Report n.84

The Minimum-Risk Approach For Continuous Time
Linear-Fractional Programming

Stefan Tigan and L.M. Stancu-Minasian

Pisa, November 1994



THE MINIMUM-RISK APPROACH FOR CONTINUOUS TIME LINEAR-FRACTIONAL
PROGRAMMING

by

STEFAN TIGAN and I. M. STANCU-MINASIAN

1. Introduction

In this paper, the minimum-risk approach is applied .to
the stochastic continuous time linear-fractional problem. We note
that the minimum-risk model was introduced in stochastic linear
programming by Bereanu [2], [3] and Charnes and Cooper [5] (under
the name of P-model). This approach was extended by Stancu-Minasian
[10], sStancu-Minasian and Tigan ([12]-[16] to the stochastic
programming with linear-fractional objective and by Tigan [17] to
the continuous time linear programming.

We consider two classes of continuous time fractional
problems with a linear-fractional objective (see, section 2},
respectively with an objective function having a linear-fractional
kernel (see, section 4). In the case when the coefficients of the
objective functions are simply randomized, we will show that, under
some positivity conditions, the stochastic continuous time linear-
fractional problem is equivalent with certain deterministic
continuous time linear-fractional problem, while the stochastic
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continuous time fractional problem with an objective funection
having a linear-fractional kernel is equivalent with a
deterministic continuous time nonlinear-fractional problem,
Parametrical procedures are applied for solving these deterministic
equivalent problems.

2. Problem formulation

The following programming problem which originated from
Bellman's bottleneck problem [1] has received a great amount of
attention in the last decades:

Find

T
(1) supfa(t) z(t) dt
0
subject to
4
(2)  B(t) z(t) 5 e(t) +fK(t,s) z{g) dg, 0stsT,
[1)
(3) z(t) 20, 0OstsT.

where a:[0,7]-R*= and ¢:[0,7T]-R® are vector-valued continuous
known functions and B: [0, T]-R®=®, k. [0, T} x[0, T) R are matrig-
valued continuocus known mappings, while gz:[0,7]-R?2 is a vector-
valued continuous unknown function. Let denote by 8 the set of all
vector-valued functions z satisfying constraints (2)-(3).

A partial reference to the earlier works on continuous
time programming may be found in Farr and Hanson [7], Singh [9],
Bodo and Hanson [4], Hanson and Mond [8], Tyndall [18] and Zalmai
[19].

Next we consider a continuocus time linear-fractional
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problem, which extends the linear continuous problem (1)-(3).

CFP. Find
T
[ate) z(ey de
(4) sup -

™ Tr
fb(t) z(t) dt
[+]

subject to (2)-(3), where a, ¢, B, K are the same as in problem
(1)-(3) and pb: [0, T]-R™ is a vector-valued continuous known
function.

In (4) we make the assumption that:

T
(5) f.b(t) z(t) dt > 0, forallzes.
[}

We assume that in the objecfive function of problem CFP
the vector-valued function a(t) is simply randomized, that is:
(6) a(t;w) = a'(t) + t(w) a(t), te lo,11,
where a’/,3”:[0,T]~-R® are vector-valued continuous functions and

T(w) is a random variable on a probability space (R, E, P} with
a continuous and strictly increasing distribution function T

Now we consider the following minimum-risk problem
associated to the stochastie problem CFP:
CMR. Find
T
[att:o) z(t) at
(7) swp Plol; 2B}
[ o) z(p) at
0

subject to

(8) zZ€ES,
where B is a given number 'which reprezents a level for the
ocbjective function of stochastic problem CFP.




DEFINITION 1. A function z* € 8§, is said to be a minimum-risk
solution of level B for CMR problem, 1if for z* is reached the

supremum in (7).

3. Deterministic equivalent problem

In this section we show that for the minimum-risk problem
CMR there exists a deterministic equivalent problem which is a
continuous time linear-fractional programming problem.
THEOREM 1. It

T
(9) f'a”(t) z(t) dte > 0, forall ze€e §
[+

and the probability distribution function T of the random variable
7(®) is continuous and strictly increasing, then every minimum-risk
solution of the continuous time linear-fractional programming
problem CMR can be found as an optimal solution of the following

fractional optimization problem:

FD. Find
T
[ Bb(t) - & ()] =(t) dt
(10) daf =

fa”(t) z(t) dt

0
subject to (8)}.
PROOF. Obviously, by the assumptions (5), (6) and (9), we have

T
[ &) + e a’(t) 1z(p) dt

(11) P{wl 2 = 2P} -
fb(t) z(t) dt
0




r T T
-P{ mifa’(t:)z(t)dt + T(®) fa”(t)z(t)dt > p fb(t)z(t)dt} -
0 Q [}

T
f[Bb(t) - al(t) 1 z(t) dt
~=P{olt(w) 22 } .

r
fa”(t) Z(t) dt
0

Since Tis strictly increasing and continuocus, from (11),
we have:

r
[att:o) z(t) de
sup P{ ol 2 >p} -
RES
fb(t) z(£) dt
Q

T
f [Bb(t) - a’(£)] z(t) dt

SRR o (F 7.7 S —
=
[a"@) =) ac
0

) s

which concludes the theorem.

Next we give a sufficient condition which assure that
assumption (9) from Theorem 1 holds.
PROPOSITION 1. If assumption (5) holds and

a’(t) » 0, for all t € [0,T],

then the assumption (9) holds.
PROOF. Indeed, by assumption (5), it follows that feasible set 8
didn't contain the null mapping, that is, the vector-valued



application
z{t) = 0, for all t € [0,7].
But, this fact together with the continuity of the functions
z and a" implies that (9) holds.

4, The fractional objective kernel case

Next we consider a continuous time problem with
fractional kernel of the objective function, that is
FP. Find:

T
a(t) z(t)
w ) Bz %

subject to (2)-(3),
where a, b, ¢, B and K have the same gignificance as in the problem
CFP.

Moreover, we suppose that:
(13) b(t) z{(t) > 0, for all t € [0,T7] and z & 8.

Next we assume that in the objective function of FP
problem, the vector-valued mapping a(t) is simply randomized of the
form (6).

We can state the following minimum~risk problem
corresponding to the level B associated to the stochastic problem
FP:

FR. Find

.
(14) oup P mlf aé’fi‘;”zfé)ﬂ dt 2 B }
0

subject to (8).

DEFINITION 2. A function z' & 8, is said to be a minimum-risk
solution of level B for FR problem, if for 2 is reached the
supremum in (14),.

Next we show that for the minimum-risk problem FR there
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exists, under some supplementary assumption, a deterministic
equivalent continuous time programming problem with a nonlinear
fractional objective function.

THEOREM 2. If

T
(15) [ a;(‘t’;) ;((tt)) dt > 0, for all z €5,
and the probability distribution function T*of the random variable
t(w) is continuous and strictly increasing, then every minimum-risk
solution of the continuous time fractional programming problem FR
¢an be found as an optimal solution of the following deterministic
continuous time fractional programming problem:
CFD. Find

T [-%b(t) -al(e)] z(e)

(D) z (6 de

(16) 4ng 2
. 2 (£) z(t)
BB z(D °F

subject to (8).
PROOF. Indeed, by {(6) and (15}, we have:

T
[ a/{) + t(w) a”(t) 1z(¢t) -
(17) p{mijo' Tt dt >}

T T
_ al(t) z(¢) a’(t) z(¢) -
P{ml[ (ot dt+t(w}£ e e dt = B}

[ B bty - al(e) 1 2(8)
- GEIC) at
=P{wlt{w) > 2 } .

f a’(t) z(t) 4
B8 2(5)

0



since T¥is strictly increasing and continuous, from (17) we

have:

(t:00) z(t) N
56z F P!

r
sup P {u:lf a
i [4]

T [!;T, b(t) - a'(t)] z(t)

dt
b(t) z(t)
- 1-Tk(inf ° - z ).
BES
f a’{t) z(£) dt
| TBE) ()

which concludes the theorem.

5. Algoritmic remarks

The deterministic continuous time programming problems FD and

CFD have fractional objectives. For solving these classes of
optimization problems the parametric proceduré given by Tigan {17]
can be used.

We mention that this procedure generalizes the Dinkelbach
method [6] for solving nonlinear fractional programming.

Next we present two particularisation of the parametrical
procedure to the problems FP and CFD respectively.

Algorithm for the FD problem

Let 8 he a given positive real number.



Step 1. Take k:=0 and find z" £ S,
Step 2. Compute

T
[ 1Bb(t) - a/(£)] z*(¢) dt
Ve = -

T
fa”(t) zk(t) dt
Q

Step 3. Find
z
(17) Oy = mfj [Bb(t)-a'(t)-v,a”(t)] z(t) dt.
eS8 s

Let z*! & s the optimal solution for the linear continuous
time problem (17).
Step 4. i) If Q, < -8, then take k:=k+l and go to Step 2.
ii) If Q41 = -8, then the algorithm stops. The optimal

kil

solution =z of problem (17) is an approximation of the optimal

solution of problem FD.

Algorithm for the problem CFD

0

Step 1. Take k:=0, and find a feasible solution z' of the problem

CFD.
Step 2. Compute

T [ﬁT b(t) - a'(£)] z*(E)

de
V., = 0 b(t) zk(t)
k T
f a’(t) zkx(¢)
Step 3. Find n  b(t) zk(¢)

T [-g,b(t)-—a’(t)-vka”(t)] z(t)

(18) .
Ok i-?f{ B(8) z(D) at.

Let gkl € S the optimal solution for the linear-fractional



continuous time problem (18).

Step 4. i) If @ < -&, then take k:=k+l and go to Step 2.

ii) If Qy 2 -8, then the algorithm stops. The optimal sclution
z of problem (18) is an approximation of the optimal solution of
problem CFD.

k+l

For approximate solving the continuous time fractional
problems (17) or (18) a discretization method can be used.

6. Conclusions

Two classes of stochastic continuous time fractional
programming problems were considered. In the case when the
denominator of the objective is simply randomized some
deterministic equivalent continuous time fractional programming
problem are obtained.

Similar results can be obtained in the case of complete
randomization of the fractional objective (i.e. the nominator b of

the fractional objective function is also random).
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