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Abstract

The aim of this paper is to carry on the study of optimality in the vector
and in the scalar case jointly, by studying the disjunction of suitable sets
in the image space.

A cone is introduced which allows us to find necessary and/or sufficient

optimality conditions in the image space and in the decision space both.
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1. Introduction

The aim of this paper is to establish necessary and/or sufficient
optimality conditions for a vector optimization problem where the
objective functions and the constraints may be directionally
differentiable, differentiable and/ or generalized concave functions.

The general framework within which we establish our results is the

image space where optimality can be carried on studying the disjunction
between two suitable sets K and H. More exactly since a feasible point Xg

is a local efficient point for P if and only if K N H = , any logical

consequence of such a disjunction becomes a necessary optimality
condition, while any condition which ensures K N H = @ becomes a

sufficient optimality condition.

* The paper has been discussed jointly by the authors. Cambini has developed
sections 1,2.8,9 ; Martein has developed sections 3.4,5,6.7 .



Since K does not have in general properties which are useful in the study
of such a disjunction, some authors [2, 3, 4, 5, 7, 8.10] have introduced
suitable sets instead of K with different aims .

In this order of ideas, we will define a suitable tangent cone T,, which
allows us to find necessary and/or sufficient optimality conditions in the
image space,

The obtained results can be used in deducing necessary and/or sufficent

optimality conditions in the decision space, whenever a characterization
of T, is established.

Furthermore we point out that the image space seems to be appropriate
in order to study generalized concavity since it is possible to obtain
several optimality conditions in a general form.

2. Statement of the problem

Consider the following vector extremum problem

P: U-max ¢(x), x €5= (x € X: g(x) EV}

where X € RY is an open set . 9 =(0;...05): X = R, g=(81..8,) : X = R™

are continuous functions,s 21, m = 1, and UC R® VC R™ are closed,
convex cones with vertices at the origin such that intUz@, intVz@.

A point x, €S is said to be a local efficient point for problem P if there is
no a feasible x belonging to a suitable neighbourhood of Xg such that

p(x) € olxy) + UY (2.1)

where %= U\{Q).
We say that X, is an efficient point for P if (2.1) holds for every x€ES.
Let us note that when s=1, U-R,, V= Rfl, problem P reduces to a scalar

optimization problem and (2.1} collapses to the ordinary definition of a
local maximum point.



Let x4 be a feasible point; from now on we assume that g(x,) =0 ( when
m
V= R, . g(xy) =0 means , obviously, that x, is binding at all the

constraints so that such an assumption is not restrictive taking into
account the continuity of g and g}.

Set
f(x)= (x)- olxy ). F(x)= (f(x), g(x)), K=F(X),H-U"x V

We will refer to R as the decision space and to RS a5 the image space.
It is easy to prove that X, is either an efficient point or a maximum

point (s=1, U-R,, V=R if and only if

KNH-© (2.2)
Furthermore (2.2} is equivalent to state that Xg is either a local efficient
point or a focat maximum point when X is 2 suitable neighbourhood of Xg -
Let us note that the study of the disjunction between K and H in the
image space will allow us {o carry on jointly the study of optimality in the
vector case and in the scalar case.

More exactly any logical consequence of (2.2) becomes a necessary
optimality condition, while any condition which ensures (2.2) becomes a
sufficient optimality condition.

3. Some classes of generalized concave functions

Now we introduce some classes of generalized concave multiobjective
functions which will allow us to establish, in the following sections ,
necessary and/or sufficient optimality conditions for the vector
extremum problem P.

Let X be an open set of R . h: X~ R! be a function and let W C R be a
cone with vertex at the origin 0EW, Set W= W\{0}.
A feasible set AC X is said to be locally star shaped at x; if there exists a
convex neighbourhood I of x4 such that for all x €INA we have

[x . xo] = {tx+(1-t)xy: t€[0,1]) C A.



Definition 3.1
The function h is said to be W-concave at XpEA (with respect to the
locally star shaped set A at x;) if:

h(Xg"‘A(I-Xo)) Ehl(Xg)'*A(h(I)'h(Xg))*‘W WE(O, 1). VXEA

Definition 3.2

The function h is said to be W-semistrictly quasiconcave (W-s.5.q.cv.) at
x9€A (with respect 1o the locally star shaped set A at X} if:

X €A, h(x) € h(xg) +W? = h(xg+a(x-xp))E h(xg) + WO WAE(0, 1)

Definition 3.3

The function h is said to be W-quasiconcave (W-q.cv.) at xg€A (with
respect o the locally star shaped set A at xg) if:

X €A, hi(x) € h(xy) +W = h(xg+h(x-Xg))E h(xg) +W  VAE(0, 1)

Definition 3.4

Let h be directionally differentiable at xy€A ; h is said to be

W-weakly pseudoconcave (W-w.p.cv) at x4EA (with respect to the locally
star shaped set A at xg) if;

dh
g0 . oh X-Kp_
XEA, h() Ehxy) W = 54(x) € WO, dupp

Definition 3.5
Let h be directionally differentiable at xp€A and assume that intW = @ ;
h is said to be W-pseudogoncave ( W-p.cv) at €A (with respect to the
locally star shaped set A at xo) if:

XXp
lIx-Xofl

X €A, h(x) € h(x,) +W° ==»—(xo)61ntW d-

Let us note that when s=1, W=R,, definitions 3.1, 3.2, 3.3 are the ordinary
definitions of concave function, semistrictly quasiconcave function and
quasiconcave function at a point Xy, while definitions 3.4, 3.5 collapse to
the ordinary definition of pseudoconcave function at x, [9].

The following Theorem holds:



Theorem 3.1

Let A be locally star shaped at Xq and let W be a convex cone.

i) if h is W-concave at xg then h is W-q.cv. at x,

i) if h is W-concave at xyand W is pointed, then h is W-s.5.q.cv. at xy.

proof,

i) Assume that h(x) € h(xy) +W , that is h(x)- h(xy)EW . Since h is
W-concave at xy we have

h(xg+A(x-Xg))Eh(xp)+A(n(X}-h(xg)*W C hi{xy+W WAE(0.1), 50 that h is
W-g.cv at xg.

ii) Assume that h(x) € h(xy) +W? | that is h(x)- h(xy)EW? . Since h is
W-concave at xg we have h(xg+A(x-3p))Eh(xy)+A(h(x)-h(xy)}*W. The thesis
follows by noting that for a pointed cone . W0 + W= W0 0

The following example shows that ii) of Theorem 3.1 is false if W is not
pointed .

Xam

0 if x 20 ,
I if x <0 and the non-pointed cone

W=R. It is easy to verify that h is W-concave at Xg for every xy€R but h is
not W-s.s.q.cv. at xy=1, since for x*=-{ we have:

h(-1) € h(1}+R\(0) and h( xo+ % (x*-%g)) = h(0)=0 &h(zy)}+R\(0).

Consider the funclion h{x)- [

Theorem 3.2
Consider problem P where S is locally star shaped at x4, if f, g are
U-ss.q.cv.and V-geov. at xq, respectively, then F=(f.g) is H-s.s.q.cv. at x,.

proof.

If FxIEF(xgH , we have f(x)E€f(xy)+U? , g(x)€g(xo}+V: it follows
flxg+alx-xg) JE f(xg+ U WAE(0, 1), g(xg+A(X-X0) )E g(xp)*V  VAE(0, 1) so
that F(Kg‘*?x(]{-]{g) i F(Xg)+H WE(O, 1). g



Corollary3.1

Consider probiem P where § is locally star shaped at x, and U is a pointed
cone.

i) If f is U-concave at x5 and g is V-q.cv. at Xp , then F={f,g) is H-s.5.q.cv.
at Xyp.

ii} if f, g are U-concave and V-concave | respectively, at Xy , then F=(fg) is
H-s.5.9.cv. at x,.

proof,

i) from ii) of Theorem 3.1 f turns out to be U-s.s.q.cv, so that the thesis
follows from Theorem 3.2

i) It follows from Theorem 3.2, taking into account Theorem 3.1. 0

In order to point out that the class of H-s.5.q.cv, functions is more general
than the class of functions F-(fg) where f is U-s.s.q.cv. and g is V-q.cv. ,

. m . : ,
consider the case where U-R,, V- R, ; if x; is a strict local maximum

point for at least one of the functions f j or for at least one of the
functions g; , then trivially F is H-s.s.q.cv. at Xy whatever the functions f, g
are ( since the condition F(x)E F(x)+H is not verified for every x).

A non trivial example is the following one:

Example 3.2
Let us consider the function F: R~ R3 F(x,y)-(f(z,y), g(xy)) where

f(x,y)-x2-y, g(x;y)- (x-y, - ¥%-y) and the set S={(x,y)ER* % = 0). Set U=R,,
V= RE . X9={0,0). It can be verified that F is H-s.s.q.cv. at Xg butf is not

U-s.s.q.cv. at x,.

Consider now the case where F is a directionally differentiable function:
the following theorem holds:

Theorem 3.3
Consider problem P where S is locally star shaped at xg. If one of the
following conditions holds



i) f and g are U-w.p.cv. and V-w.p.cv. at xg, respectively:

i) is U-w.p.cv. at X, g is V-g.ov. and directionally differentiable at x,;
iii} f is U-w.p.cv. at Xo, 8 18 V-concave and directionally differentiable at
Xg .

then F=(f,g) is H-w.p.cv. at x,,

proof,
i) It follows directly from definition 3.4

ii} Assume that F(z) € F(xg)+H; then f(x) €f(z}+U° so that %{xo)e vl
I-Xg g( xgtA(x-xp)) - glxy)

d=”x_30” and g{x} €g(xy)>+V. We have " €V and
.. ) Q.S_ I-Xo . )

this implies M(XO)EV. df_ml!x—‘xdl since V is a closed cone.

iii) It follows from ii) and from i) of theorem 3.1. This completes the

proof. ]

Remark 3.1

Example 3.2 shows that the class of H-p.cv. functions is more general
than the class of functions F~(f,g) where f is U-p.cv. and g is V-p.cv. .

4. Some properties of a multiobjective generalized
concave problem

The classes of the generalized concave functions introduced in the
previous section, ailow us to investigate relationships between local and
global optima and between local efficiency at a point %3 and local
efficiency with respect to every feasible direction at Xl

Let K; be the image of F(XN 1}, where I is a suitable neighbourhood of x,,.

I'xg is said 1o be a tocal efficient point for problem P with respect to the direction u
if there exists ©0 such that ¢(x)¢ o(xp)+U?  vx: x- Xg+tu, Ot <€,



The following Theorem holds:

Theorem 4.1
Consider problem P where S is locally star shaped at %o and F=(fg) is
H-s.s.q.cv. at xy. Then Ki N H- @ implies KN H= & .

proof,
Suppose K NH = @ ; then there exists *€S such that F(z*) €F(xg)+H =H,

taking into account that F(x,)-0 . Since Fis H-s.s.q.cv. at xp, we have
Flzy+A(x-x¢) JEH VAE(0, 1) so that there exists A*>0, such that
Xo+A*(2-Xp)ESNI and F(xp*A*(x-xp))EH and this contradicts the
assumption. O

Let us note that the previous theorem characterizes a class of problems
for which a local efficient point is efficient too.

Corollary 4.1

Consider problem P where S is locally star shaped at Xg. If one of the
following conditions hold

i} fis U-s.s.q.cv. at xpand g is V-q.cv. at X,

i} U is a pointed cone, f is U-concave at xg and g is V-q.cv. at xg;

iii) U is a pointed cone, f is U-concave at x4 and g is V-concave at Xy

then if g is a local efficient point for P, it follows that it is also efficient.

As is known, the property for which a local efficient point with respect to
every feasible direction of a star shaped set is also a local efficient point
for problem P, does not hold for every function F: it needs of some
assumptions of generalized concavity on F:

Theorem 4.2

Consider problem P where S is locally star shaped at Xg and F is H-s.5.q.cv.
at Xg. If xg is a local efficient point for all feasible directions at X, then x,
is a local efficient point for P.



proof,

Suppose that there exists x*&SN I, where I is a suitable neighbourhood of
X, such that F(x*)EF(zo)+H-H. Then F(xy+A(x*-x4) }E B VAE(0, 1) so that
there exists 2*:0, such that xp*A*(x*-x4) €SN I and F(xg+a*(x-x4) )€ H and
this contradicts the assumption. 0J

Taking into account the previous theorem and corollary we have:

Corollary 4.2

Consider problem P where § is locally star shaped at Xp. If one of the
following conditions hold

i)fis U-ss.q.cv. at xgand g is V-q.cv. at Xp:

it} U is a pointed cone, [ is U-concave at Xo and g is V-q.cv, at x¢;

iii) U is a pointed cone, f is U-concave at Xgand g is V-concave at x;

then if Xy is 4 local efficient point for all feasible directions at Xy, it follows
that it is also efficient.

The following theorem extends to a multiobjective problem the result
given in [6] for a scalar problem:

Theorem 4.3

Consider problem P where S is locally star shaped at xy, f is U-p.cv. at Xg
and g is V-qcv. at x5 If xp is a local efficient point for all feasible
directions at x, then xq is a local efficient point for P,

proof.
If %y is not a local efficient point for P, there exists x*€S such that

f(x*)Ef(xp)+U® and , for the pseudo-concavity of f and the

V-quasiconcavity of g, we have

af _ X*-X

7q(%0) € intU, d”ﬂ_x;tx_:,}Tl’ g{xg+A(x*-xg))EV VAE(0,1), and this implies
- the existence of t*>0, x*=x¢+1*d, such that f(x*)Ef(xy)+intU, g(x*)EV and

this contradicts the efficiency of xg with respect to the direction d. (]



5. Optimality conditions in the image space

As just outlined, the study of optimality in the image space can be carried
on by studying the disjunction between the sets K and H. Since K does not
have in general properties which are useful in studying such a
disjunction, some authors [2,3,4,5,7,8,10] have introduced suitable sets
instead of K with different aims. On the other hand, in working in the
image space we must pay attention in establishing conditions which

permit also to deduce some results in the decision space; from this point
of view it seems to be appropriate to consider the following cone Ty.

whose properties are studied in [4]:

Ti-(t: Jag—=+» 35— x5 with o Flx,) - t)

The following Theorem establishes a necessary optimality condition:

Theorem 5.1 Let Xy be a local efficient point for problem P. Then
Ty N intH - (B.1)

proof.
Assume t* € T, N intH , that is t*>0 ; then there exist a sequence

(xp} CX with Flx,) — F(xg) = 0 and a sequence o n —* +%, such that
@ F(xp) = 1* Hence 3 m : 0y F(xy,) >0 and this implies F(x,,) >0 , that
isKN H= @ and this contradicts the efficiency of Xy L

The following example shows that T, N intH = @ is a necessary but not
sufficient optimality condition,

Example 5.1

Consider problem P where s=1, p(x) = x%, m=1, g(x)-x, xy=0, U=V-R,.
It is easy to show that Ty~((0,1),A €R} so that condition
Ty NintH-@ holds but x4=0 is not an optimal solution for P.

10



The following Théorem gives a sufTicient optimality condition.
Theorem 5.2 Consider problem P. If
Tl n clH = {9} (52)

then x, is a local efficient point for P.

proof.
If x, is not optimal for P, then there exists a sequence (1T S, x> X

such that F(x,) € H.

Since the unit bali is a compact set, we can suppose? that the sequence

Fixp) . ) ] Flxy) cH
|lF(xn)lI converges ait* =0, t* € T{. On the other han IIF(Xn)II SO

that t*€ clH and this is a coniradiction. [l

The following example shows that (5.2) is not a necessary optimality
condition.

Example 52

Consider problem P where s=1, ¢(x) = -x°, m=1, g(x) - x, x4-0.
It is easy to verify that Ty=(A(0,1), A ER ) so that TN clH= (0) but
Xo~0 is the optimal sofution of problem P.

The following Theorem states a necessary and sufficient optimality
condition,

Theorem 5.3 Consider probtem P. The feasible point Xy is a local
efficient point for P if and only if condition I holds:

2Since in a finite dimensional space any bounded sequence (z;;) has a convergent
subsequence, we will assume without loss of generality (substituting (z,) with a
suitable subsequence, if necessary), that 2z 2.

11



ConditionI: ¥ t€TyNclH ,t=0,and for any sequence Xn > X

such that there exists ap — +%0 With o, F(x,) = t , we have
Fx )& H V.

proof.
if. The thesis follows immediately from (2.2).
only if. The proof is similar to the one given in Theorem 5.2 Ll

6. Characterizations of T,

When in the problem P, pand g are differentiable at Xp . it can be shown
[4] that the tangent cone Ty can be characterized as

T-K L UA (6.1)
where
Ky -t Jp(x-xg) , XER® }, Jp is the Jacobian matrix of Fat x,,

A-LtET\MO0): d 35> 1y, @y = +» with @, Flxy) - t,

XH‘XO '
lxgxgll d and J(d)<0 }

Now we consider problem P where ¢ and g are directionally
differentiable and locally lipschitzian at x; .

Set

oF
K= {k 35 (%) , dE R [Idl-1, k >0)

A'=(1ET{MO0: 3 2y = Xy, @y =+ with ay Fxy) = t,

XnXg
"Xn“xon

> d and = (x,) -0

dF
Where 3 (xy) denotes the directional derivative of F at Xp.

12



In order to achieve a characterization of Ty we establish, first of all, the
following Lemma:

Lemma 6.1

Let F be a function directionally differentiable and locally lipschitzian at
Xg. Then for any sequence {x,}, x, — x,, there exists a subsequence

xﬂk ~ Kp, Such that
Xn,"Xg
. &
fim =

d (6.2a)

F(x )“F(Xo) 3
lim - (6.2b)
' (x)-F(xg)  Flxprtod, )-F(xy)
XnXp ‘ F(x, )-F(xq Xg*i,d, )-F(Xp
Set d,- IIxn-xnll’tn— [l ,-xglt ; we have xll tn :
Since (1,1} is a bounded sequence, there exists a subsequence verifying
(6.2.2), so that
Flxp*ty, dy )-F(xg) Flxgrty, d)-Flxp) F(xgrty, dpy )-Flxgrty d)
= +

tnk tnk 1ﬁk
Taking into account that F is locally lipschitzian function at Xg. We have
Flxyt, d )-F(Xo'l-tn d)

| ——k=k £ NsKlldy -dll , and thus
g
‘ F(Knk)"F(Ko) ‘ F(thnkd)-F(Xo) aF
lim i o=, lim ry = ;ﬁ(x{,)
This completes the proof. M

The foliowing Theorem holds:

Theorem 6.1
Consider problem P where ¢ and g are directicnally differentiable and
locally lipschitzian at x; . Then

T4~ KqU A*U(0) (6.3)

13



' oF
First of all we prove that T; DKg, that is aq (X0 €Ty, VdE RY, lldll=1.

i oF , F(Ig'*ld)‘F(Xo)
With this regard, taking into account that ad (xg)= lh% ' 1 '

!
it is sufficient to choose x,- x4+ n 9 andap-n.
Since A* CT; and 0€T,, it results Ty DKy U A*U(0) .
Now we will prove that Ty M0)C Kq U A* since 0ET .
Let 0 = t €T ; then there exist a sequence Xp = Xy and a sequence
= { = i - X -
Q-+ sych that t nl_l)li]m 0y Fl3g) nﬂ?oo 0 (F(x4) - F(xq))
Flzy) - Fix,)
Taking into account Lemma (6.1) , there exists a subsequence of {x5),

which we can suppose to be the same sequence'!’, such that
. FQy) - Fxy) g (
A Tl - aq (R0

: I
ng[i]m un ”In -X Oh

. Xn':@__ gf_ * . . .
d= ni—t'i—loo —“——"xn_xﬂ". If 55 (xo)=0 , then tEA*, otherwise (6.4) implies

that

d
@n X, -2gll converges to ks0 and t=k 5% (xq) . L]

In the following sections we will show how ihe previous characterizations
of the tangent cone Ty can be useful in stating necessary and/or

sufficient optimality conditions.

7. Some optimality conditions fora generalized concave
vector problem

As we have just outlined in section 5 . Ty N intH - @ is a necessary but
not sufficient optimality condition.

The following Theorem states that such a condition becomes sufficient
too, under a suitable generalized concavity assumption.

14



Theorem 7.1

Consider problem P where S is locally star shaped at Xy and F is H-pcv at
XOES.

If Ty N intH - @, then x4 is a local efficient point for P.

proof. :
Suppose that there exists *€S such that F(x*)EF(x,)+H. Since F is H-p.cv.

E

at xy€S, we have ‘g“g (xg)E€intH , d= and this implies

0
lix*-xyll
Ty N intH = @ because of (6.3), 0
Taking into account the characterizations of T, given in section 6, we

have the foliowing resuits in the image space:

Theorem 7.2

Consider the vector extremum problem P where F is directionally
differentiable and locally lipschitzian at x;.

i) If xg is a local efficient point for P then Ky N intH -

ii) assume that S is locally star shaped at xgand F is H-p.cv. at xg. If
Ky N intH = @, then x, is a local efficient point for P,

proof.
i) it follows from (5.1) taking into account (6.3)

il) the proof is similar to the one given in Theorem 7.1 O

Theorem 7.3
Consider the vector extremum problem P where F is differentiable at Xg.
i} If xg is a local efficient point for P then Ky N intH = @

ii) assume that S is locally star shaped at Xg and F is H-p.cv. at x,. If

K, N intH - @ (7.1)
then xy is a local efficient point for P.
proof.
i) it follows from (3.1) taking into account (6.1)
ii) the proof is similar to the one given in Theorem 7.1 O

15



As a consequence of Theorems 7.2 and 7.3 we obtain the following
optimality conditions stated in the decision space:

Theorem 7.4

Consider the vecior optimization problem P where F is directionally
differentiable and locally lipschitzian at x,.

i) if xq is a local efficient point for P, then g'g* (xg)intH Vde RD |idll-1
ii) assume that § is locally star shaped at Xpand Fis H-p.ovat xp. If

dF
ad (xg)intH YdE RE |dll=1, then Xy is a Iocal efficient point for P.

Theorem 7.5

Consider the vector optimization problem P where F is differentiable at
Xp.

i) if xg is  local efficient point for P, then Ji(x-xo)@intH Vx& R®

ii) assume that S is locally star shaped at Xgand Fis H-p.cv at x. If

J(x-xg) €intH Vx€ RY, then Xg is a local efficient point for P.

As we have point out, the study of optimality is based on the disjunction
between K and H; substituting K with T, we have obtained some

necessary and/or sufficient optimality conditions; now we see how the
behaviour of T, with respect to H together with the given

characterizations of Tl, allows us to deduce some others results.

Theorem 7.6
Consider problem P where § is locally star shaped at Xy and F is H-w.p.cv
at xg. If Ty N H = @, then xg s a local efficient point for P.

proof.

The proof is similar to the one given in Theorem 7.1 0

16



Theorem 7.7
Consider problem P where § is locally star shaped at Xpand F is H-w.p.cv
at xy. If one of the following conditions holds
1) if Kﬂ') NH- :
ii) Fis differentiable at x, and

KLKNH-@ {7.2)
then xg is a local efficient point for P.

Corollary 7.1

Consider problem P where S is locally star shaped at x, and assume that
one of the following conditions holds

a)f, g are U-w.p.cv. and V-q.ov. at xp, respectively;

b) fis U-w.p.cv. al Xy, g is V-g.cv. and directionally differentiable at Xp:
then

)TN H-@ implies that xy is a local efficient point for P

ii)KEg N H -2 implies that Xp is a local efficient point for P

iii) Assume that f, g are differentiable at ig; then KL N H = @ implies
that x; is a local efficient point for P.

proof.
It follows directly from Theorems 7.6, 7.7, taking into account Theorem
3.3 O

From Theorem 7.7 and from ii), iii) of Corollary 7.1 we can deduce .
immediately, the following optimality conditions stated in the decision
space:

Corollary 7.2
Consider probiem P where S is locally star shaped at Xp and F is H-w.p.cv
at xg. If one of the following conditions holds

) 5% (x)gH Vde RY, dil-1;

ii) Fis differentiable at xy and Jp(x-x,) @H VxE RY:
then Xgis a local efficient point for P.

17



Corollary 7.3

Consider problem P where S is locally star shaped at Xy and assume that
one of the following conditions holds:

a)f, g are U-w.p.cv. and V-q.cv. respectively, at x

b)fis U-w.p.cv. at xg , g is V-q.cv. and directionally differentiable at x,
¢)f is U-w.pev. at x5, g is V-concave and directionally differentiable at x,
Then

i) if % (xg)2H Vde RD, ||dll-1, then Xg is a local efficient point for P,

it} if F is differentiable at xy€S and Jo{x-x;) @H Yz RD then X is a local
efficient point for P,

By introducing some other classes of generalized concave functions with
respect to suitable cones, we can deduce in a similar way some other
optimality conditions; for instance the following sufficient optimality
condition, stated directly in the decision space, could be deduced
introducing a suitable definition of generalized concavity with respect to
the cone intUxV.

Theorem 7.8

Consider the vector extremum problem P where § is locally star shaped at
Xp and f , g are U-pcv. and V-q.cv. at x, respectively. If one of the
following conditions hold

i) Kqg M intUxV - @ (7.3)
ii) K, N intUxV =@ (7.4)
then x4 is a local efficient point for P.

proof.
i) Suppose that there exists X*€S such that f(x*)Ef(zg}+U’. The

assumptions of generalized concavity for f and g imply

of *

, dg - ,
2d (%) Eintl, 5’% (xg) €V, d- and this contradicts (7.3). In a

"X*-Xo"’
similar way ii} can be proven. i
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[n order to point out the role played by separation theorems in stating
“some classic optimality conditions, consider the case where U and V are

polyhedral cones of R® and RD respectively, and P is a differentiable

problem.
Since K; is a linear subspace and H is a convex set, using suitable

separation theorems [11] we have that:

- KN intH =@ if and only if {7.5) holds
3 Owa=(ag0,)ER* , s U, a EV* ozI? Ji(xp) ocf; Jo(Zg)=0 (7.5)

- K 0 intUxV = @ if and only if (7.6) holds
3 O-a-(af,ug)EH* L 0€ U0}, o €V* a}- Ji(xg ) a; Je(xo)= 0 (7.6)

- K N H=-@ if and only if (7.7) holds
E Owo~(apog JEH* | 06€ intU*, a EV* Ot;- Ji(xg)+ (xtg Ji(xg)=0  (7.7)

Taking into account that K N intH = is a necessary optimality

condition, we have the following theorem which states the Fritz-John
optimality conditions for a vector optimization problem:

Theorem 7.9
If xq is a local efficient point for problem P, then:

E Orar~{ap0)ER* | € U, 0 EV*: a;? Ji{xgh+ oztg Jg(X0)=0 (7.5)

Under suvitable assumptions of generaiized concavity conditions (7.6),
(7.7), become sufficient optimality conditions, so that we have the
following :

Theorem 7.10

i) Consider the vector extremum problem P where S is locally star shaped
at xpand f, g are U-p.cv. and V-q.cv. at x;, respectively.
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If the following conditions hold:
3 Ovar=(opeg JER" , g€ UPN(0), g€V* : arf Ji(xg)s ol Jylxp)= 0 (7.6)

then xy is a local efficient point for P,

ii) Consider the vector extremum problem P where S is locally star
shaped at xy, f is U-w.p.cv. at xg, and g is V-q.cv at Xg .
If the following conditions hold:

A Oma=(apo, JER* , aE intU*, a EV* a’f Ji(xg)+ a; Jg(xg)= 0 (7.7}

then x; is a local efficient point for P.

Remark 7.1

Relation (7.5) can be interpreted as a general formulation of the F. John
conditions for a vector optimization problem while (7.6} and (7.7) can be
interpreted as two possible formulations of the Kuhn-Tucker conditions

for a multiobjective problem since in the scalar case (s=1) they collapse to
them; as a conseguence K; N (intUxV)= @ and KL N H=@ , can be

viewed play the role of regularity conditions.

For instance , when U= Rf, and V= an. the condition KzN H-@ is

equivalent to state that xy is a properly efficient point in the sense of
Kuhn-Tucker [13].

In section 5 we have seen that T; N clH = (0) is a sufficient optimality
condition; taking into account relation Ty~ K, U A , we obtain the

following:

Theorem 7.11
If A-@ and K; NclH = {0), then Xg 15 a local efficient point for problem P.

Corollary 7.4
Assume that condition (7.7) holids. If rank] - n then X is a local efficient
point for probiem P.
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proof.
The assumption rank]-n implies T =Ky [4], sothat A=@ ;
on the other hand the validity of (7.7) implies K, N clH= {0). The thesis

follows from Theorem 7.11. 0

8. Some particular cases

First of all we see how some of the results given in the previous sections
can be deepened when the feasible region of problem P is defined by
linear constrainis or when P is a linear multiobjective problem.

The following theorem holds:

Theorem 8.1
Consider problem P when ¢ is differentiable at xy and g is linear. If xpis a
local efficient point for P then K; N (intUxV)- @ .

proof.
Suppose that there exists x* such that (J(x*-xg), J(x*-Xg)) €intUxV; then

X

(Jpd, ) d) EintUxV, d= Consider the sequence

{lx*-xoli

1 . ,
Xq= Xg +, d. We have F(x, )-F(xg)= Jp(x,-19) + 0(xp,%p) with
I Ik,
consequence there exists n* such that
Vao>n* |, f(x,)€ intU with g(x,)€ V and this contradicts the efficiency of
Xy- N

o(x, .3 F(x,)-F(x,)
L L0 sothat —*n—ﬁ‘l- converges to Jpd € intUxV. As a
0

Taking into account (7.6) and the previous theorem we have the following
Corollary 8.1

Consider problem P when [ is differentiable at Xy and g is linear.
If Xgis a local efficient point for P then
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3 o€ UMN(0), 0z €V : o Jy (o} atf J,(xp)- 0 (8.1)

Remark 8.1
When U= Rf, V= ]Rin. Corollary 8.1 points out that when the constraints

are linear functions , at least one of the components of oy is positive (not

necessary all); in the scalar case this means that Kuhn-Tucker conditions
hold without any constraint qualification.

Consider now the case where P is a linear multiobjective optimization

problem ie.f and g are linear functions.
Obviously we have K- K; , thus (2.2) is equivalent to state that K, N H~ @

Taking into account (7.7) and that F=(fg) is H-w.p.cv. at Xy for every
xo&R", we have the following classic result:

Theorem 8.2
Consider the linear multichjective optimization problem P. Then Xy is an

efficient point for P if and only if (8.2) holds:
3 o€ intl”, @€V of Jp+ o Jp= 0 (8.2)

Let us note that Theorem 8.2 implies that for a linear muitichjective
optimization problem an efficient point for P is also strictly efficient.

9. Further suggestions

As we have outlined in the previous sections, the approach in the image
space is based on the study of the disjunction between K and H. Since
K-F(X), the obtained results involve any point belonging to a suitable
neighbourhood of xy, so that , if we are interested to deepen the

behaviour of the objective functions on the feasible region § or on a
suitable set strictly related to S, we must consider the image F(S) instead
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of F{X); now we see how in this way is possible to establish some other
kinds of optimality conditions.
With this aim, consider the following subset of Ty:

Ty(8)-(t: o>+, x5 = x4 {55)C S, with oy Flxy) - t)
The following theorem holds:

Theorem 9.1
Let x, be a local efficient point for problem P. Then

T4(S) N (intUxV)- @ . (9.1)

DI oof.

If (9.1) does not hold, there exist (x,)C S, x; = X5, @ 4 ~* +%0 , such that

' g i . Si S ev
i ag f(x,) €int U and ngngm oy 8(xy) EV. Since (x,)C S, g(xy,)

and furthermore there exists n* such that f(x;) €int U V n > n%;
consequently (f(x,), 8(x,) JE(intUxV) ¥ n >n* and this contradicts the
efficiency of x; . g

The following example shows that the necessary optimality condition
(9.1) cannot be extended to the tangent cone T.

Example 9.1

Consider problem P where s~1, g(x) - - 3\/§ , m=1, g(x) = x, x40,
U-V-R,. It is easy 1o show that x4=0 is an optimal solution for P,
Ty~{A(1,0),A €R], T4(S)=(A(-10) .1 207}, sothat Ty N (intUxV) » @ ,
while T;(8) N (intUxV)= @ .

This example points out that if we limit ourselves on considering the
image of the feasibie region, it is possible to obtain conditions in a more
general form.

Theorem 9.2
Consider problem P. If

T4(S) N cH = {0} (9.2)

23



then X, is a local efficient point for P.

proof, Similar to the one given in Theorem 5.2. [

When in problem P, [ and g are directionally differentiable and locally
lipschitzian at x, or differentiable at x,, we can characterize the tangent

cone T4(S} in the following way (the proofs are similar to the ones given

in section 6):
T1(8)= Kqg(8) U A*(S) U {0} (9.3 a)

T4(8)= Ky (5) U A(S) U {0} (9.3 b)
where

oF
Ko(S)- (k 55 (xg) , dE T(S,x¢), lidll-1, k >0)C Ky
AMS)- (LETYMO): T 3y = x5, (Xy)CS, @ = +» with & 5 F(xg) — t

Xn Xy
[IXy-X,ll

— d €T(5,xy) and %g (xg) =0 ) C A*

K.(3) - { Jp(x-x¢) , 3ES ) C K,

AB)-{tET/{0}: T x4y — x5 , (35)CS @ n >+ with o, F(x,)— t,
InXg
Iz~ |

and where T(S,x)) denotes the tangent cone to S at Xg.

The given characterization of Ty(S) allow us to obtain the following

necessary optimality conditions:

—> d €T(S,3y) and Jp(d)=0 } C A,

Theorem 9.3
Let x; be a focal efficient point for P.

i) if F is directionally differentiable and locally lipschitzian at Xg, then

Kg (S) N intUxV = @ (9.4 a)
ii) if F is differentiable at x,, than
Ky (S) N intUxV = @ (9.4 b)
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The following corollary states necessary optimality conditions with
respect to the directions of the tangent cone T(S,x,) :

Corollary 9.1
Let x, be a local efficient point for P.

i) if f, g are directionally differentiable and locally lipschitzian at Xg. then

ot (XotintU VAET(S.x,), dwd (95 a)
ii} if f, g are differentiable at x;, then
Ji{d) &intU Vd€ET(Sx,) (9.5 b)
proof.
(9.5 a) and(9.5 b) follow immediately from (9.4 a) and(9.4 b) taking into
, In%p
account that there exists a sequence (x,)C S, x5 — %, , Tyl d
1 . 8l(zy) - glxy)

The following theorem states sufficient optimality conditions:

Theorem 9.4
Consider the vector optimization problem P. If one of the following

conditions hold
i) F is directionally differentiable , locally lipschitzian at x; and

Ko(S)NciH - & (9.6 a)
ii) Fis differentiable at x, and

Ki S)NcH -2 (9.6 b)
then X, is a local efficient point for P.

proof.
It easy to verify that (9.6 a) implies A*{S)=@ ; thus for (9.3 a) we have

T;(5)=(0} and consequently T4(S) N cIH ={0), so that the thesis follows
from Theorem 9.2,
ii) the proof is similar to the one given in i). O

25



The following corollary states sufficient optimality conditions in the
decision space:

Corollary 9.2
Consider the vector exiremum problem P. If one of the following

conditions holds
i) f, g are directionally differentiable locally lipschitzian at x, and

S (XPRU VUET(S:xy), dwO (97 a)
i) 1, g are differentiable at x; and

JHA)EU  VAET(Sx,), d=0 (9.7 b)
then x; is a local efficient point for P.
proof.
Similar to the one given in Corollary 9.1. L
Remark 9.1

When in problem P s=1, V= Rin, the optimality conditions (9.5), (9.7)

collapse to the ones given in [6].

Remark 9.2
When the feasible region S is a closed convex cone with vertex at X if we

set g(x)=x-X; and V=S-(xq}, taking into account that T(Sx,)-S-(x,), the
optimality conditions (9.5 a) and (9.7 a) reduces to the following ones:

% (xo)¢tintU YdeV (9.8 a)

'(% (x0)¢U VdeEV (9.8 b)

When S is a polyhedral set and X, is a vertex of S, (9.8 b) states a
sufficient condition for a vertex X, 1o be an efficient point for P: this
result generalizes the ones given in [5,6]

At last , let us note that the results obtained in this last section point out
once more how the image space can be viewed as a general framework
within which different kinds of optimality conditions can be obtained .
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