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Abstract

The recently proposed algorithm by Falk and Palocsay for the sum-of-
ratios fractional program is analyzed and contrasted with the method of
Cambini, Martein and Schaible.

Introduction

Recently Falk and Palocsay [6], {7] suggested a new method, here denoted
by FP, which solves the sum-of-ratios problem

nx)
IP max { xeS}.
S ag e
Here S={xe IR":Ax<b, x>0} is a bounded convex polytope, the numerator n;

and the denominator d; of each ratio are affine functions and the denominator
of each ratio is positive on S.

This method does not operate in the variable space S but uses the image

n;(x)
d;(x)

The suggested approach is of particular interest since the method works for
any number of ratios.

T={r=(r}, 12, Iy) ' [ = , =1,..,m, xe8§ }.

For the special case of two linear ratios a parametric algorithm (CMS) was
suggested by Cambini, Martein and Schaible in [3], which is based on an
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earlier procedure by Martein [9] for a sum of a linear and linear fractional
function. This method operates in the variable space S.

In the present paper we will give some suggestions for improving algorithm
FP. We will also compare the algorithms FP and CMS from a theoretical point
of view. For recent surveys of methods for the sum of ratios problem see [8],
{10], [11], [12]. A comprehensive bibliography of fractional programming can
be found in [11].

1. The algorithms FP and CMS
In order to contrast the algorithms FP and CMS, we will give a brief
description of each one,

1.1 The algorithm by Falk and Palocsay

We outline the algorithm for m = 2. In order to determine the image " =
(1™,12" ) €T of an optimal solution x™ of problem IP lower bounds and
upper bounds for 1™ + 1, are determined which are iteratively improved.
Initially two linear fractional programs

P P = max {5 xegy =12
d;i(x)

are solved, for instance with help of the Chames-Cooper transformation [4],
yielding optimal solutions x'°, x*°, respectively. In addition to 1’ = (r'pax,
max) the points r(x'?), ((x*°) are determined. One of these last two points will
yield a better lower bound for r)*" + r,°™; for example, 1°=r(x"°) (see Fig.1).

The point v* is then determined as the point on ro= u’, which is on the line
r1+17= constant through 1°. Obviously, an upper bound for r°"+1,°" is provided
by v’, namely u’+u’;. An optimal solution " is located within the triangle
@, v*, v°). It is a point in T which maximizes r1-1,.

The idea of the algorithm is to decrease the size of the triangle containing
1°", This is accomplished by constructing points IX, v*, u* which provide better
lower and upper bounds for r;"+r,°". A sequence of lincar fractional programs
is to be solved that will reduce the size of the triangle (I°, v°, u°) containing r°™.

In the illustrated example (see Fig. 1) the fractional program consists of
maximizing the second ratio over S while ensuring that the first ratio does not
fall below the already achicved level v°;. With help of these fractional
programs points v* on the line between v° and 1° are constructed that move
from the outside towards the intersection of that line with the boundary of T.
While the lower bound has not improved in this case, the upper bound has been
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reduced as new points u* on the horizontal line through v* and the line rj=u’
are determined.

A= ()

Fig. 1

Once v* (and thus u*) does not improve anymore (within a tolerance), the
algorithm stalls since neither the lower nor the upper bound changes. In [6], [7]
a procedure is suggested that overcomes the stalling problem. To the last
triangle (1, v*, u“) the point (v5, , 1%;) is added. A square is constructed with
help of these four points. This square is divided vertically into two equally
sized rectangles. Then two cases can occur: either 11+ can be increased in at
least one of these rectangles or not. In the first case a smaller triangle
containing r** can be found by solving a linear fractional program. Both lower
and upper bounds have improved and the algorithm is restared. Otherwise the
algorithm will be applied separately to cach rectangle. An obvious stopping
criterion is u= 1%,

1.2 The algorithm by Cambini, Martein and Schaible

For solving problem IP a parametric algorithm is suggested by Cambini,
Martein and Schaible in [3]. It is based on an earlier procedure by Martein [9]
for the sum of a linear and linear fractional function. In fact, any problem IP
with two linear ratios and linear constraints can be transformed with help of a

generalized version of Charnes-Cooper’s variable transformation [4] into the
problem considered by Martein:

M*mﬂx{hTX+gTX/fTX:XEX} (1.1)



where h, g ,f eIR". The feasible region X is not necessarily bounded in [3].

The equivalent problem (1.1) of any linear two-ratio problem is solved in
[9] by changing the one denominator f'x, parametrically, i.c. the following
parametric linear program is solved:

PE): 178 sup {£ h'x+g'x:xe X, fx =£}  (12)

An optimal solution of P(£) is called an optimal level solution. By raising
the level f'x = £ , starting with the smallest value on X, a sequence of optimal
level solutions is generated.

The sequential method proposed in [3] is shown to be finite. Only finitely
many optimal level solutions are needed to calculate a local optimal solution
for problem (1.1), and only finitely many local, non global optimal solutions
exist. Hence, the procedure finds a global maximum in finitely many steps
(assuming nondegeneracy in X) or it shows that the objective function in (1.1)
is unbounded. Two variants of the algorithm are proposed in [3] which both
find a global optimum in finitely many steps.

2. Analysis of the theoretical basis of the algorithm FP
In [1] Almogy and Levin introduce the following function

m
H(r) =max { h(x,r)= 3, [nyX)-1; di(x)]:x S}, reR™.
i=1
The goal is to extend Dinkelbach’s results for m =1 in [5] to problem IP. In
[6], [7] Falk and Palocsay showed that this is not possible. Nevertheless the
function H(r) has some useful properties in the context of this algorithm.

The main properties of H(r) are summarized in the following
Proposition 2.1 [6]:
i) H(nN=20 VreT;
n; (x* Y

ii) H(r)>0 V¥ re T such that <d ) i=1,.,m where x* is an optimal
(x
1
solution of problem 1P,
1i1) H(r)<0 for every r such that r; > max {%E% 1 xeS },i1=1,.,m;
(X

1v) the function H(r) is convex over R™.



Furthermore, working in the image space, Falk and Palocsay stated the
following sufficient optimality condition in case of m = 2 where ™ = (r;"",

1" is the image of x™ in T.

Optimality condition C: Let t' T and 1°, r’e R? such that r, * and r° are the
extreme points of a triangular region in R-space. If H(r') =0, H(r2)<0 and
H(?)<0, then 1°"=r'.

Unfortunately, the previous condition is not always sufficient as the
following example from [9] shows:
Example 2.1: Py : max { (x; - x5 ) + (2%, +7 x,+6)/ (X; +%X,+1) : x€8,} where
S ={xeR?: 0< x,< 4, x; - xp <4, %, 20}.

Fig.2

If we consider the triangular region defined by r'=A’= (0,6), r'=u" = (4,34/5)
and r'= E’=(2, 34/5), we have H(r')=0, H(r>)<0 and H(r’)<0. However, the
optimal solution is reached in C’=(4,50/13), and not in A’. A’ is only a local,
but not a global optimum.

A correct statement involving condition Cis
Proposition 2.2: Let r' T and 1%, r’e R’ such that 1, r* and 1 are the extreme
pomts of a triangular region in R—space If H(r ) =0, H(r }<0 and H(r’)<0, then

r' is the only point of the triangular region belonging to T.
Proof: The result follows from the convexity of H(r); see proof of Theorem 5

mn[6]. ¢



Proposition 2.2 allows us to obtain the following proposition which may be
used to improve the upper bound in the algorithm FP.

According to Proposition 2.1, there exist r*;, r*;, on lines r1=rlmax, =
Pmax respectively, such that H (r*, r2max) =0 and H (rlmax, 1*7) = 0. The
following proposition shows that it is possible to find a better upper bound than
wptuy.

Proposition 2.3: Assume (r*1, Fmax), (' max r¥)) e T.
If Pmax -~ 1% < tlmax - *1 , then 1% + 1% < rlay + 1%
Proof: Set A =( rlmax, r¥%5), B = ( rlmax + Pomax - 19, r2max) and C=(t' max,
rzma-x). Since r*; < Tlmax - I'max + t*2 , we have H(C) <0. Taking into account
H(A)=0 and H(B)<0, convexity of H (see Proposition 2,1) implies

H(ajA + ap B + a3C) < ) H(A) + oy H(B) + a3 H(C) <0
for Va0 i=1,2,3 such that oy + o2 + a3 = 1 except for e =1. Hence A is the

only point in the triangle ABC which could be in T. However by the
assumption it is not. Hence the assertion follows by the convexity of the level

curve H(r)=0. +

In Proposition 2.3, r'max + r*2 is a better upper hound than Wt u’ . If

instead may - *2 2 I'max - *1, then t*] + Pmax can be used as a better
upper bound than 1’1+ u’;.

Now we will establish some properties of the function H which may be
useful for improving the algorithm FP for m = 2.

Problem IP in the image space becomes
P’ :max {r) +rp:1 €T}

e _n® )
where T = {r=(r;,rp) 111 = 1~ = 222 : xe8}.
d;(x) dy(x)
The following proposition characterizes the level curves Ty = {r : H(r) =\}
of the function H. Let vl,..., v® be the s vertices of S.

Proposition 2.4
re I < rsolves one of the following systems fori =1,2,...s



{ h(r, vi) = XA

h(r, V'Y< AV j=i

Proof: For any fixed r = (11, 12), function h is linear in x; since S is a compact
polyhedron, the maximum value H(r) is attained in a vertex of S. This implies
the assertion. ¢

From Proposition 2.4 we see
Corollary 2.1:

1) I';, are piecewise linear level curves;
i1) I, are decreasing to the origin,

The level curve I’y is shown as a dotted Line in the examples.

In the mmage space the level curves of problem P are lines given by the
equation 1y + r = constant, The line corresponding to the optimal solution is
11+ 1p =117 + 1,°" which supports T. However, in general, the level curve of
H corresponding to the optimal solution r°™ (Topt ) does not support the region
T, while I’y supports T. This is equivalent to saying that problem IP and
problem min {H(r) : reT} do not have the same optimal solution.

The following examples demonstrate, graphically, that the optimal solution

of problem P’ is not necessarily reached at the value r with H(r)=0 and that Topt
does not always support the region T,

In Example 2.2 the optimal solution is a vertex of S which corresponds to
B’= (1,8) in T with H(B”) = 0. In this case T'opt = I'g supports T, but H(A’)=0
and A’=(2,4) is not an optimal solution of P;. In the previous example 2.1, the
optimal solution belongs to a vertex of S which corresponds to C* in T with
H(C")>0.

In Example 2.3 the optimal solution is a vertex of S which corresponds to
E = (1-4/2/2, 1-+/2/2) in T with H(E")>0.

Example 2.2:
Py :max § 2 % /(xH4) + (x; + X3 ) : x€8y } where
S;={xelR:0<x,<4, 0£x,£4}



Fig. 3

Example 2.3:
P3: max { (x; + %)/ (x; +1) ~ (/2 x;+ x5 - 1/2) : x € S3} where
S3={xelR?: 0<x;<2,0 <x,< 2},

r2
A

Fig. 4

Taking into account these examples, the following problem arises: find
conditions under which H(r) = O implies that r is an optimal solution of
problem P,



With regards to this problem, let $'pax, S°max be the sets of optimal
solutions of P' and P?, respectively. The following lemma states a necessary
and sufficient condition for H(r)=0 at (r' max, I° max)-

Lemma 2.1: H(r] max, T max) = 0 if and only if S ax M S ax # 9.
Proof: If H(r' max, Imax) = 0, then there exists a point x. e S such that

h(r ! max, fzmax, XC) WI(XC) - rlmax d](XC) + RZ(XC) “ rzmax dg(xc) =0 (2.1)
nl(X)

<y d
dl(x) I max an

and h(t' max, ° max, x) <0 VxeS. Taking into account that

n,(x)
dy(x)
since otherwise condition (2.1) could not hold. Conversely, if there exists x €
S max M S%max , then h (rlmax, 2 mas, X)) =0, h (rlmax, P max, %) £ 0 VxeS.
Hence H(r] maxs rzmax) ={. *

< Pmax VxeS, we see that X 1s an optimal solution for both P! and P?

Set r*=max S' nax). The following theorem states a sufficient

( )
{ 2

(x)

optimality condltlon in the image space.

Proposition 2.5: If H(r'max, 1) = 0 and H (r'max + Miax - I FPmax) <0, then
(' max, ) is an optimal solution of problem P’

Proof: Let us consider the Tevel ' + r* = r'may + I* and the triangnlar region
with the vertices A = ( 'max, 1), B = (C'max  Cmax - > Pmax) and C = (t'max.
’max). The assumption implies that H(A) = 0 and H(B) < 0 while Proposition
2.1 mplies H(C) < 0. From Proposition 2.2 we see that A is the unique point of
the triangular region belonging to T, and as a consequence, the line r; + 1y =
t'max + I is a supporting hyperplane for T. ¢

Now we will find conditions in the decision space under which H(r) = 0
implies that r is an optimat solution for problem P,

Proposmon 2.6 : If H(t' max, )= 0 and [ da(x)- d1(x)]20 VxeS§, then
(t' max, ) is an optimal solution of problem P’.

Proof: We must prove that
* n]_(X) _ I + n2(X) r2 O v S
™ “““—dl (x) I max a,(x) Xe
Set Ly (x) = m(x) - r'max di(x) and L, (x) =ny(x) - 1* dy(x). Then we have



e R N d,(x)d, (x)
- Li(x)d () + Ly (x)d; (x) + Ly (x)d, (x) - Ly (x)d; (%) -
d(x)d,(x)

L)+ Lyx)]ds (5) + Ly ()] dp (x) - dy (3]

d; (), (%) '
The assertion follows since condition H(r' yax, I ) = 0 implies [L; (x) + Ly(x)]
< 0 VxeS, by definition of 1!y, Li(x) <0 Vx € S and [da(x) - di(x)] =0,
d;(x)>0 vxeS. ¢

& 1) o Li)d(x)+Lx)d; (x)

Remark 2.1: Let us note that H (' pay, r*) = 0 does not imply [da(x) - d1(x)}=0
vxeS. This is shown by Example 2.2 where H(A’) =0, but [dy(x) - di(x)] <0
- VxeS.

Now we will prove that problem IP can always be tranformed into an
equivalent problem P* satisfying the inequalitity [ dy(x) - dy(x)} = 0 VeS.
With this aim in mind, consider the problem

P*: max { oy (x) + nz(x) :xeS}
d,(x) d,(»)

max d,(x)

where 11" 5(x) = kny(x), d'2(x) = kdp(x), k=25
mlgl d,(x)

The following lemma holds

Lemma 2.2: .
i) Problems P and IPhave the same optimal solutions,

ii) [d"2(x) - d1(x)] 20 V xeS.

4 e 4

d,(x) ~ mirsl d,(x)

[k d2(x) - d1(x)] = 0 VxeS, that is [ d"2(x) - d1(x)]20 VxeS. ¢

= k, we have

Proof* Since

Set H'(r) =max { h (r.x) = my(x) - 1 dy(x) + k (ma(x) - 15 dy(x)) xS}
Taking into account Proposition 2.6 and Lemma 2.2, we have the following
corollary.

Corollary 2.2: i H (r'may, 1) = 0, then (r'max, I) is an optimal solution of
problem P’
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3. A comparison of the algorithms of FP and CMS
From a theoretical point of view the two algorithms are quite different:

- In {3] optimality conditions arc stated for problem P which allow to
establish if a given point is a local optimal solution or not; in [6] no
necessary optimality conditions are given and the sufficient condition stated
is not correct, as pointed out in example 2.1;

- In{3] the convergence of the algorithm is finite which is not the case in [6];

-« In [3] local optimal solutions are generated, the last of which is a global
optimal solution. The algorithm of FP is not able to recognize if a point is a
local optimal solution for problem IP. The reason of this may perhaps be
found in the fact that the transformation used by Falk and Palocsay does not
transform interior or boundary points of S into interior or boundary points of
T, as can be seen from the following example.

Example 3.1:
Py :max § (x; +x, +x3) - (% + 2 x3) : x&8,} where
S; = {xelR%: 0< x, <1, 0< X, <1, 0< x, <11,

We conjecture that from a computational point of view, algorithm of
CMS might be better than FP, in the sense that it may require fewer iterations.

Consider the following example in [6]
Example 3.2:
Ps :max { (37x; + 73x, +13)/ (13x; + 13x, +13) +
(63x%;-18 x,+39)/ (13x + 26x, +13) : xe 85} where
S5 = {xeR?: 1.5 <x,;< 3, 5%; - 3%, = 3, X, 2 0}

FP find the optimal solution of problem Ps after 20 iterations; while the
algorithm CMS needs only one iteration to find a global optimal solution.
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