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Abstract

For a multiobjective concave optimization problem P linear scalarization
holds in the sense that an efficient point for problem P turns out to be an
optimal solution of a scalar problem whose objective function is a suitable
weighted sum of objective functions of P.

Since this nice property does not hold when P is not concave, in this paper
we will consider a scalar parametric problem of exponential kind P(A,)) with
two parameters A,JL and we will find conditions under which an efficient point
for P is an optimal solution for P(A,LL).

The suggested approach based on separation between two suitable sets
allow us to obtain nonlinear scalarization for wide classes of problems

containing some subclasses of generalized concave problem,
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1. Introduction

In multiobjective concave optimization, linear scalarization allows to
characterize an efficient point as an optimal solution of a scalar problem
whose objective function is a suitable weighted sum of the objective
functions of the multiobjective problem P. Linear scalarization is strictly
related to the existence of a hyperplane which separates the nonnegative
orthant and the so called “conic extension”; such a hyperplane does not
exist when the conic extension is not convex, so that linear scalarization does
not hold.

The idea of this paper is to consider a non linear separation function,
that is a function whose nonnegative levels contain the nonnegative orthant
and whose nonpositive levels contain the “conic extension”. Such a
separation function will play the role of the objective function of a scalar
problem P* and, furthermore, an efficient point for P turns out to be an
optimal solution of P*. In this paper we propose a nonlinear separation
function of exponential kind, which has the nice property that local
separation implies global separation. Several theoretical results are obtained
which allow us to characterize wide classes of multiobjective problems
containing some subclasses of generalized concave ones for which nonlinear
scalarization holds, that is problems for which an efficient point is also an

optimal solution of the scalar problem whose objective function is of

exponential kind.

2. Statement of the problem

Consider the following vector optimization problem:
max ( @.(x), ®, (X),...., ¢, (x)), xe X

where @;: AcIR" > IR, i=1,2,...., s are continuous functions defined on the



open set A containing the compact set X.
Let x0 be a feasible point and set f, (x) = @;(x)-0,(x%), i=1,2,...., s.
Taking into account these positions in the following we will refer to the

multiobjective problem:

P : max f(x)=( f;(x), f2 (x),...., fs (X)), x e X

It is well known that when P is a concave multiobjective problem, the
conic extension K- IR%,, with K=f(X), is a convex set; furthermore if x9 is an

efficient point for P, then the two convex sets K- IRS, and IR®, can be linearl
p y

S
separated, that is there exists a linear function 1; IR*—=IR, 1(u) =2 y= Z A
=1

such that A*u 20 Vu e R®, and MV*u <0 VueK or, equivalently,

2.1) max A*u=max M x)=0<A*u VuelRS,.
ue K xe X

In other words, lincar separation (that is the exisience of a hyperplane
which separates K and IRS,) implies linear scalarization in the sense that an
efficient point x9 turns out to be an optimal solution for the following scalar

problem

8
P(A) : max Z A fi(x), xe X,
i=1

Linear separation can be reinterpreted as the existence of an element
I# in the set L={1):IR3=IR, I(u) = Au, A>01} which satisfies (2.1).

In order to be able to study vector optimization problem when the
conic extension is not a convex set, we can generalize this kind of approach
substituting L with a class of nonlinear functions whose nonnegative levels

contain IR%,. More exactly, we consider the class of functions

W= {wML : IR® IR, Ap e IRS, }

1 Leta= (a1.a2,..,a%); a20 means a=0 and 20, j=1,..k, while a 20 means ajzo,j=1,..,k.



where
(2.2a) WM(O) =0 VAz0, Vux0

(2.2b) wm(u) >0 VuelRS\(0}, VAZ0, V0.
The existence of a function Wak* € W satisfying (2.2.c) with
(2.2¢) wl*u*(u) <0 Vuek.

implies max Wl*u*(u) = Mmax wx*u*(f(x)) =0,
ue K xe X

so that the efficient point x0 turns out to be an optimal solution of the scalar

problem

P(A*,1*) : max Wy (f(x)), xeX.

We will refer to w,« .« as a separation function.

In choosing a class W of functions verifying (2.2a), (2.2b), we suggest the
following one whose elements are of the exponential kind:

8

(2.3) Wi W= AiveHi%, A20,p>0
i=1

This choice is motivated by the properties stated in the following theorem.
Theorem 2.1:
DIFO< Ul <2 then F+lu1 = R

ii) Forany 2>0, (1 I'"y = RS,
p=20

where F+M.t= {u: wm(u) >0}.

Proof: i) Since p! < 2 implies pl; < p? and 3 j such that gt < p?;, we have:

A oup e B Yz e HAiui , Vizj and A uj e Uj >Aj e i Y so
5 S

that z A oui e““]i “i>z Awg e'”zi U W ou>0;
i=1 i=1

ii) By the definition of the class obviously we have: (| T, u> IRS.. On the
u=0

other hand, when u has at least one negative component (for instance ug<0),



choosing {1= 0 such that [1;=0, V i#k and ;>0 we have u ¢ ' - This

completes the proof. 4

The following theorem will allow us to consider the class of functions
W with a scalar exponential parameter instead of a vector exponential

parameter.

Theorem 2.2: If Wy is a separation function, then Wy, is a separation
function for any p>u*.
. Qs * /s -y 1; -1 :
Proof: Since p;= ;" Vi, we have et < e™™ Y for every 1 such that
- 11 NIRRT . .
ui>0 and e Hil%i >¢Mi U for every i such that uj < 0; as a consequence it

s s
results Z hi u; e Mili SZ A U; e Hi'li < 0 g0 that (2.3) holds and this

i=1 i=1

completes the proof. *

Remark 2.1: If Wy * is a separation function, setting [L' = max p;* and
1

H=(W',...,u")T, Theorem 2.2 implies that W is a separation function too. For
this reason from now on, we will consider the class of functions (2.3) where
the components of the exponential parameter are equal to each other, that is:

S
(2.4) Wy (W) = 2‘1 My eHW 420 pn20.
1=

3. Exponential scalarization
As outlined in the previous section, our aim is to find conditions under
which there exist Ae IR%;, A#0, ue IR, such that an efficient point x° for

problem P is also an optimal solution for the scalar problem:

S
P(A,1b) : max wm(f(x)) = E A B(x) e'“fi(x), xeX;

i=1



taking into account that fj(x% = 0, i =1,...,s, this is equivalent to find
conditions under which there exists a function in the class W which ensures

separation, that is such that the following inequality is verified:

(3.1) wm(f(x)) <0,xeX.
From now on we assume that fj,i=1,2,...,s are differentiable functions.
Let us note that the efficiency of xV implies that x%is an optimal
solution for any scalar problem P, i=1,2,..,s:
max f;(x)

P; : fj(x)ZO i1=L..s j#i
xeX

Applying Fritz John conditions to problem P; we find %2 0 such that

(3.2) i X VGO =0,
i=1

We will refer to any vector A satisfying (3.2) as a vector of Lagrange

multipliers associated with x°,

]

Since Vw,, ()= ¥, & (1-Lf(x) e Hikx) vf, (%)
=1

and f(x%)=0, i=1,2..,5, x0 turns out to be a critical point for the function Wi

VYiLe IR and, in particular, for the function:

(3.3) wi, )= Y A; £ (x)
i=1

In other words, in the suggested approach, in order to find A,lL such
that x0 is an optimal solution of the scalar problem P(A,u), it is sufficient to

find the value of the scalar exponential parameter W, since a vector X is

associated, in a natural way by means of Fritz John conditions, with the

efficient point x9.



3.1 Linear separation

The previous remarks, together with (3.3),(3.2), allow us to characterize
some classes of problems for which linear scalarization holds. Taking into
account that for any class of functions for which the critical point x0 is an
optimal solution for problem P(%.,0) we have the validity of (3.1) with A=2,
u=0.

From known properties of generalized concave functions we have the
following theorem:

Theorem 3.1: Let x0 be an efficient point for the differentiable problem P,
where X is a convex set and let A be a vector of Lagrange multipliers

associated with x9. If one of the following conditions holds:

i) wy, is anincave function;

ii) wyx, is a pseudoconcave function;
1ii) Wi is a concave function;

iv) f; is a concave function, i=1,2,....s;

then x° is an optimal solution for the scalar problem P({ % ,0).

The following example shows that we have linear separation when the
conic extension KJR®, is not a convex set but a generalized concavity
assumption holds.

Example 3.1: Consider problem P, where A=IR, X =[-1,1] and
@(x)=-1-33x=1-€*, @y(x)=x. It is easy to verify that x0=0 is an
efficient point for P and that (3.2) is verified for A=(1,0). The following

picture shows that K-IR2, is not convex, but, since the function w o (f(x))=

@,(x) is an incave function, according to i) of Theorem 3.1, there exists a

hyperplane, whose equation is u;=0, which separates K and IR2,.



In the following we will see the role played by the scalar exponential
parameter W in finding a separation function of exponential kind instead of a
linear separation function when assumptions of Theorem 3.1 are not satisfied.

The idea of the suggested approach is to study, first of all,
conditions which ensure local separation, that is conditions under which
there exists pL*>0 such that wl*u*(f(x)) < 0 for any x belonging to a suitable
neighbourhood of x0 and, successively, to increase the value of the
exponential parameter in such a way global separation holds.

With this aim in the next we will study local exponential separation.

3.2 Local esponential separation

Now we will find conditions which ensure the existence of A> 0,

pe IR, such that (3.1) holds in a suitable neighbourhood Iyo of x0, i.e.
(3.4) Wy (f(x) <0, Vxe I
where the functions fj i=1,2,..s, are twice continuosly differentiable and A is a

vector of Lagrange multipliers associated with x0. Let us note that (3.4)



implies that x0 is a local maximum point for problem P( b L)

Since x9 is a critical point for Wi YuelRy, a sufficient condition for

the validity of (3.4) is the existence of e IR, such that the Hessian matrix
Hy of function wy m is definite negative at x0, It is easy to verify that such a

matrix Hy, has the following form:

8 s
H, = 2‘1 AiH; -2u 2’1 L1 (VEEOT V;(x0))

where Hj is the Hessian matrix, evaluated at x8, of function fj, i=1,2,...,s; the
quadratic form associated with H,, is

S 8
zZTHyz = 3 Xi(ZTHiz)- 21 Y ;i (27 VE(x0)2=

i=1 =1
= E Xi (zTH; z) - 2 2 Xi (zT V1i(x0))2
ieT* iel*

where I*={i: >0} (Let us note that I*#@ from (3.2)).

If z A1 (zTH;z)<0 Yz # O then Hy, is definite negative Ve IR,, so

jel*
that choosing u=0 we have linear scparation once again; otherwise, set

Z(x)={zeIRn: zT Vfi(x) = 0, ¥V ieI*}.

The following theorem gives conditions which ensure the definite
negativity of the Hessian matrix:

Theorem 3.2:
i) If Z(x0)={0}, then there exists [T >0such that Hg is definite negative;

i) If Z(x0)={0} and Y, A; (zTHjz)<0 Vze Z(x9), z# 0 then there exists I >0
igl*

such that Hy is definite negative.

Proof: We must prove that there exists [T >0 such that:
(3.5) YAz Hz) — 20 Y A (27 VE (x9))? <0 Vzz0.

iel* iel*



3 %i(zTH;z)
Set ¥(z) = —dsL* andLx0) = sup W(z)= sup Y¥(z
et ¥(z) ZEKi(ZTVfi(XO))z (xY) zeZ(IJ:c)O) (z) zeZ(I:zO) (z)

jeT* 2}t

i) Since Z(x%={0}, ¥(z) is a continuous function on the unit ball B = {ze IR™
llzll=1} so that L(x%) is reached as a maximum,; it is easy to verify that the
theorem holds for any p2L.(x%) and hence for a suitable [ > 0;

ii) It is sufficient to prove that L(x0) is finite. When z belongs to Z(xY\{0}, the
assumption implies the validity of (3.5) for any n=0, while when z does not
belong to Z(x0), (3.5) is verified if p>W(z) thatis if p>L(x9); so that if L(x0) is
finite there exists a suitable >0 verifying (3.5), Vz20. Now it remains to

prove that L(x°) is finite. Consider a sequence {z,}<B such that

lim ‘P(zn)=L(x0). Since {z;} is a bounded sequence there exists a
N-3+oc

subsequence which converges to zpe B; we can suppose, without loss of
generality (substituting {z,} with a suitable subsequence, if necessary) that
zn—Zy. The thesis is achieved if zp & Z(x%) since, in such a case, L(x%)=¥(zg).
If zo € Z(x%), then xi(zTHiz)<O so that there exists an index i such that
ii(znTHizn) <0 Vn>1 and necessarily we have L(x%)=-e and this is absurd.

This completes the proof. *

Remark 3.1: As regard assumption stated in i) of Theorem 3.2, let us note that
Z(x%9)={0} if and only if rank {Vf;(x?), V ie*} = n. As a consequence if the
number of the objective functions is greater than the number n of the
indipendent variables and if there exist n linearly indipendent gradients at x©

then we have local separation.

Remark 3.2: The assumption stated in ii) of Theorem 3.2 points out that local

separation is related to the behaviour of the restriction of the quadratic form



associated with the Hessian matrix at x0 of the function 2 Aifi(x) on the
iel*

linear subspace Z(x0). As a consequence the assumption becomes weaker

and weaker to the decreasing of the dimension of Z(x0).

The following Corollary characterizes a class of generalized concave
multiobjective problems satisfying assumptions of Theorem 3.2.
Corollary 3.1: If Z(x%= {0} and f;, ie I* are twice continuously differentiable

quasi-concave functions with at least one strongly quasi-concave? then there

exists L >0 such that Hy is definite negative.

Proof:. The generalized concavity assumptions imply [2] 2 ni (zTH;2)<0
iel*

Vz € Z(x9), z# 0. The thesis follows from ii) of Theorem 3.2. *

The following example shows that the quasi-concavity of all functions
f; is not a sufficient condition to have an exponential separation function.
Example 3.2: Consider problem P,where A=IR, X =[-1,1], f1(x)=x3 and f2(x)=
=-X. Itis easy to verify that x9=0 is an efficient point for problem P and (3.2)
is verified for A2=0 and A1>0. As a consequence, we have Z{0)=IR and

zTHyz is equal to zero for any Le IR, so that there does not exist a L 20 such

that (3.4) is verified.

4, Global exponential separation

We have just outlined that in order to achieve global separation, we
must require local separation. Since the image under the function f of a
neighbourhood of x? is not equal, in general, to a neighbourhood of f(x%) in

the image space, the following two conditions (4.1), (4.2) are not equivalent:

2 We recall that a twice continuously differentiable function h defined over an open set S is strongly
quasi-concave if and only if x% §, livii=1, vTVh(x0)=0 impties vTHyv<0.



4.1 wrp(f(x) €0, Vxe Lo
(4.2) wa(f(x)) <0, Vue Upn K
where Ug is a suitable neighbourhood of f(x%). As a consequence (4.1) does
not imply that wy i separates K and IR%: locally.

The following example points out that some difficulties arise in
achieving local separation in the image space:
Example 4.1: Consider problem P where f;(x)=x2-2x and f,(x)=x(2-x)3,
xe X=[-2,4]. It is easy to verify that x0=0 and x*=2 are efficient points such
that f(x%)=f(x*)=(0,0); furthermore at x°=0 we have local separation with
A*=(4,1), p*=0, while at x*=2 we do not have local separation since A*=(0,1),
wl*u(f(x))z-x(x-2)3eux(x'2)3, so that w,+,(£(2))=0 and in each
neighbourhood of x"=2 the function wl*u(f(x)) assumes positive and

negative values for any L.

In order to achieve local separation in the image space, we must
require, as pointed out in the previous example, to have local separation for

any point of the subset E(x?) of efficient points:

Ex0)={xeX: fi(x)=f;(x"), i=1,2,..s]}.

Such a requirement guarantees local separation in the image space as is

stated in the following theorem:

Theorem 4.1: If for any xe E(x9), we have Z(x)={0} or Z A (zTH;z)<0,
iel*
Vz € Z(x), z# 0, then there exists [T > Overifying (4.2).
> % (zTHpz)
Proof: Set L= sup L(x)= su su iel” .
er(I:::O) er(I;O) 222(x) 2 ¥ A (2! VE; (xY))?

zl=1 iel*

It is sufficient to prove that L is finite, since in such a case it is easy to verify

that any p>L satisfies (3.2). Consider the unit ball B and the sequences



3 il z3Hiz, )

0 B, 7% Z(%y) such that L= lim —JSL* -Let
{xn}CE(X ) ’ {Zn}(: y Zn# (x‘n) suc a n_l)l}_lm 2 E ?\-i(ZIVf‘i(xn ))2
iel*

us note that E(x0) is a compact set, since the functions fj, i=1,2,..,s are
continuous and X is compact; as a consequence, taking into account that B is

compact too, there exist a subsequence of {x,} and a subsequence of {z,}
converging to XeE(x% and zpe B respectively. If 2 Ai (zoT V£i(X))2 =0
jeI*
then zpe Z( X ), which implies z hi(zoTH;(X)z0)<0 so that L=-c0 and this is
iel*
absurd. As a consequence, necessarily we have 2 ni(zoT VE(X)2 2 0 and
iel*

L=¥(z0). ¢

The following theorem points out that the choice of the exponential

class of functions W allows us to state that if there exists a local separation

function then there exists also a global separation function,
Theorem 4.2: If there exist X,ﬁZO such that wy g(u) £0, Vu e UonK, then

there exists L*>0 such that (4.3) holds:
(4.3) Wit (u) £0, Vuek.

Proof: Suppose that there does not exist ™ verifying (4.3). Then there exist

{La} c Ry, {ur=(uin,...,us")}cK such that p, —+ee, ul e F{u . Since X is
n

a compact set and f is continuous, then K=f(X) is compact too, so that there

exists a subsequence of {u"} which converges to u. We prove that

uehIR®,. If 1 ¢ I¥IR%,, then there exists an index k such that U, <0, so that

— _ n
d n: Vo>, uﬂ<0; as a consequence, lim Z Ay u{; e "% ~ o and
Nee jerx

- gt
lim Y X ul "

; =-—co and this contradicts u" eIy . Since
N=>400 fat*

I



KNIRS, = {0}, necessarily we have =0 so that 3 Ai: ¥V n>1, u? belongs to a

neighbourhood of the origin and this absurd since wy p separates K and IR%;

locally. .

The obtained results allow us to characterize classes of multiobjective
problems for which an efficient point is also an optimal solution of a scalar
parametric problem whose objective function is of exponential kind.

Theorem 4.3: Let x° be an efficient point for the vector problem P where the
objective functions are twice continuosly differentiable and let X be a vector

of Lagrange multipliers associated with x°. If for any xe E(x%), we have

Z(x)={0} or E i (zTH;z)<0 Vz € Z(x), z# 0, then there exists >0 such

iel*

that x° is an optimal solution for scalar problem

— 3 = —_
P(AL) :max wip(fx)) = Y Ay fix) e 0, xex;
i=1
Corollary 4.1: Let x° be an efficient point for the vector problem P where X
is a convex set, the objective functions are twice continuosly differentiable
quasi-concave with at least one strongly quasi-concave and let A be a vector
of Lagrange multipliers associated with x°. Then there exists fi>0 such that x°

is an optimal solution for scalar problem P(A,jT).
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