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Abstract

The aim of this paper is to establish some second order necessary and sufficient
optimality conditions for a multiobjective problem where optimality is studied
with respect to arbitrary closed convex cones. The proposed approach extend
the one recently given by the same authors.

1. Introduction

In these last years, the image space has been frequently used [5-8, 11, 12] as a
general framework within which some topics related to optimization have been
studied; recently, for a scalar problem, Cambini and Martein [9] have suggested
a new approach for studying necessary second order optimality conditions
based on a characterization of a suitable tangent cone in the image space [9];
such an approach has been deepened by R. Cambini in [10], where several
second order necessary and sufficient optimality conditions are obtained for a
multiobjective Pareto problem and where a new look inside second order
constraints qualification is given.

The aim of this paper is to extend and to collect all of these recent results for a
vector optimization problem where optimality is studied with respect to
arbitrary closed convex cones.

1 This paper has been presented to the 2nd International Conference in Multi-Objective Programming and
Goal Programming, held in Torremolinos, Malaga (Spain), in May 1996, and has been submitted for
refereed publication to the Proceedings of the Conference.

The paper has been discussed jointly by the authors and has been developed by R. Cambini.



2. Statement of the problem
In this paper we will consider the following multiobjective problem

P: U-max ¢(x), x€S={xe X: g(x) €V}
where X  R" is an open set, ¢ =(9;...05): X -R’, g=(g;...5, ) : X > R™ ,
s21l,m 21, 9 8- j=L,...s,i=1,..m are twice differentiable functions, and
Uc R® , Vc R™ are closed convex cones with vertices at the origin such that
intU=Q, intV#2.
A point x5 € S is said to be a Jocal efficient point for problem P if there is no-
feasible x belonging to a suitable neighbourhood of X, such that

Ox) € Q(xy) + Ue (2.1)
where U%= U\{0}.

We say that x, is an gfficient point for P if (1.1) holds for every x& S.

Let us note that when s=1, U=R 4. V= Rn_:, problem P reduces to a scalar
optimization problem and (2.1) collapses to the ordinary definition of a local
maximum point, while when U= Ri, V= RI_'I_I, (2.1) collapses to the ordinary

definition of a local Pareto point.

Let x,, be a feasible point and assume, without lost of generality, that 2(x,)=0.
Set
f(X)= 0(x)- @(x, ), F(x)=(f(x), g(x)), K=F(X),H=U"xV

We will refer to R™ as the decision space and to R¥™™ as the image space.
It is easy to prove that x, is an efficient point if and only if

KnH=9 (2.2)

In such a way, the efficiency of x,is reduced to study the disjunction of these
two sets. Since K does not have in general particular properties, the idea

underlying our suggested approach is to substitute K with the following
tangent cone, which is a subcone of the Bouligand tangent cone to K at F(x,):

Ti={t: Joy = +eo x5 = x; with o0, F(xp) =t}

By means of T, the following optimality conditions can be proven [7] :



Theorem 2.1

i) Let x, be alocal efficient point for problem P. Then T, intH=9

ii) If T, clH= {0}, then X, s a local efficient point for P.

iii) The feasible point x, is a local efficient point for P if and only if the

following condition holds:
V te TyNclH,t#0,and for any sequence Xp —> X, such that there exists

O —> +eo with o0, F(x,) >t , we have F(xp )2 H Vn,

Some necessary and sufficient first order optimality conditions have been
established in [7] by means of a first order characterization of T,.

The following second order characterization of T, has been suggested and
utilized in [9] in establishing second order necessary optimality conditions for a
scalar problem and in [10] in establishing second order necessary and sufficient
optimality conditions for a vector Pareto problem:

with:

K;=F (x)(R™), where F’(x,) is the Jacobian matrix of F at Xg»

KQ= KQU {0}, KQz{F”(xo)(w,W) :weW}, W={weRD: F (x )(w)=0}
99 — T T T T

F’(x Y(w,w) = (w Hf1 (XO)W,..,W Hfs (XO)W, w'H g, (XO)W,..,W H gm(xo)w),

where H ,H are the Hessian matrices of the functions f, g:, j=1,..,s,
f(x,) i i

gi(xe)
i=1,..m at the point x,, respectively,
Ay={teT: t=0,3 x5 — Xy ,30o0 ) —> +oo, with 0 (Fxp)-F(xp)) =t ,

F(xy)-F(x,)
kg 0}

The following Theorem [10] states a sufficient condition for A, to be empty:

Theorem 2.2 If 0g (K +Kj) then A= .

In the following sections we will extend the results given in [10] to arbitrary
convex cones.



3. Second order necessary optimality conditions and regularity
conditions

Taking into account (3.1) and i) of Theorem 2.1, we have the following second
order necessary optimality condition for problem P

Theorem 3.1 Let x, be a local efficient point for problem P. Then
(K +Ko) nintH= ¢ (3.1)

Let us note that (3.1) does not involve either Lagrange multipliers or second
order constraints qualification unlike the classical second order necessary
optimality condition of a scalar problem (s=1, U=R_, V= RT); the suggested
approach in the image space allows to give a new look inside this aspect.

In order to find second order optimality conditions involving Lagrange
multipliers, the problem of separation between the two cones K; +Kq and int H
arises, that is the problem of the existence of ce H*= {et: Th 20 Vh € H}
such that K; +Kyc ot , where o= {ze R¥"™: oTz=0}, ol={z oTz<0}.
With this regards we have the following Theorem holds, where co(e) denotes
the convex hull of set (e):

Theorem 3.2 The following conditions
) JoeH*, 0220, such that K;cot and Kycod,

ii) Co(Ki+Ko)Int(H)=0. (3.2)
are equivalent. Furthermore the two cones K| +Kq, and int H are separate if and
only if i) or ii) holds.

Proof i)=ii)
Suppose ab absurdo that ze Co(KL+KQ)mIntH¢®; since ze Co(KL+KQ), zisa
convex combination of k elements of (Ki+Kp), thatis 3 1y,...,1; e Ky,

K k
3q;,....qkeKq » I Ags..., 0> 0 such that > A=l and z= 2(l; +q;) ; then we have
=1 i=1

k k k
ofz=3 Mol +3 Aoq; = Y AaTg; <0, and this is absurd since ze IntH , oe H,
i=1 i=1 i=1
o0, implies oTz>0.



ii)=»i) For a known separation theorem, Jore H, o20, such that aTz<0
Vze Co(K+Ky); since Xy < Co(K; +K ) it results oTF’ (xo)v<0 Vve R and this
implies oF’(x)=0, that is K; cor*; as a consequence olT(I+q)=aT I+aTq= oTq<0
Vge Kq so that Kqcot.

The last statement of the Theorem is obvious. ¢

Since (3.2) is equivalent to the existence of a vector of “multipliers” o.e H*,
any condition which ensure the validity of (3.2) can be interpreted as a second
order regularity condition (let us note that we use the term "regularity
conditions" instead of "constraints qualification” since in the image space both
the objective functions and the constraints are involved).

In such a way the suggested approach allows us to define two different kinds
of regularity conditions:

weak regularity Assume that (K; +K)NIntH=@. We will say that a condition
R is a weak second order regularity condition if it is implies
Co(K; +K o) IntH=0

strong regularity Assume that (K; + Ky )N IntH=@. We will say that a

condition R is a strong second order regularity condition if it is implies
Ko< K -CIHH.,

Some second order regularity conditions are given in the following Theorems
[107:

Theorem 3.3 Consider problem P; then the following conditions are weak
second order regularity conditions:

iy K;+Kq is a convex cone,

1) KQ is a convex cone,
i) dimK; =n-1.



Theorem 3.4 Consider problem P; then the following conditions are strong
second order regularity conditions:

) KooK,

i) Ko=0,

i) dimK; =n,

iv) dimK; = s+m-1.

Remark 3.1 When s=1, the linearly independence of the gradients of the
constraints binding at x, is equivalent to iv) of Theorem 3 4.

Another second order strong regularity condition in the decision space which
generalizes, in the scalar case, the McCormick constraint qualification can be
found in [9,10].

Let us note that strong regularity implies weak regularity but the converse is
not true as is shown in the following example:

Example 3.1 Consider problem P where s=1, m=1, @(x,y)=x*+y>, g(x,y)=-x?-y2
U=R,, V=R, and the feasible point (0,0). Since (0,0) is the only feasible point
then itis also an efficient point.

It is easy to verify that K;={(0,0)} , Ko={q: 9 =M1,-1)+R(0,-1), A,pu=0, A+u+0),
so that co(K; +Kqo)= (K; +K) and the weak regularity condition i) of Theorem
3.3 holds; on the other hand the vector o=(2,1)T is such that K, coal but
KQQOL;L so that strong regularity cannot hold.

Now we are able to state some second order necessary optimality conditions in
the image space and in the decision space.

Theorem 3.5
Let x4 be a local efficient point for problem P. Then:
i) if a second order weak regularity condition ® holds then:
3 aeH*, 00, such that Ky cort and Kocot,
ii) if a second order strong regularity condition & holds then;
V oo e HY, 00, such that K; o , we have Koot .

Proof
It follows immediately from Theorems 3.1 and 3.2 and by the given definitions
of regularity. *

Theorem 3.5 is equivalent to the following one stated in the decision space:



Theorem 3.6
Let x, be a local efficient point for problem P. Then:

i) if a second order weak regularity condition & holds then:
S m
d a=(&, a*)eHt, aeR®, o*e R™, such that 3 o VE(x) + X 0¥ ng(xo) =0
i=1 i=1
and
T S _ m
w[ iglaini(xo) +j§1 oc*j ng(xo)] w<0 VweW
ii) if a second order strong regularity condition & holds then :
S m
YV o=(&, o*)eH, e RS, e R™ | such that _Zlﬁci Vii(xy) + _21 o*; Vgi(xg) =0
1= J:
it results:

8 m
wi[ izlaini(Xo) +j§1 oty ng(xo)] w<0 YweW

Remark 3.2 When s=1, ii) of Theorem 3.6 reduces to the well known and
classic second order necessary optimality condition.

4. Second Order Sufficient Optimality conditions in the image
space

In this section we will derive some second order sufficient optimality conditions
by means of the second order characterization of the tangent cone T,.

With this aim, set o = {ze R*™: aTz<0}. As a direct consequence of ii) of
Theorem 2.1, taking into account (2.3) and Theorem 2.2 we have :

Theorem 4.1 If (4.1) holds
(K +K)NCIH={0} and 0 (K;+Kg), (4.1)
then X, is a local efficient point for P.

Let us note that Theorem 4.1 is stated without use of multipliers; obviously any
condition which ensures (4.1) becomes a second order sufficient optimality
condition. In this order of ideas we have the following corollaries:



Corollary 4.1 If i) and ii) hold then x4 S is a local efficient point for problem P:
) 0 +Ky),

ii) doe intH* such that K; co and Koot .

Proof. We will prove that i) and ii) imply (4.1). Assume that (KL+KQ)0C1H¢{0};
then there exist le K;, qe Kqsuch that1+qe clH\{0}, so that o.'(I+q) > O; on the
other hand for ii) we have 0" (1+q) = T 1+0Tq = T g < 0 and this is absurd. ¢

Corollary 4.2 If the following condition (4.2) holds:
d o € intH* such that K;cot and Kogos, 4.2)
then xye S is a local efficient point for problem P.

Corollaries 4.1 and 4.2 are equivalent in the decision space to Theorems 4.2 and
4.3 , respectively:

Theorem 4.2 Consider problem P and assume that xoe S verifies the following
conditions:

5 m
i) Jd o=(@, o*) € intH* , such that '216(1 Vii(x,) + 'Zl o Vgi(x) =0
1= J=
S m
i) wT .Elaini("o) + _zl o*; Hg (xo)] W< 0 Vwe W
1: J=

i) 0z (Ki+Kp)
Then x, is a local efficient point for P,

Theorem 4.3 Consider problem P and assume that x,e S verifies the following
conditions:

5 m
i) 3 o=(8,0*)e intH*, 5 RS, a*e R™, such that _zlai Vi(xy) + _):1 0%} gi(%)=0
1= J:
S m
i) wi ’zlaini(xo) + .21 ok ] ng(xo)] w< VweW
1= Jz

Then x, is a local efficient point for P.

Let us note that conditions i) and ii) of Theorem 4.3 imply i), ii), iii) of Theorem
4.2, but the converse is not true as is shown by the following example:

Example 4.1 Consider problem P where s=1, m=1, ¢(x)=x2, g(x)= -x2, U=R_,
V=R, and consider the feasible point Xq=0.



Itis easy to verify that (xo)+g’(x)=0 , W=R. K = {0}, Ko= {(x% -x}), x 2 0},
0¢ (K +Kq). Conditions i), i), iii) of Theorem 4.2 are verified so that X418 alocal
efficient point for the problem, while ii) of Theorem 4.3 is not verified.

The previous sufficient optimality conditions have been obtained starting from
the sufficient condition T, MclH ={0} . In order to study the case T MclH=,

we define the following sets:
Ko={qe R**™: q=wTHp(xp)w, we W*}, W¥={we R1: P’ xgweFr(H) , w20 .

K5={ qe R*™: g=vTHy(x)v, ve W, }. W ,={we RD: F'(xg)we ot, w0 }
o q F o o

The following Theorem holds:

Theorem 4.4 If the following condition (4.3) holds:

doe H, o0, such that K; cot and Ké c o, (4.3)
then x4€ S is a local efficient point for problem P.
Proof
Ab absurdo suppose that x4& S is not a local efficient point; then there exists a
sequence {Xy} < S\{x,}, x,—X,, such that F(x;)e H Vk.
The first order Taylor expansion gives F(x) - F(xg) = F'(xg) (% - Xg) + O(Xg, Xg)

. . O(X, X . .
with lim O, X0 = 0, so that there exists a subsequence of {x,} (without
k—+00 ||Xk - Xoll

loss of generality we can suppose to be the same sequence) such that

. F(xy) - Fxg) , . Xk -Xg .
o ”Xk _ Xo“ =F (X())W, Wlth W= k]i)l’l'_&m “Xk _ Xoll . Since F(Xk) - F(Xo) eH

F(x;) - F
VK, it results _(IEIC%TXSI(IO)

taking into account that K; cot, F’(xg)w € FrH, thatis w € W*,
Consider now the second order Taylor expansion

F(xi) - F(xg) = F'(xp) (%x - Xg) + 1/2F” (X) (X, - X0),(Xg - X)) + O(Xy., Xg) With

O(X, X ..
Oy, Xg). 0)2 = (. Taking into account that oTF’ (xy)=0, we have:
k—>+eo ||X)e - Xl

oI (F(xy) - F(x0)) = 172 (% - x0)T(0TF” (x))(xy, - Xg) +0T G(xy, Xp), so that
oI [F(xy)-F

k_:_>+m [[b((t]_‘io”gx")]q 172 wT(o"F’ (x))w=0; on the other hand w & W* implies

wl(oTF’ *(xg))w < 0 and this is absurd. *

€ H Vk, so that F’(xg)w € clH and consequently,

By means of the previous theorem, taking into account that Kq = Ky for each
oeH*, 00, such that K| col , we have the following corollary:



Corollary 4.3 If the following condition (4.4) holds:
Joe H*, 020, such that K; cort and Kjcod, (4.4)
then xye S is a local efficient point for problem P.

Theorem 4.4 and Corollary 4.3 are equivalent in the decision space to Theorem
4.5 and Theorem 4.6, respectively.

Theorem 4.5 Consider problem P and assume that x,e S verifies the following
conditions:

5 m
i) d o=(0,0*)e Ht, e R3 , o*e RM | such that ¥ &4 VE(xy) + 21 oc*j ng(xo)z 0
i=1 J=

S m
i) wl ¥ &Hg(xg) + 3, 0% Ho ()] w <0 Ve W
=1 T = !

Then x, is a local efficient point for P.

Theorem 4.6 Consider problem P and assume that xye S verifies the following
conditions:

S m
1} o=@, o¥*)oacH*, deRS, a*e RM | such that .Zli'xi VE(xy) + '21 0¥ g(x)=0
1= =

] m
. "I‘ . .
i) w [izlalei(xo) +j§1 o] ng(xo)] w<0 YweW,

Then X, is a local efficient point for P,

Let us note that in the scalar case condition ii) of Theorem 4.6 states the well
known second order sufficient optimality condition; the following example
points out that the optimality condition stated in Theorem 4.5 is more general
than the previous one:

3
+9
P(X.y,2)=x+y-x2-y2422 |, g (xX,y,2)= Xy , 2(X,y.2)=z , g4(x,y,z)=-z and consider
the feasible point x,=(0,0,0) .

By means of simple calculations we obtain:
Vi(xy) +Vg,(x,) = 0, so that i) of Theorem 4.5 and 1) of Theorem 4.6 hold;

Example 4.2 Consider problem P where s=1, m=3, U=R,, V=R

10



Wo

= {(W1,~W,W3), Wy, W)€ R}, so that wT(Hf(x0)+Hg1(x0))w = -2w12+w3e R

and this implies that ii) of Theorem 4.6 is not verified. On the other hand

W#= {(wy, -w;, 0) , w; € R} and it results wT(Hf(xo) +Hg, (x,))w =-2w12;

condition ii) of Theorem 4.5 is verified and the origin is a local efficient point for
the problem.
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