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Abstract

One of the aim of this paper is to introduce new classes of

onditions
ogramming

- R. CAMBINT !

vector generalized concave functions and to

point out their role in investigating local and global efﬁci&ll.ncy and in establishing sufficient optimality

conditions for a vector optimization problem. Another
tangent cone at a point of the feasible region in deriving of

1 Introduction

aim is to stress the role of the Bouligand
ptimality conditions,

In these last years several of articles dealing with scalar generalized concavity have

appeared in scientific journals and numerous tex
subject. On the contrary the role of vector gen

tbooks have specific chapters in this
ralized concavity in multiobjective

optimization is not yet sufficiently explored; onl)5' occasionally, with the aim to extend

to the vector case some properties of scalar gene
considered, in the Paretian case, componentwise |
specific topics like as the connectedness of the se
some special classes of vector generalized conc
f11,12,13,15,19,20].

For such a reason some classes of generalized c«

alized concavity, some authors have

peneralized concavity or, in studying
t of all efficient points, have defined
ave functions with respect to a cone

ncave multiobjective functions with

their properties have been recently introduced and studied [4,5,7,8,9,16,17].
First of all in this paper, taking into account the results obtained in [8,9], we will

introduce some classes of vector generalized conc:
vector optimization, and successively we will inve
we will state several necessary and/or sufficient
means of the Bouligand tangent cone to the feasib
The obtained results generalize and extend the one
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wve functions pointing out their role in
stigate local and global efficiency and

optimality conditions established by
le region at a point.
s given in [4].

rersity of Pisa.

The paper has been discussed jointly by the authors; A. Cambini has developed section 1 and section 5
from theorem 5.5 to theorem 5.8, L. Martein has deszloped sections 3 and 4, R. Cambini has

developed section 2 and section 3 up to theorem 5.5.




2 Some classes of generalized concave n

In finding conditions under which a local maxim
optimality condition becomes sufficient too, an in
of generalized concavity at a point introduced in [

Let us note that there are different way in

nultiobjective functions

:hm point is also global or a necessary
nportant role is played by the concept
14] for a scalar optimization problem.

generalizing to the vector case the

definitions of generalized concave functions givien in the scalar case. In this section,
I

following [8,9], we introduce wide classes of vérector generalized concave function

which are more general than the ones suggested ﬂl [4,5,16].

With this aim, let us consider an open set X of the n-dimensional space Rn, a

function F:X— R® and a non trivial cone U l;ts with vertex at the origin O U and
with non empty interior, i.e. intU#@ . Set U= p\{O}.
We recall that a set SC X is said to be star shaped at X, € S if x € S implies

[x, %ol = {tx+(1-t)xq : te

Definition 2.1

Consider the cones U*,U*e (U, U°, intU},
The function F is said to be (U*,U*)-quasiconca
| respect to the star shaped set S at x) if’

X €S, x#xg, F(x) € F(xg) +U* = F(xg+A(

Let us note that when U*=U*=U we obtain the
function given by Yahn [11], while when 1
U-semistrictly quasiconcave vector functions intrc
In the scalar case (s=1) Definition 2.1 reduc
quasiconcave, strictly quasiconcave, semistri
U*=U#=U=R +» U*=R, U#=R +e s UF=UP=R -
the non negative real numbers and R_ is the set 0

Definition 2.2
Consider the cones U*e {U, U, intU}, U%e {
differentiable at x;,

F is said to be (U*,U*)-pseudoconcave (shortly (T

star shaped set S at x;) if':
X €8, x#xg, B(x) € F(xy) +U* =

= [0,1]} < S.

we (shortly (U*,U")-qcv) at x, (with

X-Xg))E F(xg) +U¥ VA€, 1)
definition of a vector quasiconcave
J*=U*=U? we obtain the class of
duced by Martein [16,17].

es to the classical definition of a

ctly quasiconcave function when
respectively, where R is the set of

f the positive real numbers.

UY, intU}and let F be directionally

7% U™)-pev) at xq (with respect to the

aF # X"‘xo
3a%0) €UY d=poy




When U*=U*=U° we obtain the class of U-weakly pseudoconcave vector functions
introduced by Martein [16,17 ], while when U*=U?, U*=intU, we obtain the class of
U-pseudoconcave vector functions introduced by Cambini-Martein [5]. Let us note that

in the scalar case these last two definitions collapse to the ordinary definition of a
pseudoconcave function while a (U, intU)-pev collapse to the ordinary definition of a

strictly pseudoconcave function.

Relationships among the defined classes of generalized concave functions are smdied

in [9].

3 Local and global efficiency

Consider the following vector optimization problem:

P: U-max F(x) , x ¢

LEL)

ScX

where X is an open setof R®,F: X — R®  and U < R is a non trivial cone with
vertex at the origin 0€ U and with nonempty interjor.

Set U%= U\{0]. |
We recall that a feasible point x, s said to be:

- weakly efficient if

F(x) € F(xy) +intU » Vxe
- efficient if

F(x) ¢ F(xy) +U°» Vx e

F(x) € F(x,) +U > Vxe

S (3.12)
S (3.1b)
S (3.1¢)

If (2.1a), (2.1b), (2.1c), are verified in I M S, where I is a suitable neighbourhood of
Xy, the feasible point x, is said to be a local weak efficient point, a 1 fficient poin

and a local strict efficient point, respectively.
Obviously a (local) strict efficient point is also a
efficient point is also a (local) weak efficient point

(local) efficient point, and a (local)



Let us note that in the scalar case (s=1, U=R}) (2.1a) and (2.1b) collapse to the

ordinary definitions of a maximum point and (2!1c) collapse to the ordinary definition

of a strict maximum point, while when U= RS

. »|problem P reduces to a vector Pareto -

problem,

Let us note that definitions (3.1) can be rewrittenin a unified way as follows:
let U* € {U, UO, intl}; xq is said to be a (local) U*-efficient point if

F(x) € F(xy)+U* > Vx.e S (VxeIns§) (3.2)

When U*=intU, U*=U0, U*=U, (3.2) collapses to definition (3.1a), (3.1b), (3.1.c),
respectively,

The classes of generalized concave functions introduced in section 2, allow us to
investigate relationships between local and global U*-efficiency .

The following theorem holds:

Theorem 3.1 _
Consider problem P where S is a star shaped set at xg and F is (U*,U*)-qev) at x,.

If x, is a local U*-efficient point, then Xy is also U*-efficient for P.

Proof,

i) Ab absurdo suppose that there exists x*& S such that F(x*)€ F(xy)+U*. Since Fis
(U*,U*)-gev) at xg, we have F( xg+A(x*-xp)) € F(xg)+ U* ¥V A& (0,1) and such a
relation implies, choosing A small enough, the non local U*-efficiency of x, . ¢

Specifying the cones U* and U* we obtain Theorem 4.1 in [4] and some other
different kinds of results. For instance:

- U*=U*= UY: if x is a local efficient point and F is (U%,U"-qcv at xg, then x, is an
efficient point for P;

- U*=U*= intU: if x, is a local weak efficient point and F is (intU,intU)-qcv at x,, then
xp is a weak efficient point for P;

- U*=intU, U= U% if Xg is a local weak efficient point and F is (intU,UO)—qcv at Xy,
then x, is an efficient point for P;

- U*=intU, U= U: if xy is a local weak efficient point and F is (intU,U)-qcv at x,,
then x is a strict efficient point for P.



Recalling that a function F is said to be U-concave at x (with respect to the star shaped
set S at xq) if
F(xg+A(x-Xg)) € F(xg+MF(x)-F(x))+U VA (0, 1), VxS

we have the following:

Corollary 3.1

Let us consider problem P where S is star shaped at x4, U is a convex pointed cone
and Fis U-concave at xy Then a local efficient point X, is an efficient point too.
Proof.

It follows from Theorems 3.1 taking into account that a U-concave function at xg is
also (U%,U%-qev at x,, when U is pointed and convex. *

Corollary 3.2 _
Let us consider problem P where S is star shaped at xq, and F is linear.
Then a local efficient point x, is an efficient point too.

Proof.
Tt is sufficient to note that a linear function is also (U%,U%-qgev at every point. ¢’

Theorem 3.2

Consider problem P where S is a star shaped set at xg and F is (U*, intU)-pcv at x,,.
If x, is a local U*-efficient point, then x4 is also U*-efficient for P.

Proof.

Ab absurdo suppose that there exists x*€ S, x*#x,, such that F(x*) € F(xg)+U*.
Since F is (U*, intU)-pcv at x,, we have

%g(xo) € intU, dﬁ ,thatis i, F(XO”CP'F(X“) € intU and this implies
the existence of a suitable € >0, such that F(xy+td)-F(xy) € intU Vte (0,€).

Set t=Allx*-x,ll ; we have F(xg+A(x*-xq)) € E(xg)+intU V A& (0, ﬁﬁﬁx‘gﬁ) and this
contradicts the local U*-efficiency of x,,. +

Let us note that specifying the cone U* in Theorem 2 we obtain different kinds of
results,



4 Efficiency along a direction and efficiency

As is known, the property for which a local efficient point with respect to every feasible
direction of a star shaped set is also a local efficient point for P does not hold for every
function F . For such a reason in this section we investigate by means of vector
generalized concavity the relationships between the local U*-efficiency of Xo and the
local U*-efficiency of xo with respect to all directions starting from X -

With this aim we give the following definition:

A point x, is said to be a local U*-efficient point along the direction d= r——% le xo" ,XES

and with respect to the cone U if there exists t*>0 such that:
F(x) & F(xg) +U*» ¥ x = xy+t d , t€ (0, t*)

-X
LetD ={dﬁ, XE'S Ybe the set of feasible directions at x,€ S .

The following theorem holds:

Theorem 4.1

Let us consider problem P where S is star shaped at xpand Fis (U*,U*)-qcv at x,.
Then x; is a local U*-efficient point if and only if x, is local U*-efficient for every
directionde D .

Proof.

if. If xo is a local U*-efficient point obviously it is also local U*-efficient for every
deD.

only if. Ab absurdo suppose that there exists x*& S such that F(x*)e F(xg)+U*. Since
Fis (U*,U*)-qcv at x4, we have F( xg+A(x*-xq)) € F(xg)+U* ¥V A€ (0,1) and such a
relation implies, choosing A small enough, the non local U*-efficiency of Xg with

X*-X
respect to the direction d"—'ﬂ"{{Fx::“ eD. ¢

Theorem 4.2

Let us consider problem P where F is directionally differentiable and (U*,U*)-gev at
Xp and let S be star shaped at x,, .

Then x0 is a local U*-efficient point if and only if the following conditions hold:

i) a %) (xo)eE intU Vde D;



ii) xo is a local U*-efficient point for every direction de D such that
%ﬂE (Xo)e clintU.

Proof.
if. Since for any x €S, F(xg+Mx-xp))-F(xg)e U*¥ VAe (0, 1), obvicusly we have

X*-x
%(XO)E intU , d=”—X;,;:~£gne D. The thesis follows taking into account Theorem 4.1.
0

only if.
Ab absurdo suppose that there exists X*€ S, x*#x,, such that F(x*) € F(x)+U*.
Since F is (U*, U*)-qcv at Xg, we have F(xy+A(x-xy))-F(x,) € U* VA€ (0, 1), so that

*
setting d=g——7 i “ we have g—{xﬂ) € clU and this is absurd since contradicts 1) or ii). ¢

Lct us note, once again that specifying the cone U* in Theorems 4.1, 4.2, we obtain
different kinds of resuits.
Some other characterizations can be found in [8].

5 Optimality conditions

In this section and in the following one, we state some necessaty and/or sufficient first-
otder optimality conditions for problem P stated by means of a general approach
involving the directions belonging to the Bouligand tangent cone to the feasible region
at a point x, -

With this aim we need of the following definition:

Definition 5.1
Let G: A — R¥be a function defined in the open set A = R

h,
G is said to be regular directionally differentiable at xy€ A if ]1m IIh h.=d implies

Gxgth,)-G(xy) . G(xg+td)-G(xy) 4 G
lin—0 It =56 t =2d o)

where {h,} is a sequence of directions converging to O.

Classes of functions satisfying the above definition are stated in the following Property:



Property 5.1

i) if G is directionally differentiable and locally lipschitzian at Xo, then G is regular
directionally differentiable at x,;

ii) if G is differentiable at xy then G is regular directionally differentiable at xq.

Proof,

. h
i) Let {h,} be a sequence of directions converging to O with hml}ollhnll =d. Set
n

13

h
Thii= a-
We have G(XOTII;ln)l-lG(xo) _ G(x0+||hn||cllrﬁ-lcl}(xo+uhn|!d) . G(X0+||Il|lﬁ||ﬁ)~G(xﬁ)

Since G is locally lipschitzian at x, there exists >0 such that
l G(xgHlhlld )-G(xq+1lh,lId)

i | 1< L lldy-dir,
‘o that T G(xgHIh ld)-G(xy+h,|1d) _o,
hp—0 Ith, I
. G(xg+h )-G(x . G(xg+Ih Nd)-G(x,) 9G
and consequently hgl—l}o (Xg ”ﬁln” 0) =h“__}0 : ”hn”) (X =3d (xy) .

ii) It is a direct consequence of the assumption of the differentiability of the function. ¢

Consider now the Bouligand tangent cone to the set S at x,€ S , that is the set:

T(S:xp)={v: 3 {at p}C R{x,} © 8, o0 ; —>+00, x,, = X, with o n{Xn-Xe) = v}

Let us note that T(S,x¢)={0} if and only if x, is an isolated point and in such a case x,
is obviously an efficient point for problem P. For this reason, throughout this paper, it
is assumed that T(S,xq)7{0}.

Now we give some extensions and generalizations of the results stated in [4].

The following theorem states a necessary optimality condition for any kind of local
efficient point:

Theorem 5.1
Let xq be a local U*-efficient point for P,

i) if F is regular directionally differentiable at x, , then:

g% (xo) € intU, V veT(S,xg), v#0. (5.1)

i) if Fis directionally differentiable and locally lipschitzian at x, , then (5.1) holds;



iii) if F is differentiable at xp, then;

JFXQ(V) g intU, V veT(S,xy), v#0. (5.2)
Proof.
i) It is sufficient to prove (5.1) for every direction ve T(S,x,) such that llvil=1; Let
XX
{xh}= S, x, = X0, be a sequence such that - lim M =v . Since F is regular
Xn—Xg Xn 3o

directionally differentiable at x;, we have:

Fxp)-F(X)  oF

T = 3, 50 ;

on the other hand the local U*-efficiency of x,implies:

F(xp)-Flxg) . . F(xp)-F(xp) oF )
W & intU ¥V n sothat xnll_l‘_l)lxou—xn_x“oﬁ“* = g(xo) & intU .

ii), iii) follow from i) taking into account Property 5.1. ¢

Condition (5.1) is a necessary but not sufficient optimality condition; it is easy to verify
that it becomes sufficient too for the classes of vector generalized pseudoconcave
functions stated in the following Theorem:

Theorem 5.2

Let us consider problem P where S is locally star shaped at x and F is (U*, intU)-pcv
at Xg.

i) if F is regular directionally differentiable at x; , then xgis a local U*-efficient point
for P if and only if (5.1) holds; ‘

i) if F is directionally differentiable and locally lipschitzian atx ,then xgis a local
U*-efficient point for P if and only if (5.1) holds;

iii) if Fis differentiable at x4, then x,is a local U*-efficient point for P if and only if
(5.2) holds. |

Remark 5.1
Let Ut={ a:alu>0, V ue U} be the positive polar cone of U.

Let us note that if in problem P the cone U is closed convex and pointed , S is a
convex closed set and F is differentiable at x,, then the Bouligand tangent cone
T(S,x) becomes a closed convex cone, so that by applying a separation Theorem,

relation (5.2) implies the following condition:
3 oe UN\(D} such that atJFxo <0 V veT(S,x), v#0



This last relation reduces to condition (5.3) when Xgis an interior point;
3 o UN\(0} such that octJFXO =0 (5.3)

Condition (5.3) is a necessary but not sufficient condition for an interior point x, to be
U*-efficient; it becomes sufficient too under suitable assumption of generalized
concavity. To this regards the following theorem which generalizes the result given in
[4] points out the different roles played by some classes of generalized concave
functions:

Theorem 5.3

Let us consider the unconstrained problem P where S is a star shaped set and F is
differentiable at x. _

1) if Fis (U*, intU)-pev at x,, then (5.3) becomes a sufficient condition for Xgto be a
local U*-efficient point;

ii) if F is (U*, UO)-pcv at xq, then (5.3) becomes a sufficient condition for x, to be a
local U*-efficient point if o€ intU*.

Proof.

i) Ab absurdo suppose that there exists x*€ S such that F(x¥) € F(xy)+U*.Since Fis
. ) x*-x

(U*, intU)-pev at xg, we have JFXD(d) e intU, dzﬁ;,,;ﬁ , 8o that at(JFXO (d)) >0

and this contradicts (5.3).
ii) Ab absurdo suppose that there exists x*€ S such that F(x*) € F(x,)+U*. Since F is

X*-X ..
(U*, UO)-pcv at x5, we have IFXO(d) e U°, dm , S0 that, taking into account

the assumption o€ intU™, it results oct(JFxD (d}) >0 and this contradicts (5.3). ¢

In order to state some sufficient optimality conditions, we introduce the cone
K(d,e)={x€ R™: x=Ay, A20, lly-dli<e} , where d € R™, lidll=1, and €>0is a real
number.

The following Theorem states a necessary and sufficient optimality condition with
respect to any kind of efficient point.

10



Theorem 5.4
Let us consider problem P where F is a regular directionally differentiable function at
Xg- Then x; is a local U*-efficient point for P if and only if the following conditions

hold:
1) g—g(xo)z intU VdeT(S,xy)

ii) for every deT(S,xy) such that g—g(xo)e clQ\intU there exists £>0 such that x,

is a local U*-efficient point with respect to the region SN(X+K(d,£))

Proof.

if. i) follows by Theorem 5.1 while ii) follows by noting that SN(xy+K(d,£))  S.
only if. Assume that Xqis not a local U*-efficient point ; then there exist a sequence

. XX ~
{Xk}CS, Xk—) XO such that F(xk)e F(X0)+U* Vk and kyg_lm "Xk‘x()”_ de T(S,XO).
- F(x)-F(xg) . . . . ..
Since & U* and F is regular directicnally differentiable, taking into account

lIxy -,
. _OF .
of the assumption 57 (Xo) intU Vde T(S,x,) , we have:

F(x)-F(xo) _ 9F .
et ”Xk__xoll = aa (Xo) e ClU\lIltU.
For ii) we have de int(xg+K(d,e) and this implies the existence of n* such that
X € Sr‘\(xo-i-K(a,e)) Vk>n*, and this contradicts the local U*-efficiency of X with

respect to SN(Xp+K(d,£)). ¢

As a direct consequence of the previous Theorem we obtain the following sufficient
optimality condition which holds for any kind of efficient point:

Corollary 5.1
Let us consider problem P where U is a closed cone.
1) if F is regular directionally differentiable at x, then (5.4) is a sufficient condition for

X to be alocal U*-efficient point for P

_S_E (xg) & U, VveT(S,xy), v#0. (5.4)
v

ii) if Fis directionally differentiable and locally lipschitzian at x, then (5.4) is a
sufficient condition for x4 to be a local U*-efficient point for P;

iif) if F is differentiable at x, then (5.5) is a sufficient condition for x; to be a local

U*-efficient point for P
JFXO(V) g€ U, VveTS.x), v£0. (3.5)

11



Remark 3.2

When x, is an interior point of S the Bouligand tangent cone at x, reduces to the all
space so that (5.4) and (5.5) hold for every ve R, v # 0.

Under suitable assumptions of convexity relation (5.5) can be characterized in the form
given in the following Theorem:

Theorem 5.5

Let us consider problem P where U is a closed convex and pointed cone, S is a convex
closed set and F is differentiable at xo.Then condition (5.5) is equivalent to the

following condition (5.6):

d aeintU* such that athXO W0  VveTSx,), v£0 (5.6a)
' JFxo (v)#0 V veT(S,xy), v#O0 {(5.6b)
Proof
The convexity of S implies that T(S,x,) is a closed convex cone, so that (5.6a) follows
from (5.5) by applying a known separation Theorem; (5.6b) follows directly from
(5.5) by noting that O U.

Assume now that (5.6) holds.If (5.5) does not hold thers exist ve T(S,xq) , v# 0 such
that IFKO(V) € U, from (5.6b) we have JFXO(V) € U%s0 that (xtJFXO (v)>0 and this

contradicts (5.6a). +

The proof given in the previous Theorem points out that relation (5.6) implies (5.5)

without any requirement of convexity so that, takihg into account Corollary 5.1,
Remark 5.2 and that (5.6b) implies the injectivity of TFx, When V€ R, v#0, we

obtain the following sufficient optimality conditions for any kind of efficient point:

Theorem 5.6

Let us consider problem P where U is a closed cone and Fis differentiable at x,.
i) if condition (5.6) holds then x, is a local U*-efficient point for P:

i) if x4 is an interior point, JFxo is injective and 4 ot intU™ such that a‘JFXO =0

then x, is a local U*-efficient point for P.

12



The following example points out that relation (5.6b) does not imply that the restriction
of the Jacobian matrix JFxo to the tangent cone T(S,x,) is injective,

Example 5.1

Consider the function F(x,,x,)=(-x,+x,, xlz), the cone U=R3_ , the point x4 =(0,0)
and the feasible region S={( x,.x,): x120 x,<0}.

It results T(S,xy)=S, Jp_= [ 0 0] , so that choosing o'=(1,1) we have
atJFXO(v)=(-v1+v2,O)t v v—( v,.V,): v, 20, v,<0.

Consequently OttJFXO(v)<O VY ve T(S,xy) , v # 0, relations (5.6a) and (5.6b) are
verified but the restriction of the Jacobian matrix Jg X © the tangent cone T(S,x,) is
not injective since J, (1,0)'= IE,,,0-1)'=(-1,0)"

The following example shows that condition (5.5) does not imply (5.6) when the
feasible rezgion S is not a convex set.

Example 5.2

Consider the function F(x,.%,)=(%,-X,, -X,+2X,), the cone U=R3_, the point x4 =(0,0)
and the non convex feasible re};ion S={ { xppXy)t %20, x,=01{( x4,%,): X,20, x,=0).
It results T(S Xo)=3 and it is easy to verify the validity of (5. 5) and the non existence of
oE mtR " verifying (5.6).

At last we point out the role of vector generalized concavity in stating sufficient
optimality conditions of the Kuhn-Tucker type.
Consider the vector optimization problem P in the form

P: U-maxF(x), x € 8= {x € X: G(x) € V}

where X < R™ is an open set, F: X — R%, G: X — R™ are continuous and
differentiables functions, s = 1, m = 1, and Uc R® Vo R™ are closed, pointed,
convex cones with verteces at the origin such that intU=@, intV#0.

Let x, be a feasible point and assyme that G(x,) =0 (when V= RT, G(x,) =0
means that x, is binding at all the constraints so that such an assumption is not
restrictive taking into account the continuity of F and G).

13



It is well known that the U*-efficiency of the point x, implies the validity of the

following F. John conditions:

+ +. ot t _
A (op.0g)#0 , age U™, 0GE V™ : o JFx0+ O JGxO"“O (5.7)
The following Theorem is the analogous of Theorem 5.6.

Theorem 5.7

If (5.7) holds with o€ intU* and JFX() is injective then X, is a local U*-efficient point
for P,

Proof.

The non local U*-efficiency of x,implies the existence of a sequence {x,}cS, with

X=X
Xn— Xo = v such that Fx)-F(xg)€ U* and G(x,)-G(xo)€ U since
n—"o

G(xp)=0. Consequently Property 5.1 and the injectivity of JFXO implies
Tpxy ME U JG, (MEU*, 50 that o T (v)4+ 01, I, (v)>0 and this contradicts
(5.7). *

The following theorem generalizes a result given in [4].

Theorem 5.8

Let us consider the vector optimization problem P where S is a star shaped set at x,and
F, G are differentiable at x,.

i) if Fis (U*, U%-pev at xg, G is V-qev at x and (5.7) holds with o € infU™, then
Xq is a local U*-efficient point for P,

ii) if F is (U*, intU)-pcv at xg, G is V-qev at x4 and (5.7) holds with OgE Uh{0},
then x, is a local U*-efficient point for P.

Proof.
i) Suppose that there exists x*€ S such that F(x*)e F(xg)+U*. Since F is (U*, U‘O)—pcv
at X, we have JFXO(X*—XO) € UY; on the other hand if G is V-qev at xg it easy to

t : .
prove that JGxo(x*'Xﬂ) € Vand thus o JFX()(K*_XO)>_0 , B; JGXO(X*-XO)20 since
op € intUt and OG € vt Consequently ocf: JFXO(X*-x0)+ af} JGXO(X*—X0)>0 and

this contradicts (5.7).
ii) similar to the one given in 1). )
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