states a necessary optimality condition:

Theorem 5.1

Let us consider problem P where intU # @ and F is directionally differentiable and locally
lipschitzian at xg .

If x, is a local efficient point for P than

QE (xp) € intU, Vve T(S,ko) , v#0. (5.2)

ov
proof

It is sufficient to prove (5.2) for é'vréry direction ve& T(S,xg) such that [IVli=1; Let {x,}C S,

Xn~'X0
e xd =V From Lemima 5.1 we have
n ™0

Xy — X, be a sequence such that hm
Xn=2%p
Fxg-F®o)  9F .

Xn—¥Xg Ixp-xoll- dv

F(x,,)-F(x
*TL“TI‘“Q‘)'EUO ¥V n so that T =
Xn X0 Xn—Xg X=Xl

{(xg) ;on the other hand the local efficiency of xyimplies

F(x)-F(Xo) .
n” 0 fg%f(xo)éth. -

The following theorem states a sufficient optimality condition:

Theorem 5.2
Let us consider problem P where U is a closed cone and F is directionally differentiable and
locally lipschitzian at xq . A sufficient condition for xgto be a local efficient point for P is

-g? (x) € U, VveTSxy), v#O0. (5.3)

proof
Ab absurdo suppose that x, is not a local efficient point. Then there exists a sequence {x,}C

S, xp =* Xp such that F(x,) € F(x0)+U°. From Lemma 5.1 there exists a subsequence
{xnk} such that



FO) Fixo) - 9 . LI
T, gl = gy f0 Wit M el TV
O Fx, 1 E(ro
EB(x,, )-F(Xg X/ FXo .
"n T € U°, we have lim WIITI;&'T‘TIF_ = %E(xg)e ¢clU=U and this
Xy X0 R . T v

contradicts (5.3). . ¢

Since

The optimality conditions (5.2), (5.3) can be specialized with respect to the feasible region S.
If S is a closed convex cone with vertex X, the tangent cone T(S,xg) reduces to the set of all

feasible directions D=8-{x,} and consequently (5.2), (5.3) become:

g%(xo) ¢ U, VveD. - (5.41)
g—f-(xo)es U. VveD. | (5.4b)

When S is a'polyhedral set and X is a vertex of S, (5.4 b) states a sufficient condition for_a
vertex to be an efficient point for P; this result generalizes the ones given in Cambini-Martemn
(1991) and in Cambini R. (1992).

If S=R™ (5.4 b) states the following sufficient optimality condition for an interior point,
which generalizes the one given in the scalar case by Ben-Tal and Zowe (1985):

%E o U, VveR" v#0 (5.5
v

Furthermore , as a direct consequence of the given definitions 3.4, 3.5, we have the
following sufficient optimality conditions :

Theorem 5.3 '

Let us consider problem P where F is directionally differentiable and locally lipschitzian at Xg .
0)if S is locally star shaped at Xq, intU # @ and F is U-pseudoconcave at Xg, then (5.6) is 2
sufficient condition for Xy to be a local efficient point for P

gg (xp) € intU, VveD (5.6)
iiy if S is locally star shaped at xg, U is a closed cone and F is U-weakly pseudoconcave at Xo,
then (5.7) is a sufficient condition for xq to be a local efficient point for P

g—f (xp) & U°, VveD (5.7)

6. Optimality conditions (differentiable case)

In this section we consider problem P where the objective function F is differentiable at x,. In
such a case F is also directionally differentiable with respect to any direction v and it results

F
J Fxo(v)= %vm (xg) where JFXD denotes the Jacobian matrix of F at xg.

In order to apply the results given in section 5 to the differentiable case , we need to extend



Lemma 5.1 since F is not necessarily lipschitzian at Xg:

Lemma 6.1
Let F be differentiable at x. Then fot any sequence {x,}, xy ~> Xo, there exists a snbsequence

Xp, = X0 such that
X, %0 . F(X )"F(Xo)
i kg =v L m o = g, ) 6.1)
Xp—%o i X0 X —Xo g0 0
proof
Si F(x)-F(xg)= T, ( }+6( ), lim ) =() , we have
- = - Xn,X0)s T T VN
ince F(x)-F(xg xo(En %0 X0 X% Ty -Xgl
F(x)-F(xo) Xn~Xo o(XpXo)
A = ( +
Ix,,-Xoll Xo Hx 3 XM 1% ~Xoll
X X
Taking into account that {ﬂf:i—gﬁ } is a bounded sequence, there exists a convergent
n
Xnk-XO
subsequence { p——— | verifying (6.1). *
q {”xnk'xﬂ)” } ying (6.1} |

The previous Lemma allows us to restate Theorems 3.1, 5.2,, inthe following way:

Teorema 6.1
Let us consider problem P where intU # @ and F is differentiable at xy.If xp isa tocal
efficient point for P then

Tpg (V) # intU, YV veT(Sxg), v#0. (6.2)

Theorem 6.2
Let us consider problem P where U is a closed cone and F is differentiable atxg . A sufficient
condition for x;to be a local efficient point for P is

JFK{)(V) g U, VveT(S,xp), v#0. (6.3)

Some particular cases

- 8 is aclosed cone with vertex at Xq .

Since T(S,xp) = $-{xo} =D, (6.2), (6.3) hold ¥V v& ) and Theorem 5.3 can be restate as
follows:

Theorem 6.3
Let us consider problem P where F is differentiable at xq .

i) if S is locally star shaped at xg, intU # @ and F is U-pseudoconcave at X, then (6. 4) isa
sufficient condition for xg to be a local efficient point for P

Tg: XO(V) g intU, VveD (6.4)



i) if S is locally star shaped at xy, U is aclosed cone and F is U-weakly pseudoconcavc at xg,
then (6.5) is a sufficient condition for xgto be a local efficient point for P

I € U, V¥ veD 6.5)

- S is an open set (unconstrained problem) '
Let U*={ «: ofu=0, V uc U} be the (positive) polar cone of U..
The following theorem hoids:

Theorem 6.4 . ‘ )
Letus consider the unconstrained problem P (S is open) where Uisa convex cone with

intU #£ @ and F is differentiable at x,.
If xqis a local efficient point for P, then :

3 e U0} such that o'Tg, =0 (6.6)
proof. ’
Since T(S,xo) = R™, condition (6.2) is equivalent to (6.7)
Jr Ko(x-xo) ¢ intU, V xeRP, x#x, 6.7y

Let W be the linear manifold W:{z:JFxD(x—xo) , x& R"}. Condition (6.7) is equivalent to

W intU= @ so that there exists an hyperplane which separates properly the convex sets W
and intU, such that octJFxO(x—xo) =0, V xe R", ae U*\{0}, that is a‘JFxO =0, +

The following example shows that (6.6) is not , in general , a sufficient optimality condition:

Esempio 6.1
Consider the problem U-max l(x§+ Xp - X9} » (X X,)E R?, U= Ri and the feasible point xg

=(0,0). We have
JFx0= [ 8 _1] ) a‘Jpr:O , ol=(1,1) so that (6.6) is verified but x, is not a local efficient

point since F( x,0)=( X13 0) € Ri V x,>0.

The following theorem points out the different roles played by weakly pseudoconcavity and
pseudoconcavity:

Theorem 6.5
Let us consider the unconstrained problem P where S is a star shaped set and F is differentiable
at Kq-

i) if condition (6.6) holds , intU # @ and F is U-p.cv. at xg, then Xgis a local efficient point

ii) if condition (6.6) holds with o€ intU* and ¥ is U-w.p.cv. at Xg, then xg is a local efficient
point

proof.

1) Ab absurdo suppose that there exists x*& S such that F(x¥) € F(x0)+U0.Since Fis U-p.cv.

*_
at %, we have Jp, (d) € intU, d=H§-,,;-_3‘x—g-ﬂ ,sothat o', (d)) >0 and this contradicts
(6.6). -



ii) Ab absurdo suppose that there exists x*& S such that F(x*) € F(x0)+U°. Since Fis

x*-x "
U-w.p.cv. at xp, we have Jg, (&) & u°, d=ﬁ;,q§ﬁ , s0 that at(JFXO (@) >0 and this
contradicts (6.6). ¢

When P is a linear multiobjective problem , ii) of Theorem 6.5 can be specified by means of
the following theorem:

Theorem 6.6 ,
Let us consider the unconstrained linear multiobjective problem P where U is a closed , convex,

pointed cone.
Then xq is an efficient point for P if and only if

3 oe intU* such that a‘JFxO =0 (6.8)

If (6.8) holds, the thesis follows from ii) of Theorem 6.5 and from Corollary 3.2 taking into
account that F is U-w.p.cv. at Xq.

If xqis an efficient_.pfoipt then F(x) € F(xp) +U%, ¥ x € R?, and this condition, for the
linearity of F, is equivalent to JFXO(X*XO) gU®, V xeR", 30 that setfing

W={z=IE, (xX0) , X€ R"}, we have W N U= @,

Since W-U is a closed convex cone (Rockafellar 1970 ) such that (W-Uym U0 = @, applying a
separation theorem given by Martein (1989) to the convex sets W and U°,we obtain (6.8). ¢
Remark 6.1

Let us note that in Theorem 6.6 condition (6.8) is indipendent from x since JFxO'_"'F; asa

consequence a linear function does not have interior efficient points ( with respect to a closed ,
pointed, convex cone) or every point of R" is efficient .

Consider now the sufficient optimality condition (6.3) which, in the unconstrained case,
becomes:

Tpy,(x%0) & U, V xeR", x#x (6.9)
In the scalar case (s=1, U=R,), {6.9) is inconsistent since relation

VF(xg)(x-x0) < 0 Vx #xg, cannot be verified, but this does not happen when £>1.
A class of problems for which (6.9) holds is characterized in the following theorem:

Teorema 6.7
Let us consider the unconstrained problem P (S is open) where U is a closed cone and F is
differentiable at x. If

i) s>n, rank JFXO=n
+s . % t _
ii) 3 o€ intU* such that aJFxO =0

then xq is a local efficient point for P .
proof,
ii) implies that JFXO(X-XO) ¢ U® Vx € R, and i) implies that the linear system J Fxo(x-xg)z()

has the unique solution x= xg, so that (6.9) is verified Vx #xg. ¢

The following example shows that the class of problems verifying i), ii) of Theorem 6.7 is non
empty:



Example 6.2

Consider problem P where $=R?, s=3, U=Ri , F(xy X)) =(X+%5,X 2%, ~2%1-3%,).

11
We have JF=[ 12 23 ] , rankJp=2=n < s=3, Condition i) is verified for a'=(1,1, 1).

7. F.John and Kuhn-Tucker generalized conditions

In this section we consider the following vector optimization problem P:
P; U-max F(x), x€8={x & X: G(x) €V}

where X  R? is an open set, F: X = R*, G: X -R™ are centinuous functions, s 2 1, m
> 1,and UCR® V& R™ are closed, pointed, convex cones with verteces at the origin such
that intU#@, intV+D.

let x, be a feasible point and assume that G(xy) =0 ( when V= R +» G(xp) =() means that

Xq s binding at ali the constraints so that such an assumption is not restrictive taking into

account the continuity of F and G).
In order to point out the role played by separation theorems in stating optimality and

y3
regularity conditions, consider the linear subspace W={z= [ JGKO :| (x-xg) , x&R™} and the
Xg
cones intUxintV, intUxV, U V.
The following lemma holds:
Lemma 7.1
i) W (intUx intV)= @ if and only if
t t

3 0#opog)  ap€ U*, 0geVH: op g, + 0g IG, =0 (7.1

ii) W (intUx V)= @ if and only if ‘
; ' x. L t _

3 0#(0p,0g) » Og€ URNO}, 0geEV* ! Oy JFXO+ O JGXO-—-O (7.2)

111) WM (on V)= @ if and only if
3 02(0pog) , ap€ intU*, age V* . °‘1= Txet Gg JGX =0 (7.3)

proof.

Consider the set W-(Ux V) which turns out to be a closed convex cone (Rockafellar 1970). It
easy to prove that '

WO GntUx intV)= @, W @ntUx V)= @, W (U% V)= @, implies
(W-(Ux VI (intUx intV)= @, (W-(Ux V)M (intUx V)=@, (W-(Ux V)™ (U% V)=
respectively. Since intUx intV, intUx 'V, U% V, are convex, pointed cones, the thesis follows
applyng a separation theorem given by Martein (1989) . L



Lemma 7.2
Let x,be alocal efficient point for P. Then:

i) W (intUx intV)= @

i) if G is a linear function W (intUx V)= @

iii) if F and G are linear functions W U V=@ .

proof .

i) Ab absurdo suppose that there exists x*€& X such that ]FXO(X*-XO) € intU ,

JGXO(X*—XO))G intV . Since
lim F(xgHt(x*-xp))-F(xg)

t—0* t

there exists €>0 such that

(F(x0+t(x*-x0))-P(x0) G{xgHt(x*-x0))-

t ! t

x=xgtt(x*-%g)E S Vte(0,.£), Fx)EF(xy)+intU and this contradicts the local efficiency of

XO. '

ii) and iii) follow in a similar way taking into account the linearity of F and G. ¢

. Gxptt(x*-xg))-G(xg) _
= JFXO(X*’X()) , tifla_l_ t = JGXO(K*-‘X()) R

Clx) € intUxintV  V t € (0,€), and this implies -

Theorem 7.1 (F.John optimality conditions) .
Let us consider the vector optimization problem P where F, G are differentiable at x,. Ifxy isa
local efficient point for P, then (7.1) holds.

proof.

It follows from i) of Lernma 7.2 and from i) of Lemma 7.1. . *

Remark 7.1
- (7.1) can be interpreted as a general formulation of the F.John conditions for a vector

optimization problem while (7.2), (7.3) can be interpreted as two possible formulations of the
Kuhn-Tucker conditions since in the scalar case (s=1) they collapse to them; as a consequence
WM (intUx V)= £ and WM (U V)=@ can be viewed play the role of regularity conditions,
since any condition which ensure such disjunctions allows us to obtain Kuhn-Tucker
conditions. U

The following theorem characterizes some classe of functions for which (7.2), (1.3) become
necessary optimality conditions :

Theorem 7.2 '

Let us consider the vector optimization problem P where F, G are differentiable at x,.

i) if x is a local efficient point for P and G is a linear function , then (7.2) holds

ii) if xq is a local efficient point for P and F, G are linear functions, then (7.3) holds.

proof.

It follows from ii) and iii) of lemmas 7.2, 7.1. ¢

Remark 7.2

- in the paretian case U= Ri , V= RT i) of Theorem 7.2 implies that at least one of the

40!
component of 0 is strictly positive in (7.2); in the scalar case (s=1) this means that when the
feasible region is defined by linear constraints , the Kuhn-Tucker conditions hold without any
constraint qualification

- ii) of Theorem 7.2 implies that for a linear multiobjective problem an efficient point is also
strictly efficient.



The following theorem points out the role of generalized concavity in stating sufficient
optimality conditions: -

Theorem 7.2 - .
Let us consider the vector optimization problem P where S is a star shaped set at xgand F, G

are differentiable at xq.

i) if F is U-w.p.cv. at xg, G is V-g.cv. at X, and (7.1) holds with o € intU*, then xgis a
local efficient poit for P.

i) if F is U-p.cv. at Xg, G is V-g.cv. at Xo, and (7.1) holds with o€ U*\{0}, then %o isa
local efficient point for P.

proof

i) Suppose that there exists X*& S such that F(x*)€ F(x0)+U°. Since F is U-w.p.cv. at Xgand
G is V-g.cv. at X we hive, respectively, Jg, (x*-Xo) € v Gy (X*%0) € V and thus

OLEF JFXO(K*-XO),‘—’O ) B; JGXO(x*-xO)ZO since O € intU* and ot € V*. Consequently
a; Ig XO(X*'X0)+ OLtG I xﬂ(x*--xo)>0 and this contradicts (7.1).

ii) similar to the one given in i). ¢
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