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Abstract

This paper is concerned with a maodel of capital accumulation and fechnology
innovation in a vintage capital framework. The model is an infinite horizon/infinite
dimensional optimal control model, the firm employs a continuum of technologies (a
continuum of heterogeneous capital goods). Technology is specific to capital goods
and is related to their vintage. The entrepreneur maximizes the profits obtained
by employing the continuum of technologies under the agsumption of constant re-
turns to scale and bearing adjustment costs for investments. Existence of an optimal
investment policy and the diffusion of a new technology are proved. Two specific
models are considered: quality depreciation without technology innovation and exo-
genous technology innovation.
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Innovation.
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1 Introduction

In this paper we present a model of capital accumulation and technology innovation
in a vintage capital setting. The model is an infinite horizon /infinite dimensional capital
accumulation model. The firm employs a continuum of technologies/ heterogeneous capital
goods differentiated by their vintage and their productivity. The technology is specific to
a capital good and is related both to its vintage and to technological progress, i.e. the
vintage of a capital good will represent a technology label; for an early analysis of vintage
in the capital accumulation process see [Solow, 1959, Solow et al., 1966).

To the classical scalar model of capital accumulation driven by a differential equation,
where time is the unique dimension, we add a second dimension: vintage/technology
status. The evolution of the stock of capital as a function of time and vintage is described
by a Partial Differential Equation (PDE). This allows us to introduce heterogeneity in the
capital accumulation process and to establish a relationship between the going on of the
time and the technology status of the capital goods employed in the firm. The evolution
of the stock of capital of the firm is characterized by the classical constant capital decay
rate and by the changing of its productivity: as time goes, capital goocs are going to
be characterized by more and more mature technologies. Different phenomena take place
inside the firm as time goes: the stock of capital decreases from a quantitative point of
view and changes from a qualitative point of view because of experience, invention of new
techniques and new goods, learning by doing and qualitative depreciation.

The dynamics of capital goods with respect to the technology is driven by factors
internal and external to the firm. Internal factors are mainly qualitative depreciation,
learning by doing and spillover effects: goods employed in a firm become less and less
productive because they are employed in producing goods, but on the other side the
productivity may rise because of experience effects, complementarities with new goods,
spillover effects, externalities, etc. External factors are represented by innovation: as time
goes new techniques and new goods are made available exogenously or by means of R&D.
The model proposed in this paper incorporates both process innovation and goods innov-
ation: capital goods differentiation occurs because more productive techniques or more
productive goods are discovered or because new processes to reduce the cost of producing
existing products are available; the vintage label can either mark a new capital good or a
new technique.

We assume technology irreversibility: investments are locked up in a plant at a given
date and then their productivity is determined as time goes by their vintage, i.e. capital
is specific to a particular technology. We allow for a partial effect of innovation on the
productivity of vintage capital goods. Firm may invest at any time in all the technologies,
there is a market for vintage capital goods so that firm investments and the stock of
capital are described by functions of the vintage. The firm bears adjustment costs in the
capital accumulation process. Irreversibility concerns the technology of a capital good but
not investments, investments may be negative.

In recent years, a large literature has grown up on growth, innovation, and vintage
capital. Among the explanations investigated in the literature for a connection between
the vintage of a stock of capital locked in a plant and technology, we can remember:



learning by doing, [Arrow, 1962, Lucas, 1991, Stokey, 1988, Young, 1993a], input substi-
tution and complementarity, {Young, 1993b], qualitative depreciation of the capital goads
as they are employed in producing goods, [Solow, 1959, exogenous technological progress,
[Solow, 1959, Chari and Hopehhayn, 1991], R&D for process, quality and goods innova-
tion, [Judd, 1985, Grossman and Helpman, 1991b, Romer, 1990, Segerstrom, 1991], etc..
These features of the firm life have not been analyzed in a complete dynamic/optimization
setting; in the papers quoted above the economic decisions about capital accumulation,
consumption, invention and investments are not analyzed in a complete dynamic /optimization
framework because goods are not durable and can not be accumulated. Because of this fea-
ture, the intertemporal dynamic dimension of the economic decisions reduces to an inter-
temporal budget allocation problem, see [Grossman and Helpman, 1991a, Segerstrom, 1991,
Young, 1993a), or to a pure static allocation problem, see [Lucas, 1991, Romer, 1990,
Stokey, 1988, Stokey, 1991]; in many cases capital is absent as input factor and we have
only labor, see [Chari and Hopehhayn, 1991].

In what follows we build a complete dynamic framework for the analysis of the firm
accumulation problem with heterogeneous/vintage capital goods. Being the evolution of
the stock of capital described by a partial differential equation, the firm maximization
problem over the infinite horizon becomes an infinite dimensional optimal control prob-
lem: the firm maximizes the integral of the profits obtained by employing a continuum
of technologies/capital goods. The entrepreneur faces adjustment costs installing cap-
ital goods and an innovation cost installing new capital goods, the innovation cost can
be interpreted as a royalty to be paid to the inventor of the new technigue. All the
techniques/capital goods are characterized by constant returns to scale, there are no
complementarity /substitution effects among capital goods. The coefficients describing the
productivity of capital goods and adjustment costs are described by functions of the vin-
tage. The entrepreneur invests at any time in every technology, not only in the newest;
this allows us to study technology innovation and its diffusion, i.e. the scatter of the stock
of capital and investments along vintage capital goods/technologies. We establish the ex-
istence of an optimal capital accumulation policy and we find out the long run stationary
equilibrium.

The control problem analyzed in this paper is solved by adapting to this case tech-
niques of control theory in finite and infinite dimension. More precisely the tools we use
are: the theory of semigroups (see e.g. [Pazy, 1983, Bensoussan et al., 1992]), the frame-
work of boundary control problems (see e.g. [Fattorini, 1968, Bensoussan et al., 1992,
Cannarsa et al., 1993, Cannarsa and Tessitore, 1996, optimality conditions for optimal
control problems (see e.g. [Tessitore, 1995, Carlson et al., 1991] for the case of finite
dimension /infinite horizon and e.g. [Barron and Jensen, 1986, Cannarsa and Frankowska, 1992]
for the case of infinite dimensions/finite horizon).

We consider two specific models. A model where vintage capital goods are differenti-
ated because of quality depreciation, learning by doing, and a model incorporating both
exogenous innovation and quality depreciation.

The diffusion of a new technology, i.e. the fact that the stock of capital and invest-
ments are not concentrated only on the newest technology but are single-peaked functions
of the vintage, is a well established empirical result about firm’s capital accumulation



which seems to be difficult to be explained from a theoretical point of view. Many differ-
ent approaches to explain this fact have been developed in the literature; among them, the
more recent one is based on the presence of positive spillover effects, input complementarit-
ies, externalities, see for example [Chari and Hopehhayn, 1991, Jovanovic and Lach, 1989
and [Jovanovic and MacDonald, 1994]. In this paper we provide an explanation of the dif-
fusion of a new technology by abstracting from these facts and restricting our attention
to innovation costs, adjustment costs, exogenous innovation and quality depreciation of
vintage capital goods; we look for an explanation of the diffusion of a new technology
purely in terms of the capital accumulation process with adjustment costs: the firm may
decide not to invest heavily in the newest technology because it is too expensive to install.

In a quality depreciation setting we show that the stationary stock of capital obtained
as solution of the optimal investment problem can be either a decreasing function of the
vintage or a single-peaked function with a maximum. Capital deepening results type are
proved in this context. The stationary stock of capital turns out to be single peaked if a
new technology is highly profitable, the innovation costs is high and the rates of quality
and quantity depreciation are not too high.

The model with exogenous exponential innovation is characterized by perpetual
growth. The growth rate in the long run is determined by the rate of technological im-
provement deflated either by the rate of growth of innovation costs or by the rate of growth
of adjustment costs (the smaller one deflates the rate of technological improvement). In
the limit the shape of the optimal stock of capital can be either a function of the vintage
strictly decreasing, if the rate of growth of innovation costs are smaller than the rate of
growth of installation costs, or single peaked, if the opposite holds.

The paper is organized as follows. In Section 2 we present the model; in Section 3
we describe the state equation by means of semigroups, in Section 4 we define the value
function associated with the optimal control problem and we find out the optimal solution.
Sections 5 and 6 are devoted to the analyzis of the optimal solution and of the long run
equilibrium of the model. In Section 7 we study the model under investments irreversibility.
In Section 8 we analyze a specific model with exponential quality depreciation. In Section
9 we analyze the model with exogenous technology innovation.

2 The Model

The capital accumulation/technology evolution is described by the following controlled
dynamical system

. akg:; 8) - ,\C'Ncgsa 5) + pk(t,s) = u(t,s)  t€(0,+00), s € 0,3
VK0 =u(t,0)  te€(0,+00) (1)
| k(0,8) = ko(s) s €]0,5]

where 1, A > 0 and 7 € (0, +o0]. The index ¢ stands as the time (¢ > 0), s as the vintage
{s > 0). & > s means that capital goods indexed by &' are older than capital goods
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indexed by s. The maximal value of the vintage considered is g, that can also be infinite.
k(t, s) is the amount of capital goods of vintage s accumulated at time ¢; u(t, s) represents
gross investment at time ¢ in capital goods of vintage s. u(#,0) represents investments in
new capital goods at time ¢ and represents also the boundary condition for the evolution
of the stock of capital k.

The partial differential equation (1) generalizes the classical dynamical system de-
scribing the firm capital accumulation, &(t) = u(t) — pk(t). With respect to this equation,
we have that the law of motion for the capital (1) relates the flow of time to the vintage
of the stock of capital. At time ¢ the firm stock of capital is described by a function of
s, k(t, s). Leaving aside the capital decay rate component and the control in (1), we have
that with X\ = 1 the stock of capital at time ¢ of vintage s becomes after the time period
&t the stock of capital of vintage s + 6t, i.e. k(¢,s) = k(¢ + 6t, 5 -+ 6t). The parameter
) describes the connection between time and vintage of the capital goods, if A = 1 we
have a one to one correspondence between the going on of the time and of the vintage,
a X larger than 1 means that the capital goods of the plant quickly go out of date; more
generally k(¢, s) = k(t + 8t, s -+ Adt).

The technology is characterized by constant returns to scale. The coeflicient of pro-
duction a(t,s), a(t,s) > 0, is constant for every stock of capital of vintage s employed
at time t. No assumption a-priori is done on aft, 8}, we only require for the moment that
an age ¥ exists such that «(t,s) = 0 for s > 3 and V¢; 3 can also be +oco. Let us remark
that the dependence of the technology parameter on ¢t and s marks both innovation (1)
and quality depreciation and/or learning by doing effects (s) for the capital goods being
employed in the firm. If a only depends on $ then there is not innovation in the traditional
sense, but only changes in technology productivity of the capital goods employed in the
firm. «(t, s) can also be interpreted as the world price of a good of vintage s at time ¢, see
[Lucas, 1991, Stokey, 1988]. In what follows we will develop the analysis assuming that
o (t,-) <0, ¥t > 0.

The set-up of the model allows us to disentangle two aspects related to the vintage of
the capital goods: A describes the connection between the time flow and the vintage of the
capital goods, a(t, s) describes the dependence of the technology on exogenous innovation
and vintage.

There are no spillover effects and complementarities among the capital goods: the
productivity of a technology is not related to the stock of capital employed in differ-
ent technologies. The assumption of constant returns to scale is similar to the one done
in models with learning by doing or with goods displaced along quality ladders, see
for example [Judd, 1985, Grossman and Helpman, 1991a, Segerstrom, 1991, Stokey, 1988,
Lucas, 1991, Young, 1993a].

The entrepreneur maximizes firm profits over an infinite horizon. In our setting, the
firm profit at each instant of time is the integral over the domain of the technology/vintage,
[0, 3], of the returns the firm realizes from each technology minus the adjustment costs that
the firm has to bear in the capital accumulation process. In our model we assume that the
firm has to bear two different kinds of investment costs: a cost to buy capital goods, the
unit cost ¢{t,s), and adjustment costs. Adjustment costs are a quadratic function of the
investments with a coefficient 3(t, s). For new capital goods, u(t, 0}, the firm has to bear



an extra cost due to innovation, B(t) > 0; so by 3(0,t) we represent adjustment costs for
investments in new capital goods and by Go(t) we represent innovation costs. Innovation
costs can be explained thinking to the fact that new technologies are protected by a patent
for a while after being invented and you have to pay a price to use them. In the following
we assume that this extra cost should be paid only for new capital goods, s = 0.

The entrepreneur maximizes the following objective function:

I (ko; u)

—f+°° [ 2(t,0) +[ k(ts) — qlt, s)u (t,s)éﬁ(t, (1, ) ds] at
(2)

overall state trajectory—control pairs {k,u} which are solutions in a suitable sense of
equation (1).

The unit investment cost g{t,s) is related to the vintage of the capital goods; the
shape of ¢(t,-) is similar to the one of af(t,-): ¢'(£,-) < 0Vt > 0, vintage capital goods are
less expensive than new capital goods. Adjustment costs are related to the vintage of the
capital goods, we assume that it is easier to install vintage goods rather than new capital
goods, F'(t,-) < 0Vt > 0. The dependence of g(f,s) on s can be avoided assuming that
there are homogeneous capital goods in the market and that differentiation only occurs
in the plant because of the technology to which each good is specific, in that case ¢(%, s)
is constant in s. If 3 = 400 then «(t, ), 3(t,-), ¢(t,-) go to zero as s — +oo.

In the following we will first consider a technology with a, 8, ¢ not dependent on
t, there is no innovation as time goes but only differentiation due to the vintage of the
capital goods. Then, in Section 9 we will consider exogenous innovation: new technologies
arrives continuously in the market, their productivity grows with ¢ at a constant rate.

3 The state equation

We begin by recalling some basic mathematical definitions and results that we will use
throughout the paper. We refer the reader to [Brezis, 1983]. Let 5 £]0, +00]. We will
denote by L2(0,3), or, when no confusion will be possible, simply by L? the spaces of
Lebesgue measurable functions f : (0,3) — IR such that

f:|f(s)|2d,’3 < +oo.

Moreover, we will denote by H"(0,3) {or simply H™), n = 1,2,.., the Sobolev space of
functions f € L? such that the n-th distributional derivative of f still belongs to L?. We
denote by H'(0,+co; H') the space of all functions f : (0, +oc) — H! that are square
integrable with their first distributional derivative.

Now we study the state equation in an infinite dimensional setting. Take a controlled
dynamical system (for a review of the optimal control theory for this kind of systems see
[Lions, 1972, Bensoussan et al., 1992, Li and Yong, 1995]) whose behavior is described by



the following partial differential equation in the strip [0, 400) x [0,3] ([0, +00) x [0, +00)
if 3= 4o0):

r ak((;,s) . Aé‘kg‘;,s) - pk(t, 5) = ult, s); t>0, s€[0,3]
Y Kk(t,0) =u(t,0);  t>0 ¥
L k(0, 5) = ko(s); s € [0,3]

where u : [0, +o0) x [0,5] — IR is the control function and % : {0,-+00) x [0,3] = R is
the state function. We want to express this Partial Differentiol Equation (PDE) as an
Ordinary Differential Equation (ODE) in the Hilbert space L? = L?(0,3), by using the
language of semigroups. In the following we will often omit the variable s; k(t), u(t) denote
the element k(¢,-),u(t,-) € L?. We will employ the variable s only when it will be needed
to avoid misunderstandings.

We consider the following linear closed operator on L?

{ D(A)={f e H*: f(0) =0} 4)
Af(s) = =Af'(s) — uf(s).

Let us remark that the problem is not well-posed if we substitute the boundary condition
k(t,0) = u(t,0); t>0
with a boundary condition for s = 3 (when 3 is finite}
Jk(t,3)
0s

which would establish that nothing goes out of the set of productive technologies and that
the capital outside the set of productive technologies is zero, respectively. This is due to
the presence of the first derivative with respect to s in (1) which generates, in some sense,
a transport phenomenon in the solution.

To the PDE (3) a semigroup T'(t) is associated; T'(¢) and its properties are described
in the following Proposition, a sketch of the proof is in Appendix A.

=0 or k(t,35) =0; t>0 (5)

Proposition 3.1 The operator A is a linear closed dissipative operator on L? and gen-
erates o strongly continuous semigroup T'(t). When § < 400, T'(t) is given by

wmﬂ@:gw{ﬁﬁ*ﬂzggﬂ

fort € [0,%], and by
[T()fl(s) =0; s€[0,3]

fort > § When 3 = +oc we have

) fls—At) s €[, +o0)
O A W



The resolvent set of A contains the half plane {Re v > —u}. For Rey > —p, f € H,
5 € (0, +-c0l, we have

400 8
R ) = [ T A =+ [ e f(0)ds s € 10,3
0
Let A* the adjoint operator of A. The following Proposition can be stated about A*.

Proposition 3.2 The operator A* is given by
D(4") ={feH" : j(5) =0}
[A*f1(s) = A[F'(s)] — f (s)
when 3 < 4+o0o. When 5 = +o0o we have that lim,_, .o f(5) = 0 for f € HY0, +o0), so
that D(A*) _ g
{ [A*f1(5) = ALF'(5)] = S (5).

The operator A* is the generator of a strongly continuous semigroup on L?, T*(t); when
§ < 4oo, T*(t) is given by

s = e { JEH SERTIY
forte |0, %}, and by
[T*(#)f](s)=0; sel0,5]
fort > 2. When 3 = 400 we have
[T*(£)f](s) = e™# f(s + At) s> 0.
For 3 € (0, +00|, the resolvent of A*, R{~y; A*), is given by the formula (for f € H)

R A6 = [T O A = 5 [0 f0)do s € 50

Let us remark that the semigroups T and T* (and consequently their resolvent oper-
ators) preserve the positivity in the sense that for every ¢ > 0 we have

f(8)=0 Vsel0,3]

j
[T@)f1(s), [T*(1)f1(s), [R(v;A)f)(s), [R(v;A")f](s) 20 Vs €[0,35].
To handle the control problem with the boundary condition (¢, 0) = u(t,0), the control

strategy should be well defined at s = 0 for every £ > 0. To this end, the control strategy
u(t,s) has to be at least piecewise continuous with respect to the variable s. Moreover,
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to have a well defined solution of the state equation (see below) we will also require the
control strategy u(t, s) to be differentiable with square integrable derivative with respect
to t. To take care of these requirements on the control strategy u(t, 8), we will assume
that u € H(0, 4+o00; H'). We will see below how to generalize this setting to more general
control strategies, see the end of Section 4.

We now define she solution of the state equation (3). Let first u(¢,0) = 0 for every
¢ > 0. Given a control strategy u € H'(0, +co; HY) with u(£,0) = 0 we define as usual (see
e.g. [Pazy, 1983, §4.2]) the mild solution of (3) as the continuous function & : [0, +o0) — L?

K(t) = itk + [ " Tt = PYu(r)dr. 6)

When u(t,0) # 0, the solution of (3) can still be written in integral form by a stand-
ard procedure (sec e.g. [Bensoussan et al., 1992, Lions and Magenes, 1968]). Denoting by
w(t,-) the unique element of H' such that

ow

-—/\%-(t, s)— pw(t,s) =0  w(t,0) = u(t,0),

so that
kg

w(t, s) = e”**u(t,0) L wo(s)u(t, 0) s € [0,3]

then the mild solution of (3) becomes

t t
k(t) =T(t)ko — [A fo Tt - 7)u(r, o)dr] wo + fﬂ T(t — 7)u(r)dr. (7)
In the following we will denote by k(%; kg, u) the mild solution of (3) for given data ko, u.

We will omit the data, simply writing &(t), when no confusion will be possibie.
The term in (7)

— {A /Ot Tt — r)u(r, O)d'r] Wy

represents the effect of the boundary condition k(7,0) = u(7,0) # 0, 0 < v < £, on the
solution of the state equation (3) at time ¢.
In general, if the function ¢ — u(t, 0} is continuous then the term

[/{:T(t — T)u(T, O)d'r] Wo

does not belong to D(A). This is guaranteed when the function ¢ — u(t, 0) has integrable
derivative. In this case in fact we can write (see e.g. [Pazy, 1983, p.107))

[A /OtT(t — 7)u(T, O)dT] wy = T(f)weu(0,0) + /:T(t — T)a—i-u(f, O)wodr — wou(t,0).

This ensures that the mild solution (7) of equation (3) is a continuous function & :
[0, +o0) — L2



Given the framework described above, equation (3) can be written in the following
differential form:

K (t) = Alk(t) — w(t)] +u(?) (8)
which does not make sense in the space L2. In fact the term —Aw(t) = —Awou(t,0),

which is the effect of the boundary condition k(t, 0) = u(t,0) # 0 on the time derivative
k'(t) of the state k at time #, is not a function in the space L% More precisely —Awp is
a distribution and is equal to the Dirac delta function multiplied by A, so we can write
— Awou(t, 0) = Adpu(t,0). The presence of the factor A is due to the change of scale: the
boundary condition is established at s = 0, but the state equation is written with respect
to the variable ¢ and so the component coming from the boundary condition on the state
equation is affected by the change of scale §s = Adt.

4 The reward functional and the value function

In the following we will drop the dependence of the technology on ¢, we will only consider
technology change due to the employment of capital goods. Let us assume that 5y € IR, o,
5 and ¢ depend only on s and are bounded elements of H 2, Let us assume that the firm
technology satisfies the following Assumption

Assumption 4.1
(i) Bo >0
(ii) c(s),q(s) > 0, and B(s) > € > 0 for a given € > 0, Vs € [0,3].
(iti} a(3) =0
(iv) o/(s) <0, ¢(s) <0, B'(s) <0Vs € [0,3].
We consider the function
g: > 5 R
o)) = | " ofs)k(s)ds =< a, k >y
and
I:H' -5 R
() = [ T-ats)uls) — Bs)u?(s)lds — o (0)
= = < q,u > — < Bgu,u >p2 —Gou*(0)

where By : L? — L? is the continuous linear operator defined as [Bgf](s) = B(s)f(s),
s € [0,3]. As pointed out in the previous section we assume that the control strategy u
belongs to the set

u HY(0, +o00; HY).

10



The optimal control problem becomes:
(P): mazimize the functional

Thoiw) = [ e lglh(r) + Hu(r)] dr )
overall control trajectories u € I where k is the corresponding mild solution of the state
equation (3).

Definition 4.2 A control strategy u* € U will be called an optimal strategy of
J (ko u”) = J (ko u) Vueaa

a state-control pair (k*,w*) will be called an optimal pair if u* is an optimal control strategy
and k* 1s the corresponding state trajectory.

The value function of the problem is defined as

v(ko) = sup J(ko; u)-
uel
By a classical argument of control theory (see e.g. [Bellman, 1977, Ileming and Rishel, 1975]
and [Fleming and Soner, 1993, ch. 1]) we expect the value function to be the unique solu-
tion (in a suitable sense) of the following Hamilton-Jacobi equation:

pv(k)— < k, A*Du(k) >12 —Hy(Du(k)) = g(k) (10)
(see also Remark 4.8) where the Hamiltonian Hy is given (for p € D(A*)) by

Hy(p) = sup Fy(u,p) (11)

uEH1

and the current value Hamiltonian Fj is

Fo(u,p) El —1(0) < wo, A™p >12 + < u,p >p2 +H(u). (12)

We observe that in the classical context the current value Hamiitonian should be given
by Fi{u,p, k) = Fy(u,p) + g(k)— < k,A*p >r». Here we have used the notation of
[Fleming and Soner, 1993] by putting in the current value Hamiltonian only the terms
depending on the control wu.

Since g is linear and { is strictly concave, then the control problem enjoys nice prop-
erties. First we introduce the function

a(s) = [R(p: A%ol(s) = 5 [ e FIa(o)do, (13)

(s) is the discounted return associated with a unit of capital of vintage s. As time goes,
the return of capital goods of vintage o > s is associated with a unit of capital of vintage
5. We remember that the connection between the vintage of a good and the flow of time
is 85 = Adt; this means that a capital good of vintage s will be of vintage o > s after the

11



time period #5#, so the discounted return associated with a unit of capital good of vintage
s for being of vintage o after the time period * is e¢~*"5 a(o); meanwhile the unit of
capital good is exponentially decreased and amounts to e~#*5* Therefore, the discounted
return of a unit of capital of vintage s for being of vintage o after the time period 2
becomes

_-L”f\‘li(aw—s)a(o.),

this is the integrand of (13) and explains the economic interpretation of &(s). The following
Proposition explains how the functional J can be rewritten in a simpler form involving
@, the proof is in Appendix A.

€

Proposition 4.3 The functional J is linear with respect to ko and has the following
expression

+o0
T(ko, ) =< @, ko >12 + fo &P F(u(t)) dt (14)

where
F(u) = — < A*@,wy > u(0) — Fou’(0)

(15)

+ < =g+ T, u>pe + < Bgu,u >p2= Folu, @).

Remark 4.4 (i) The above result follow simply by substituting the expression of the
mild solution k of the state equation (3) into (9). Due to the linearity of the model the
term [;7° eP'g(k(t)) =< a, k(t) >12 can be split in two parts: the first one depends
only on the initial state ko, < @, ko >z, the second one depends on the control u,
— < A*®,wy >12 u(0)+ < @ u >r2. Then, also the functional J is naturally split
in two parts: the first one only deperds on the initial state ky, < @,kp >z, while
the second depends on the control and is given by the integral of I(u) plus the term

— < A*@,we >12 uw(0)+ < @,u >2 coming from the integration of the map g(k(2)).

(ii) The term
— < A*E, Wy >p2 ’U.(t, 0)

represents the effect of the boundary condition k(¢,0) = u(t,0} # 0 on the reward
functional. Concerning the sign of this term we observe that — < A*&, wy >722 0
when a > 0. This fact tells us that the sign of the term — < «, AR(p; A)wo > u(t,0)
is the same as the one of the control u(¢,0). In fact, since

we have, by straightforward calculations
— < A*&, wp >r2= Ma@(0) < 0.

As seen in the discussion after the equation (8) the term —Awou(t,0) is the effect
of the boundary condition k(t,0) = u(,0) # 0 on the derivative of the state k¥ and
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is equal to Ay where 4y is the Dirac delta function. The effect of this term on the
reward functional is given by

< @, —Awg >0 u(t,[]) = /\E(O)U(t, U)

Concerning the existence of the optimal control we have the following result.

Proposition 4.5 There exists only one optimal control u* for problem (P) if and only if
the following condition is satisfied

Ao(0) 1

- @(0) — ¢(0)]. 16)
The optimal control u* does not depend on the initial state ko and on the time t; u* is
&)= o (6)0 (5] 7
U (8) = —— |0il8) — q(3)].
26(s)
u* satisfies the following “mazimum principle”
Fy(uw, @) = Suf? Fy (u, @) = Ho(B) (18)
ueH1

and it is given by
u*(s) = DHQ(@)

Proof. First we prove that, if the compatibility condition (16} is satisfied then u*
given by (17) is the unique optimal control for our problem. To this end we observe that,
by Proposition 4.3 problem (P) reduces to maximize the functional

ao(w) = [ e Fo(ult), e (19)

subject to (1). The functional Jp{u) does not depend on the initial datum ko; moreover,
by the definition of the Hamiltonian Hy given in (11) it is easy to check that

J()('U:) < /[)+00 6_ptH0(_O¢—)dt = *‘];Ho(af)

If we find an element u* € H' such that (18) is satisfied then the control strategy u(t) = u*
for every t > 0 is optimal. Now we observe that the function Fy(-, @) is continuous and
strictly concave on H'. Then it is also weakly upper semicontinuous (see e.g. [Brezis, 1983,
ch. III}), but in general it is not coercive. However we can consider the map G : IR X L? -3
R, : '
G(r,u) = X@(0)r — Bor’+ < u, @ — g >r2 — < Bau(t),u(t) > .

13



By construction

sup F(u) < maxG(r,u).

e 25
Moreover the map G is strictly concave, weakly upper semicontinuous and coercive and
g0 it has a unigue maximum point on IR X L? given by

xz(0) _ als) —a(s)
213 28(s) ’

#

r=r =

the value of the maximum is

G(r,u) = Hold) = Z—mr
Iﬁg: (r,u) = Ho(T) 7

Nar(0) | (7 [als) —a(s)l®
-|--/; 155 ds.

When the compatibility condition is satisfied, the control

a(s) — q(s)

w8 = 7550

is such that
F(u*) = G(u*(0),v*) = max G(r,u) = sup F(u)

e e

which gives the claim.
Now, to prove the converse, we argue by contradiction. Assume that the compatibility
condition is not satisfied. Then by considering a sequence of controls (un)nen such that

10 =20 ) = sl — o], €[]

(it is enough to connect in a smooth way the points 0 and +), we can see that we still
have 1

Jim Jo(un) = sup Jo{u) = ;HO(R(Pa A%)a).
So, if there exists an optimal control strategy u*(t,s), then it still has to satisfy the
“maximum principle” (18). But this implies that " is given by (17) and so, since (16} is
not satisfied, it is not continuous with respect to s at s = 0. [

When the compatibility condition (16) is not satisfied we still have from the proof of
the previous Proposition that

) L) | ) - g
2ap F0) = g Gle) = Il = = =, Sy
and )
sup Jo(u) = —Hy(@).
ueid P
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The supremum is not a maximum as proved before since the class of control strategies is
too small. If we consider a larger class of control strategies

U= {u : [0, +co) x [0,5] = R;u(t, ) left continuous, right limit ¥t > 0;

u(,5) € H'(0,+00) Vs € [0,3]}
then we can still give sense to the mild solution of the state equation (3) and also
1

sup Jy(u) = —Ho(@).
uEld Iy

This implies that the control strategy u(¢) = u* defined in (17) V¢ > 0 is optimal in the
class 4.

It is also possible to consider control strategies in a more general class, allowing the
strategy u to be piecewise continuous with respect to the variable ¢. In this case we can
not give sense to the solution in the space L? since the boundary term

1
A [/0 T — m)u(r, O)dr] wy
does not belongs in general to L?. Any way we can give sense to this term in a suitable
space of distributions. The study of the control problem does not change (except for
technical difficulties) and the optimal control strategy is stil! the one defined above.

Thanks to Assumption 4.1 the optimal control »* is a function of L2 and is differ-
entiable for s > 0. From the optimal control expression it follows that »* > 0 if and
only if & - ¢ > 0, i.e. investments in capital goods of a specific vintage are positive
if the associated discounted return is larger than the unit investment cost. The eco-
nomic interpretation of the optimal control u* is equivalent to the one obtained in the
finite dimensional capital accumulation problem with adjustment costs, see for example
[Lucas, 1967, Gould, 1968, Abel, 1990]. Gross investments in capital goods of vintage s
are equal to the difference between the future discounted return, @(s), and the unit in-
vestments cost, ¢(s), divided by the adjustment cost, 3(s).

Ceteris paribus, a larger discount factor p or a larger decay rate p lead to a lower
level of investments, the same thing happens in absolute value if 3(s) or 8, are increased.
If o/(s) < 0 then @(s) is monotonic (decreasing) in s, this implies that if 8(s) and ¢(s)
are constant then (u*)(s) <0.

Let us remark that

. als) P ) o ) [
lma) == lma(s)=0 limae)=0 lm \a(s)= / (o) do

for every s € [0,3]. A@(s) is always monotonic (increasing) in A, moreover @(s) is mono-
tonic in A (decreasing) if &'(s) < 0. Therefore, investments in new capital goods are always
positive and increasing in A while investments in vintage capital goods are decreasing in A
if o'(s) < 0. So if capital goods are only exposed to quality depreciation then, as the rate of
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depreciation becomes larger, investments in new capital goods increase, while investments
in vintage capital goods decrease.

Nothing can be said a-priori about (u*)(s) which depends on the behavior of a(s),
g(s) and 3(s).

In our analysis we have considered the case of quality depreciation o/(s) < 0. This
assumption does not take account the so called learning effect or experience, i.e. the
productivity of a new capital good increases after being installed because of externalit-
les, input complementarities, learning by doing, etc.. a(s) first increasing in s and then
decreasing can be easily introduced in our setting. We recall that

al(s) = %fs 8"%&(‘"5)05'(0)010,
5

s0 afs) first increasing and then decreasing does not necessarily imply @ (s) > 0 and
(w*)'(s) > 0 for s small. What is relevant for the shape of u*(s) is @ (s) the weighted
mean of o/ (o) with s <o <3

Remark 4.6 From the above considerations it becomes clear that the optimal control
u*(s) is in general discontinuous at s = 0, i.e. u*(0) 5 lim,_o+ u*(s). This is due to the
form of the functional J and is a consequence of the form of the function F that we have
to maximize. In fact, the function F' depends on the control u in two different ways:

¢ — < A*@, wy > u(0) — Fyu*(0) which depends only on u(0)

8 < ~q+a,u > + < Bgu,u > which depends on the integral of .

If the control can be discontinuous, then the maximization of the first component is inde-
pendent of the maximization of the second component; in fact the integral of a function
does not change if we change the value of this function at the single point s = 0. This
allows us to write the optimal control as in (17) also when the compatibility condition
{16) is not satisfied.

Remark 4.7 We observe that the presence of innovation cost, i.e. the term —3yu?(2,0), in
the function / is important because it gives the coercivity of the functional J with respect
to u(t,0). Without this term it can be easily seen that the functional J is unbounded
unless we consider a bounded set of control strategies.

Remark 4.8 An easy consequence of Propositions 4.3 and 4.5 is that the value function
v is an affine function and is given by the

w(ke) =< @, ko > 12 +%HO(R(p, A%a), (20)

in particular this fact implies that v is differentiable and it is a classical solution of
the Hamilton-Jacobi equation (10). To state a uniqueness theorem we would need to in-
troduce more specific techniques that are not in the scope of this paper. We refer the
reader to [Barbu and Da Prato, 1982, Crandall and Lions, 1990, Cannarsa et al., 1993,
Cannarsa and Tessitore, 1996, Iftode, 1989] for resuits in this direction.
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5 Optimality conditions, Long run equilibrium and
the Turnpike property

In this section we first study the optimality conditions for our problem and then we show
the existence of a stationary long run equilibrium. We will work with control strategies
belonging to the set U, in this class we have existence and uniqueness of the optimal
control.

We start by observing that the Hamiltonian Hy can be split into two parts due to the
presence of the boundary control term. For p € D(A*) the Hamiltonian function Hy(p)
can be written as

Hy(p) = sup Fp(u,p)

ucH!

= §up [—r < wy, A*p >y —ﬂgrz] + sup [< u,p— g >z — < Bgu,u >p2]

reR ueL?
_ Suwg, A'p>i, 1 A2p?(0) [p(s) — q(s)]
= 1 +4<B%( q),p—q > 15 [ 150) — s,

Setting for ¢ € R
2

Ho@) = sup [ v = ] = 22

and for p € L2

1
Hy(p) = sup [< u,p— Q>L2_<Bﬁuu>L2]_Z<B(P q)»p—q >
ueL?

then taking a =< wy, A*p >1» (p € D(A*)) we have
Hy(p) = Hor(< wo, Ap >12) + Hea(p).
From (20) Duv(k) = @ and therefore for every k € L? the optimal control becomes
©"(0) = DHo1 (< wo, A*& >12) = DHy (A@(0)), u*(s) = DHy(@)(s); s € (0,3

The presence of the boundary term and the linearity of the problem induce to split the
Hamiltonian and the control into two parts. We observe that the two functions Hy and
Hoy come from the boundary control and from the distributed control, respectively. They
will appear explicitly in the Hamiltonian system (21).

We now pass to the statement of the Pontryagin Maximum Principle for our prob-
lem which in this case is an easy consequence of the results of the previous section (see
e.g. [Fleming and Rishel, 1975] for the finite dimensional case, [Bensoussan et al., 1992,
Cannarsa and Frankowska, 1992, Barron and Jensen, 1986] for the infinite dimensional
case with no boundary control and [Cannarsa and Tessitore, 1994, Gozzi and Tessitore, 1994,
Fattorini, 1968, Lasiccka and Triggiani, 1991] for the infinite dimensional case with bound-
ary control).

Theorem 5.1 Let (k*,u*) be an optimal pair for problem (P) starting from ky. Then
there exists a function p* € L*(0, +oo; L?), p*(t) € D(4*) for t € [0, +oo[ such that
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(i) p* 1s a solution of the adjoint equation

p't)=1[p~Ap(t) —
with the trasversolity condition

i —st —
t—li-lgloo € p(t) =0

(ii) p* satisfies the Mazimum Principle
u'(t,0) < wo, A'p(t) >12 — < uw*(2), p(t) >r2 —I(u*(2))
= sup {u(t,0) < wo, Ap(t) >12 — < u,p >p2 —I(u)} = Hy(p(t))
1

(111) p* satisfies the so-called costate inclusion
p(t) = Du(k"(t))
(tv) for every t >0
ook (D) + < k' (), Ap(2) > +Ho(p" (1)) = —ar.

Sketch of Proof. The proof can be done by applying the method of [Tessitore, 1995].
However in this case everything is simple. In fact, since we already know that the optimal
control u* is unique and that » is affine then for every & € H we have

Du(k) = R(p, A*)a =@

80 we have
p(t) =R(p,ANa=a  Vt>0.

It is easy to verify that p* satisfies all the claims. |
p

The necessity of the trasversality condition

. ot _
t-1+1-16—noo e’ p(t) =0

is very easy to get in this case due to the linearity of the problem. Let us remark that
no results are available in the literature about the trasversality condition for infinite
horizon /infinite dimensional optimal control problems. This result can be considered as a
first generalization to the infinite dimensional case of the big variety of results about the
tragversality condition for finite dimensional control problems. Let us remark that since the
state trajectory k is bounded, then the trasversality condition lim;_, . e ?p(t) = 0 given
in Theorem 5.1 implies the classical trasversality condition lim,_, ;.o 77 < k(t), p(t) >= 0.
@ can now be interpreted as the costate variable since we have that

p'(t) = R(p,ANa=a  Vt>0.

p*(t) = @ has a straightforward economic interpretation: the discounted return @ is the
marginal value associated by the optimal control u* to the state along the optimal tra-
jectory k*.
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Theorem 5.2 Let (k*, u*) be an optimal pair for problem (P). Then there exists a func-
tron p* € L®(0,4+o0; L?) such that (k*,p*) s a mild solution of the Jollowing system
(which makes sense only in integral form)

K'(t) = Ak(t) — DHor(< wo, A*p(t) >12)Awy + DHpa(p(2));  k(0) = K
{ P(t) =[p— Ap(t) - o w
satisfying the trasversality condition
lim e Pp(f) = 0. (22)

{4400
The solution (k*,p*) to system (21)-(22) is unique and is given by
| prit)y=a;  £20

(1) = T(8)ko — u*(0)[T() — Two + R(0; A)[T(t) — Iu*,

where u* is given by (17). The system (21) has only one stotionary equilibrium point
(koospoo):
koo = R(0; A)u™ 4 w* (0)wy.
Peo = E(p; A)ex

koo and poo are positive functions in L2,

Sketch of Proof. For the first part it is enough to verify that the costate defined
in the proof of Theorem 5.1 satisfies (21)-(22). Uniqueness of the solution of (21)-(22)
follows by observing that @ is the only solution p of the second equation of (21) that also
satisfies (22).

The other claims easily follow by recalling that the semigroups T and T* given in
Propositions 3.1 and 3.2. are characterized by an exponential decay rate, see Appendix
A, ||

The only solution of (21) which satisfies the trasversality condition is characterized by a

constant p(f) :
p(t) = R(p;AYa=a t>0,

this means that the line (k,p) = (k,@) in the phase space L? x L? is the stable manifold
of the stationary equilibrium point (ke Poo) of the system (21). V kg, if pp = @ then the
solution of the system (21) converges to (Koo, Poo) 85 £ — +00.

In analogy with the finite dimensional case we would expect that, starting from a
point py # @, the solution of (21) does not converge to the stationary equilibrium point
(Koo Poc)- Instead what happens is different, if py % @ then the second equation of (21) is
not well posed:

19



(1) if 3 < +oo then the second equation of (21) can not be solved in 2. In fact the
equation of the costate variable becomes

Op(t,s) | Op(t,s)
o TN o,

~(p+wplt,s) = —a(s)y ¢t>0,5€0,53

p(t,3)=0; t>0 (23)

p(0,8) =po(s);  s€[0,3]

this equation is analogous of the PDE of the state variable &, but the boundary
condition p(¢,5) = 0 renders the Cauchy problem (23) unsolvablo

(ii) if = +oco then the second equation of (21) has no unique solution. In fact in this
case the equation for the costate is the same as (23) but without the boundary
condition p(¢,3) = 0 and every function of the type (in the simplified case o = 0,
the others are equivalent from this point of view)

p(t, s) = eletat { po(s — At) i 2 {S’t;\:‘)m)

where a is any constant, is a solution of (23). So, by an easy verification we can see
that every possible solution blows up in the L?-norm as ¢ — +oc.

Let us consider now the finite horizon optimal control problem:
T
Mazimize g, (ko; ) = [0 " et [g(k(1)) + Lu(t))] dt Ty > 0 (24)

subject to

( Ok(t, s) ok(t, s)
ot +A ds

Y K(t,0) = u(t,0)  t€(0,Ty]

+pk(t, s) =u(t,s)  te(0,T3], s € [0,7]

(25)

L 5(0,5) = ko(s) s €[0,3].
The following Proposition can be stated.

Proposition 5.3 Let (K%, P,) the state-costate couple representing the optimal solution
for the problem (24)-(25) then, as Ty — +oo we have

1, (1) = Poo;
untformiy on t belonging to bounded subsets of [0, +00). Mareover

uniformly on t belonging to compact subsets of (0, +00).
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Proof. It is enough to remark that in this case the costate is

* _ T —{Tp—T)prp*

P, (1) = e (¢ — m)adr
t

and that we have p}; (£) — po uniformly on bounded subsets of [0, +c0) for Ty — +o0 .

The corresponding state trajectory

kiy() = T(Oka — A [ Tt = 7\ DH(p3, (7)) O)undr + [ Tt - ) DH (o3, (7)) dr

goes t0 ks as Ty — ~+oo uniformly in ¢ belonging on compact subsets of (0, +o0). [ |

It can be easily shown that the above Corollary implies the so-called Turnpike property
fgr our optimal control problem, see [Carlson et al., 1991]. Given any £ > 0 there exists
Ty > 0 such that for Ty > Ty an 5 > 0 exists such that

up (1152, (8) = Feo(®)l22 + Ip5, (£) = Poo(B)lf22] < e.
tg hy

The optimal solution for the finite horizon optimal control problem belongs to a neigh-
borhood of (ks, poo) for a given period of time, the so-called turnpike.

6 The Long Run Equilibrium

The long run equilibrium is

Poo(s) = ls) = Rip; A)a(s) = + [ e~ F20-a(o)do

8

koo (8) = R(0; A)u’ () + u*(0)wy(s) m% /08 e~ 30Ny (o)do + w*(0)e~5*

where u* is given by (17). We assume that the technology satisfies the following Assump-
tion.

Assumption 6.1
a@(0) —g(0) > 0.

Assumption 6.1 simply says that a new technology is profitable: the discounted return
associated to a new capital good, @(0), is larger than its unit investment cost, ¢(0).

Let us remark that we have studied the problem without a positivity constraint on
the state variable; in the following we restrict our attention to the analysis of a stationary
equilibrium (ku, Poc) characterized by a nonnegative state solution, ky(s) > 0.

‘The optimal path associated with the capital accumulation problem gives two inter-
esting pieces of information: the optimal stock of capital (k) and the optimal path for
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investments. In the finite dimensional setting the sensitivity of the optimal stock of cap-
ital with respect to the parameters hag been extensively analyzed, see [Treadway, 1971,
Mortensen, 1973, Brock, 1986, Brock and Malliaris, 1989|. In particular, a well estab-
lished result states that the optimal stock of capital is a decreasing function of the discount
factor and of the interest rate. The result is confirmed in the infinite dimensional setting.
For every s € (0,3) we have that ku(s) is decreasing in Bo, p, 1, B(o) and (o) with
o € [0,s], and increasing in a(c) with o € [0, 5]. In general, without further assumptions,
it is difficult to analyze the behavior of ko, with respect to A, see Section 8 for a numerical
analysis.

Let us remark that ku.(0) = (0}, therefore we have that the optimal stock of capital
for new goods is increasing in A and decreasing in u, p and Fy. This reasoning can be
replicated for s in a neighborhood of 0F. A high rate of quantity depreciation and a high
discount rate lead to a low stock of new capital goods, a high rate of quality depreciation
leads to a high stock of new capital goods. If capital goods quickly go out of date then
there is an incentive to invest in young capital goods. The length of the neighborhood of
07 for which this sensitivity analysis of ke (s) holds depends on other parameters of the
model, see Section 8.

From easy calculations we obtain the following Proposition.

Proposition 6.2 Let Assumpiion 4.1 and 6.1 be satisfied. Then the optimal control u*
is continuously differentiable on (0,3) (possibly discontinuous at s = 0). The function ke
belongs to H' and its derivative k', is continuously differentiable out of s = 0. Moreover
the function ko is the unique solution of the equation

Xa(0)

MK (8) + pk(s) = u™(s); k(0) = u™(0) = 2, (26)
It follows that .
kio(s) = w—ﬁe"%su*(ﬁ) + Xu*(s) - %R(O;A)u*(s)
and
! +y def . ' . /.1@?(0) 6(0) — q(O) _ 6(0) 1 M _ Q(O)
Ko(0) ¥ Jm Keols) = 55—+ 2XB(0) 2 [AH(O) - E] 226(0)" (#1)

Let 5 < +o00, since @(3) = 0 we observe that

q(3)
28(3)

so that
u'(§) <0 and u*(3) =0 < ¢(3) = 0.
This means that it is not possible to have (u*)'(s) > 0Vs € (0, 3).
Let us remark that if o/(s) < 0 and ¢(s), B(s) are constant non zero then (u*)'(s) < 0
and an s# € [0,3] exists such that u(s*) = 0, u(s) > 0 for 0 < s < s# and u{s) < 0 for
s* < 5 < 3.
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From (26) and the fact that k., > 0, it follows that

1
Fial8) = S he(s) + 10" (3) <0. (28)
If'5 = +oo, as u* € L? and ks, € H' then we have lim,_,o u*(s) = limy_,s kools) =
lim;_ye0 k., = 0, the sign of u*(s) for s large depends on the rate of convergence to zero of
a(s) and g(s) and everything is possible, see Section 8 for the analysis of the exponential
case.
The shape of ky(s) can have different characterizations. If (u*)'{s) < 0 then the
following Proposition can be stated.

Proposition 6.3 If (u*)'(s) <0 for every s € (0,3) then we have
o ko (07) <0= kL (s) <0 V¥selo3)]

o ki (07) > 0= ko(s) is single-peaked, there exists a point s; € (0,3) such that
klio(s0) = 0, kLo(s) > 0 for s < sy and k! ,(s) < 0 for s > sq.

Proof.
Setting z(s) =4 k'(s), s € (0,3], the following equation can be obtained from (26)

A2 (s) + pz(s) = (W)'(s);  2(0) = K'(07).
Let first £'(07) < 0. Let s, be a maximum point of 2. If s, € (0, 3) then we have
(o) = (u7)'(50) < 0
If 54 = 0 then 2(s¢) = &' (0%) < 0 and if 5o = ¥ < +00 then #'(sp) > 0 which implies
pa(s0) < (u")(s0) <0

(if 3 = +oo we use that lim,, 1 k() = 0 and then the same argument). It follows that
k'(s) = z(s) < 0 for every s € (0,3). This gives the first part of the claim. For the second
part we recall that 2(0) > 0 and 2(3) < 0 by equation (28) (use thatlim,_ .. k. (s) = 0
when 5 = +oo}. This implies that there exists a first point sq € (0,3] such that z(sg) = 0.
This point cannot be 3 since in this case we would have k., > 0 on (0,3] and, from (26) we
would also have k,(3) = u(3) = 0, impossible. We finally prove that 2(s) < 0 for 5 > sq.
By contradiction there exists a maximum point s; € (0,3) such that z(s;) > 0. But this
15 impossible by reasoning as in the first part of the proof. |

So if the technology of the model generates a flow of investments decreasing in s,
(u*)'(s) < 0, then the optimal stock of capital ke (s) can only be monotonically decreasing
or single-peaked with a maximum in sy, increasing for s < sy and decreasing for s > sq.
In this case we have the diffusion of the new technology.

From the analysis of (27) it turns out that if %(0) — ¢(0) >> 0 and S, is sufficiently
high then £ (07) > 0 and kw(s) is single peaked with a maximum in s;. So a new
technology highly profitable and a high innovation cost give rise to the diffusion of the
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new technology; if a new technology is highly profitable and the cost to buy capital goods
specific to that technology is very high (innovation cost), then it is better to wait, not to
pay the innovation cost and to install the technology after a while.

Let us remark that £.,(0%) is monotonic (decreasing) in A, p, and p if & {0F) > 0,
moreover we have that A, u, p 7 +oo implies &, (0") < 0, and X, pu,p N\, 07 implies
ko(0) > 0. To have a diffusion of a new technology, the discount rate and the rate of
quality and quantity depreciation should be low. If A and 1 are high then there is no space
for a diffusion of the new technology, the optimal stock of capital is strictly decreasing in
s; as the capital goods depreciate quickly, it is not worthwhile to wait and to install a new
capital good after a while without paying the innovation cost. The same thing happens
for the discount factor, if the entrepreneur heavily discounts future returns then there is
no reason to waste time.

There are two competing factors characterizing the shape of the optimal stock of
capital koo(s). The profitability of the new capital good/technology, @(0) — ¢(0}, and its
rate of depreciation A, p.

The existence of a diffusion of a new technology can be explained thinking to the fact
that k.(s), due to the linearity of the problem, is made up of two components:

kool(s) = k1(s) + ka(s)
where
/\a(o)e—f\is

203

comes from the boundary control (investments in new capital goods);

ki(s) = ui(0)e™5* =

ka(s) = R(0; A)u*(s) = ;1\_ /0 ’ e—;fs-g)% o

comes from the distributed control (investments in vintage capital goods).

This gives an explanation to the presence of the diffusion of a new technology. The effect of
the boundary control ©*(0}), innovation/investments in new capital goods, on the optimal
stock of capital k(s), k1(s), is strictly decreasing in s because of the exponential quantity
depreciation rate y. The effect of investments in vintage capital goods, ky(s), is increasing
in s at 0%, thanks to Assumption 6.1. The presence of the diffusion of a new technology,
a single peaked koo (s) with a maximum in sy, depends to the fact that k,(s), increasing in
s, compensates k;(s). The extent of the diffusion of a new technology [0, s;] depends on
the level of investments, ﬁgﬁl, and therefore on the productivity of the capital goods.

The presence of a diffusion of a new technology has been demonstrated, now let
us analyze the extension of this phenomenon, i.e. the value of s5. Let us consider in
particular the sensitivity of the maximum sy of kx(s) with respect to the parameters of
the technology. For example, let us consider g as a function of By, s9(8y), which is defined
implicitly by the equation

ko (B0, 50) = 0,
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therefore (by using the implicit function theorem)

k! R
680 oo B0,80(80))

- 880

88y  Oka(Bu.so(fo))
a

H

Since sq is a maximum point of k. (s), then

3;“;0(@), So (ﬁo)) <0
s -

s0, the sign of %’%% i3 determined by the sign of

Ok (B, 50(a))
93 '

We remember that, for s(0,3]

Foe) = 3[(5) k()]

Hence, for every given s € (0,3) we have that 8y /= k! (s) /., therefore we have
that %—@5”%@-& > 0, so a larger innovation cost leads to a larger diffusion of the new
technology. If the innovation cost connected to the installation of a new capital good is
high then there is a wide diffusion effect: it is better not to pay the innovation cost, to
wait and to install vintage capital goods later.

We can follow the same method for all the parameters. Unfortunately a complete
sensitivity analysis is not available without further assumptions, we will give more details
in Section 8. However, fixed the other parameters of the problem then there exist ot At ut
such that £ (0") > 0 for p < g*, A < A\ or p < p* and kL (0F) < 0 for p> p*, A > A*
or ¢ > p*. This means that so is decreasing in p, A and p at (p*)~, (A*)~ and (u*)~.
In this neighborhood a lower depreciation rate, both quantitative and qualitative, leads
to a larger diffusion of a new technology. Without further assumptions we do not know
a. priori how broad is the neighborhood, a more precise analysis is provided in Section
8. Let us remark that these results are confirmed when sy is small by the sensitivity
analysis developed above about £'(0%). In that case we have also that the diffusion effect
is incraesing with respect to the profitability of the new technology.

If the technology of the firm is such that u*(s) is increasing and then decreasing
then the analysis described above changes a little bit. The presence of a diffusion of a
new technology is reinforced, we may also have that ks(s) has a minimum and then a
maximum. Let us remark that an optimal investment policy of this type is not guaranteed
by a sort of learning effect, i.e. /(s) > 0 for s small, see Section 4.

7 Investment irreversibility

Consider now the control problem (P) with irreversibility of investments, i.e. u(t,s) > 0,
for every ¢, s € [0, 400) x [0, 3]. The study of the problem can be done exactly in the same
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way as in the unconstrained case. We still have existence and uniqueness of an optimal
control 7 in the class I/. The optimal control is still independent of the initial state k,
and of t. The new optimal control which is the following

_ [ ws) ifur(s) >0
(s) = { 0 ifff*(s) < 0.

where u* is given by (17). The properties of the long run equilibrium can be studied as
in Section 6. From (26) we observe that if u(s) = 0 with s € (51, 52) then in this interval
we have

koo(s) = €50~k (s))

which says that the long run equilibrium is exponentially decreasing in s when no invest-
ment is done.

The assumption of investment ‘rreversibility reinforces the decreasing shape of ko (s)
for mature technologies.

8 Quality depreciation: the exponential case

Let us consider a technology characterized by quality depreciation. In particular let us
consider the case of exponential quality depreciation: a(s) = Age™, G(s) = Bye ",
¢(s) = Qoe™% Vs > 0, where Ay, By, Oy, o, 3, ¢ are positive constants, and 3 = +-oc.

The solution of the optimal investment problem is

Age=

als) = p+ U+ A

s>0

= e_%‘g l:——-—m_.__AO
2,60(‘9}E + oz)

N Ay elf—ast)s _ Q, elBa+s)s _ 4 >0
2Bo(p-+p+Aa)  B—a+i 2B, p-g+& | =0

Moreover

frond
g
—
w
~
|

1 ,:(ﬁ - Q)Aoe('g_a)s

p+u+a —Qo(ﬂ_Q)e(B—Q)s} 00

and
koo (07) =

uAg 1 [ Ay

_260(p+,u+)\a) + 2ABy [p+ pu+ Ao _QO]'
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Assumption 6.1 implies
Ay
———— >
P+ 1+ A
We restrict our analysis by imposing k. (s) > 0; moreover as a consequence of Assump-
tion 4.1 we require that lim, .. u*(8) = UMy 00 bools) = Timyss oo kl (8} = 0. These
conditions imply that 3 < min{e,g}. Then we have the following cases: 8 < a < ¢ and
8 < g < a; installation costs decrease at the lowest rate.

o-

If f < a <qthen u*(s) > 0 Vs > 0. About (u*)'(s) we get that
o if

Ao g-p
> =1
Qolp+u+lra) ~a-p
then (u*)'(s}) <0 Vs >0,
e if 3 A
qg- 0
> >1
a—=0" Qolp+ p+ M)
then w*(s) is single-peaked, (w*)(s) > 0 for s € 0,5 and (u*)'(s) < 0 for s > s°,

where . \
o _ log ( 1=4  Qolotpt2ia)y
— a—f Ag

el

If # < a < ¢ then depending on the sign of k,(07) and on the parameters of the model,
koo(s) may have three different shapes:

L IE &L (07) > 0, then koo (s) is single-peaked, attains its maximum in sy > 0, koo(s) is
increasing for s € [0, 5), and decreasing for s > Sp.

2. If

Ap g— 03
> ~ > k(0 <o,
Qolp+p+ra) = a—43 (07 =

then ki (s) < 0 Vs >0, ku(s) is decreasing ¥s > 0,
3. If 5 4
q - 0
= >
a—03" Qolp+pu+ Aa)
then one the following is verified:

1 k,(07) <o,

* ka(s) is decreasing Vs > 0.

* ko (s) is first decreasing with a minimum point in s, 81 & [0, 5°), then increas-
ing with a maximum point in S0, S0 2 s°, and at the end decreasing.
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If 3 < g < o then u*(s) > 0 for s € [0, 53] and u*(s) < 0 for s > sy, where

L\, Ay
a—q ° Qolp-+p+ra)

89 =

About (u*)'(s) we have (1*)'(s) <0 for s € [0, s3] and (u*)'(s) > 0 for s > s3, where

§3 = 1 10( Ao a~6)>5
Ta—q Qolp+p+ra)g—73 >

If 8 < ¢ < « then depending on the sign of £/ (0%) and on the parameters of the model,
ko (s) may have two different shapes:

1. If L (07) > 0, then ku(s) is single-peaked with a maximum in sy < 8o.

2. If KL,(0%) <0, then kL (s) <0 Vs >0, ky(s) is decreasing for s > 0.

The general discussion developed in the above sections about ke (0), kso(s), w*(s),
ki, (07), [0, so], applies also here. Some further considerations are now possible exploiting
the simplified expression of the solution of the problem. In particular we can analyze the
sensitivity of the solution with respect to the parameters a, 3, q.

Whatever the rates of depreciation 3, e, g are, if a new technology is highly profitable
with a high innovation cost, then £'(0%) > 0 and k., (s) shows a diffusion effect, increasing
with a maximum and then decreasing,

Let us remark that investments in new capital goods are a decreasing function of the
productivity depreciation rate o and an increasing function of Ay, the technology status for
new capital goods. If the new technology is highly profitable, and its productivity slowly
decreases, then it is profitable to invest in new capital goods. Investments in vintage
capital goods, u*(s), are a decreasing function of Qq, p, i, A, & and an increasing function
of Ag, 3, q. Let us remark that the sensitivity analysis of investments with respect to the
parameters (o, Ag describing parallel shifts is dual to the one obtained for the rates of
depreciation «, g.

The slope of k[ (0%) is not affected by 3, ¢, but only by a. It is easy to show that if
kl,(07) > 0 then £._(07) is decreasing in o and increasing in Ay, a high rate of technology
depreciation leads to a less pronounced diffusion of a new technology. In the exponential
framework we can explicitly identify the switching values for p, A, , a, 1.6. p*, X*, p*, oF.
Given the other parameters, the numerical analysis shows that the neighborhoods of
("), (w*)~, (a*)" for which s, is decreasing in p, u and in o are large; the neighborhood
of (A*)~ for which s, is decreasing in A is quite small.

From the discussion developed in the above sections it follows that k. (s) is a de-
creasing function of o and increasing of 3,¢. The behavior of ku(s) with respect to A is
controversial. As A is increased, for young capital goods we have two competing factors,
u*(0) goes up and u*(s) goes down, this entails that if there is a diffusion of the new
technology then k[ (07) decreases but the global effect on k. (s) is not clear if we do not
fix the values of the other parameters.
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Thanks to Assumption 4.1, gross investments are positive for every vintage if the rate
of depreciation of the capital goods’ productivity is lower than the rate depreciation of
installation costs. In this case, if the rate of depreciation of the unit investment cost is
not too high, i.e.

g<p+hla=f)

Qol(p + 1t + Ac)

then gross investments are strictly decreasing in s. If the rate of depreciation of the unit

investment cost for capital goods is high enough, i.e. condition (29) is not satisfied, then

gross investments as a function of the vintage s are single-peaked with a maximum in

s°. 5% Is increasing in Qo, p, 1, A, 5, ¢ and decreasing in Ay; the sensitivity analysis with

respect to « is not univocal. The sensitivity analysis of s° is almost dual to the sensitivity

analysis obtained for u*(s), the reason for this fact is that the parameters change has
more effect on young capital goods rather than on old capital goods.

If the rate of depreciation of the productivity is higher than the rate of depreciation
of installation costs then we have a switching point for investments in s,: u*(s) is positive
for s < sy and negative for s > s5. As we expected, it is easy to check that s, is decreasing
in p,u, A, Qo, &, x — g, and increasing in A,.

In this setting we can also have a £y (s) with a minimum point and then a maximum
if the rate of depreciation of installation costs is higher than the rate of depreciation
of the productivity of the technology. This happens if a new technology is not highly
profitable £¢,(07) < 0 and ¢ is high enough, i.e. condition {29) is not satisfied. Anyhow,
if a technology is highly profitable and the innovation cost is high then &/ (01) > 0 and
there is the diffusion of a new technology.

(29)

9 Exogenous Innovation

In the model analyzed above we assumed «, 8, 3y and ¢ independent of the time vari-
able ¢. Setting 3 = +00, we now consider a time dependent technology. In particular
we consider a technology with a constant growth rate with respect to time ¢. The as-
sumption of a constant exogenous technology improvement is of course implausible, it
is more reasonable to assume that knowledge improvement is the outcome of a R&D
activity which is resources demanding. On models with exogenous technical change see
[Solow, 1959, Judd, 1985, Lucas, 1991, Chari and Hopehhayn, 1991].

The model analyzed in this section is similar to the one proposed by Solow in
[Solow, 1959] about investrnents, vintage, and technological progress. In [Solow, 1959] a
non optimizing model of technological progress with vintage capital goods but without
quality depreciation is analyzed: vintage capital goods are differentiated because of exo-
genous technological progress, not because they have been employed in the firm. In what
follows we consider a model of optimal capital accumulation with a technology charac-
tertzed both by exogenous innovation and quality depreciation. Technological progress
directly affects new capital goods and vintage capital goods in a limited measure.

Let us assume that

a(ta S) = eatal (S)a ﬂ(ta S] = eﬁt/@l(s)a ﬁo(t) = eEOtﬁOz' Q(tﬂ 3) = eth1 (3)1
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where a1, 81, ¢, are given functions in H? and «, 3, q, 5, 8, are given constants. Not only
the technology productivity increases, also investment costs grow at a constant rate. The
new objective function is

o) = [ e [ (s0)
(30)
+ ekt ) - n(eyut ) = (e )] ds

with ., 3,4, 3, < p so that the integrability with respect to ¢ is guaranteed. By reasoning
as in Section 4 we define the function @, (s) as follows

1 ptoo  soa
o {s) = R(p— a; ANy = —)-\-f e"%&(""s)al(a)da.

The interpretation of @ (s) is similar to the one of @(s), the only difference is given by the
exponential term e* which is due to the fact that the technology is exponentially time
dependent. As in Section 4 we have

oo
J (ko u) =< @y, ko >0 +f e P F(t, u(t))dt,
0

where L
F(t,u) = —u(0)e™ < aq, AR(p — a; A)wp >12 —u?(0)ePts,

+e <@, u > —e” < g, u > —e® < By u,u >

By reasoning as in Section 4 we obtain that there exists a unique optimal strategy in the
class U. For every ¢ > 0 the optimal strategy has to satisfy the following

1 s 1 iy [T o
w*(t,0) = ——e* P < o —AR(p — o; A)wg >p2= —-—e(“—ﬁo}tf al(s)e_'p_*wsds
2160 Qﬁ{) 0

X 1 _B— _
U (t, S) = z—ﬂl(_s) {e(a ﬂ)tal(s) - 6(q ﬁ)tql(S)] ) 5> 0.
The Hamilton-Jacobi equation for this problem is a time dependent one. For p € D(A*),
we set,

Hl(tap) = sup Fl(ty u!p)

ueL2?
where _
Fi(t,u,p) = —u(0)e® < wy, A*p >p2 +e™ < u,p >52 —u?(0)e!f,

—e® < g,u >p2 —e® < By u,u >0,

the Hamilton-Jacobi equation becomes

v (t, k) = pv(t, k) — Hi(t, Dyo(t, k)
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(our value function is given by v(0,%)). By reasoning as in Section 3, for ¢ € IR and
p € L%, we can define

Hy (t,a) = sup [—'re‘“a — rzeﬁﬂtﬁo]
relR

His(t,p) = 5;1[1?2 [e‘“ < u,p >pe —e® <u,q > —ef < Bg u,u >Lz,]
U

so that, for p € D{A*) and a =< wq, A*p >2 we have
Hy(t,p) = Hi(t, < wo, A"p >p2) + Hys(t,p)

and
u* (t, 0) = DpHn(t, < wy, A¥ey >L2)
u™{t, s} = DyHyo(t, p) 5 € (0,+00).
The Hamiltonian system becomes
k'(t) = Ak(t) — DHu(t, < wo, A™p(t) >p2) Awg + DHo(t, p(2)); k(0) = &y
(31)
pt)=[p—a—Aplt) — o

(which make sense only in integral form, see (21)) with the trasversality condition

lim e~ 2ip(f) = @

t— =400

which implies the well-known condition

lim e~ < k(t),p(t) >= 0.

t-r-4o0

To write down explicitly k() we assume that o — f;, &« — 3, ¢ — 3 > —p. Since the
resolvent set of the operator A surely contains the half plane (v > —u); then for v < —p
it can be shown that the optimal state can be written down in explicit form as follows

k(t) = T(t)ko + AR(a — Bg; A)[T(2) — Py,
+R(a — 8; A~ T(t)ut — Rg — 8; AP — T(t)|u

where ] 1
def . POty
= — A - = —f 8
1 % < o, AR(p — oy A)wyg >p2 250 Jo ai(sle” 3 *ds,
wi(s) def ! R(p— a; A"y (s); s>0
1 2/8]_(5’) ' p ' ! ’
and

ef 1
ug () de mql(s); s > 0.

"y

By regrouping the terms we have

K(t) = T(6)ko + [P0 = T(0)] by + [ —T()] ky = [ = T()] ks,
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where ky = —AR(a — By; A)C1we, ks = R(a — 8; A)ul, ks = R(q — 3; A)us.

The optimal state can be divided in four components. The first one, T(t)kq, comes
from the initial data which, as expected (being linear the model, the initial conditions are
expected to be meaningless in the long run), exponentially goes to zero as ¢ — co. The
other three components grow or decrease at a constant rate with & correction term due
to the presence of T'(¢). This correction term exponentially goes to zero with a constant
rate y as t — <-00 and therefore it does not influence the long run capital accumulation
path.

The first component k&, comes from innovation/investments in new capital goods, k;
is exponentially decreasing in s. The second and the third components, ks, k3, come from
investments in vintage capital goods. .

The positivity of the state k(¢) requires that if g > 3 then max{a—f,, a— 8} > g— 3.
As we expected from the assumption of a technological progress with a constant exogenous
rate we have perpetual growth at a constant rate in the limit if one of the following
conditions is satisfied

¢ ¢< 8, max{e—Foa—pF}>0
e ¢> 3, max{a-—fya—-pF}>qg-8>0.
In the limit, the rate of growth is given by

max{e ~ By, o — B},

the stock of capital is accumulated in the limit at a constant rate which is given by the
rate of technological progress deflated by the growth rate of installation costs (if 3 < f)
or by the growth rate of innovation costs (if 3 > ;). In the limit for t — oo k(t,5) is

either k1(s) (if 8 > B,) or ka(s) (if 8 < ).
Let us consider the quality depreciation exponential case:
a1(s) = Ape™ ™, B1(s) = Boe ™, qi(5) = Que™®.

As we stressed in Section 2, the parameter A describes the connection between the flow of
time and the vintage of capital goods. a(t, s) describes the technology of vintage capital
goods and relates it to the technology at time ¢ and therefore to exogenous innovation.
In the exponential setting, for a generic couple (A, 2z} we have that if the technology
productivity at time ¢ of a capital good of vintage s is Age®*=#%) then after the time
period 4t the capital good becomes of vintage s + Adt and its productivity becomes

Apett+dt=2(s+38)} The evolution of the technology is defined by the parameter 1 Nz If
Y = 1 then the technology of a capital good of vintage s at time ¢ is exactly the technology
first arrived in the market {for new capital goods) at time ¢ — £ and the productivity of
a capital good is constant as time goes. If ) > 1 then the technology corresponds to a
technology first arrived in the market before time £ — £ and the productivity of a capital
good is decreasing as time time goes; if ¥ < 1 then the technology corresponds to a
technology first arrived in the market after time ¢ — £ and the productivity of a capital
good is increasing as time time goes.
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¥ is an index marking the ageing of a capital good taking into account both quality
depreciation and technological progress: if 1 < 1 then the productivity of a capital good
is increasing as time goes, if ¢ > 1 then the productivity of a capital good is decreasing
as time goes. The behavior of investment costs and adjustment costs with respect to time
18 exclusively determined by A: if A < 1 they are increasing, if A > 1 they are decreasing.
Let us remark z regulates how the technological improvement for new capital goods is
reflected on vintage capital goods: a large z implies a small effect.

The optimal solution in this setting becomes

Aoe(a_ﬁn)t

2)60 (O{Z + P;ij‘_lﬁ) !

w'(t,0) = >0,

emﬂ(t——s} Aoea(t—zs)
* = — QY| ¢ > >0
'lL(t,S) 2BD |',O—'O!+j.t+AO{Z Qﬂe ]) _0: s H
Ay 1
* = . _(az"B)S' > 0
ui(s) 2By p—a+pt ez 875
. Qo g
uz(s)=ﬁe e, 5> 0,
- Ag )\ ~cz—EQ+r»3
ki(s) = —CLAR(a — 3y; Awo(s) = ~— - em a7 5> 0,

2680 p—a+p+ oz
e~(ez—p)o

¥ 1 8 —azgtp S—a A
kQ(S)ZR(Q{_ﬁ;A)Ul(S):X/O A }gélop_a+p+/\azdg
_ A 1 1 [emles=fls —e==50] 0 550,

2ABy TR _ (07— ) p—a+p+ Aoz

and finally

Fo(s) = R(g — §; Aus(s) = 20 =€ o 0

5(8) = — B Aus(s) = . ; §>

’ ) V- ey =27

Notice that all the functions k1, ks, k3 belong to H* and so they go to 0 (with their first
derivative) as s — +o0. To this end we require

az—f3>0, qg—3>0.

As we stressed above the limit growth rate of the stock of capital for s # 0 depends
on the sign of 8 — B,. Things are different for s = 0; V£ > 0 we have that investments
in new capital goods grow at the constant rate o — 3,, i.e. the rate of technological
progress deflated by the rate of growth of innovation costs. Moreover we have that u*(t,0)
is increasing in A, Ag and decreasing in Gy, B,, p, 1, 2. The behavior with respect to « is
more articulated: if ¥ > 1 + -“—1(‘%‘2‘1 then u*(¢,0) is a decreasing function of «, otherwise
is increasing. The analysis confirms what we have observed for the exponential quality
depreciation model.
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The function k(s) is exponentially decreasing with respect to s. It represents the
effect on the state of the boundary control, investments in new capital goods. In the limit,
for t — oc, the optimal stock of capital k(¢, s) is going to be decreasing in s if the rate of
technological progress, By, is lower than the rate of growth of instailation costs 3.

The sensitivity analysis of ki(s) with respect to the parameters of the model is the
following: k,(s) is a decreasing function of Ay, By, p, i, 2, @, and increasing of Ay, A.

ko(3) is single-peaked with a maximum in s,; for new capital goods, s = 0, we have
k2(0) = 0. The maximum point 54 depends on the parameters of the model; leaving aside
the case 2=2*£ = 7 — 3 we have

1. if &84 > oz — 3 then

1 oz—ﬁ-l—u)

0 e, p) % (A(az—ﬁ)

2. if”—_%ﬂi<az—ﬁthen

. 1 o ()\(az—ﬁ))
’ az — (3 — 2=t S\a—B+n)

ka{s) is an increasing function in Ay and a decreasing function in By, p, pt, z. The behavior
with respect o, 8, A is more articulated. £5(07) is decreasing function in A, By, y, p, z, and
in o if ¢ > 1 and an increasing function in « if ¥ < 1 and in Ag. Let us remark that
this confirms what we have observed in the quality depreciation setting. Therefore, in the
limit, for £ — oo, the optimal stock of capital k(¢, s) is going to be single-peaked if if the
rate of technological progress, 3, is higher than the rate of growth of installation costs 3.

Whatever the technology of the firm is we have capital deepening type results, the

optimal stock of capital is a decreasing function of p, y, 2.

10 Conclusions

In this paper we have analyzed the firm capital accumulation problem in a vintage capital
setting. The evolution of the stock of capital with respect to time and vintage is described
by a Partial Differential Equation. The technology of the firm is characterized by constant
returns to scale; the entrepreneur has to bear adjustment costs installing capital goods
and an innovation cost installing new capital goods/new technologies.

The optimal stationary stock of capital as a funection of the vintage is obtained when
the technology is constant over time, when it is time varying we have an optimal capital
accumulation path which in the limit can be at a constant rate.

The optimal stationary stock of capital can be a function strictly decreasing of the
vintage or a single-peaked function, increasing with a maximum and then decreasing.
The shape depends on the technology, if a new capital good is highly profitable and the
innovation cost is high then it is likely to assist to a diffusion of a new technology. We
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have a diffusion of a new technology if it is profitable, the discount rate and the rate of
depreciation (qualitative and quantitative) are low enough.

When the technology is time varying with exogenous constant technological improve-
ment then we have perpetual growth at a constant rate in the limit; the rate of growth
is given by the rate of technological improvement deflated by the minimum between the
rate of growth of innovation costs and the rate of growth of adjustment costs. If the min-
imum between the two is the rate of innovation costs then in the limit we will have a
stock of capital strictly decreasing in the vintage, otherwise it will be single-peaked with
a maximum. Therefore if innovation costs grow more quickly than adjustment costs we
will have the diffusion of the new technology in the limit.

The assumption of constant returns to scale and exogenous technological progress are
two strong limits to the analysis developed in the paper. The analysis of capital accumu-
lation for a firm characterized by a nonlinear technology with input complementarities,
spillover effects, and R&D would call for a refinement, of the optimal control infinite di-
mensional techniques, in particular with respect to the trasversality condition and the
analysis of the long run equilibrium of the Hamiltonian system.
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A Appendix

In this Appendix we present some technical results useful in the analysis and we give the
proofs of some Propositions. We recall the following result which is a particular case of
the Sobolev embedding theorem.

Theorem A.1 The space H'(0,3) is canonically embedded in C([0,3]), (C([0, +00)) if
§ = +00), i.e. given h € H there ezists h € C([0,3]) such that h = h almost everywhere.
Moreover for a suitable constant Cs we have

[Alloe < CslA]| -

‘The semigroup T'(t) generated by the operator A defined in (4) satisfies Proposition 3.1
and the following estimates are given.

Proposition A.2

IA
A

IT@ e <e™ 0

> | ot

S | ot

ITElcny =0 >

when 3 < +oo and
T lcen Se ™ t2>0

when 5 = 400 aend finally
1

|1 B{(v; AYlleemy < Pyl

for 3 € (0, +oc].

Remark A.3 The operator A is dissipative. In fact, for k¥ € D(A) we have
A
< Ak k >p= —plkly — S[6°(5) - B(0)] < —plkix,
the equality holds in the case 5 = +-co since we have lim,, o f(s) = 0 for f £ HY(0, +c0).
Sketch of proof of Proposition 3.1 and A.2. The proof is a standard application of

the theory of strongly continuous semigroups on a Hilbert space (see e.g. [Brezis, 1983}).
One simply hag to use definitions to check that

¢ A is closed
¢ T(-) is a Cy-semigroup and generates A

* Re v < —u implies v € p(A)
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then the resolvent can be directly calculated by solving the differential equation (s € [0, 3])
A () + (v + w)gls) = f(s): g(0) =0
or via Laplace transform. The estimates on the norm of 7°(¢) and of the resolvent are then

immediate. [

Remark A.4 By applying classical functional analysis theorems on the adjoint operators
it follows that (see e.g. [Yosida, 1980] p. 224)

o p(A%) = p(4);
s for v € p(A), R(v; A*) = R(v; A)%;
o [Tl = [[T®)| and [[R(v; A7) = [|R(v; A)]-

Proof of Proposition 4.3.
It is enough to write down explicitly the functional .J :

Ty = [ e [g(k() + Lu))] db

— /'§+°° B_Pt |:< Gf;k(t) > < q,u(t) >z — < B,@u(t):u(t) > _ﬁoﬂz(t, 0)] dt.

Now, by (7) ()
< o, k(t) >z

£ ¢
=< a,T(t)k() s — < O!,A/.; T(t - T)'LU(T)dT >r2 + < Oé,f T(t - T)U[T)dT >
0
s0 that oo oo
/ e < o, k(t) > = f e < o, T(Hky >12 dt
0 0
+/+oo e [< o /t T(t — Nul(t)dr >0 dt— < & A]tT(t — Tyw(r)dr >Lz] dt.
0 “Jo o
Now for the first term we have
/me‘ﬁ" < a,T({t)ky > dt = /+°° T (k) dt
A , o ~realt = (o, A € ( (t)ko)

- (a: R(p1 A)kﬁ)bz

L2

while for the second

+oo
/O e—f’t<afT(t—'r) (7 dT>det—/ f < Tt~ Ty u(r) >p2 drdt

= [0+oo e " < [[r e P (¢ T)adt] ,u(ﬂr)>L2 dr

= /+oo e P (R(p; Ao, u(T)) 2 dT = /+Oo e (@, u(t)) . dt.
0 0

For the third we use the same reasoning by recalling that o € D(A*) (in fact it is possible
to prove the claim also when o € D(A*)). [
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