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1. Introduction

In the last decades vectorial mathematical programming has been widely
studied. Tt is interesting to note that altough the first papers in vectorial
mathematical programming were done since about 1950 and the ones on
fractional programming in 1960, the case of vectorial fractional mathematical
programming appears systematically after 1980,

In a survey note appeared in 1981 [73] about the methods used for solving
the linear fractional programming problems with several objective functions,
Stancu-Minasian has given only 5 references. Now there are about 150 papers
on this subject [74, 75]. From this it results that a considerable amount of work
has been done since 1980 on the problem of vectorial fractional mathematical
programming and, in particular, the bicriterion case has received a considerable
attention.

Evidently, any method and result referring to the vectorial fractional
programming can be applied to the case of two objective functions; however
the reduce number of functions offers some advantages; it is sufficient to think
to parametric representation in uni- and bi-dimensional spaces. Consequently,
for the case of two objective functions many papers appeared which take the
advantage of the particular structure of the problem,

In this paper we present a review of the main theoretical results obtained up to
now in bicriterion fractional programming with few exceptions related to
general results for bicriteria problems. With respect to sequential methods, we
limit ourselves to present computational approaches for linear fractional
problems.

The structure of the paper is organized as follows: in Section 2 some
definitions are given in order to present a self-contained paper; in Section 3

1 One of the authors (LM. 8.-M.) gratefully acknowledges the research support he received as Visitor
Research of the Department of Statistics and Applied Mathematics, University of Pisa, in October

1994 when this paper was started.



some properties of the efficient set of bicriteria problems are given; in Section
4 we present approaches to solving the bicriterion fractional programming
problem; in Section 5 we consider the particular case when one of the
objective function is linear and the other one is a linear fractional function; in
Section 6 the bicriteria fractional transportation problem is considered; in
Section 7 we present some sequential methods for generating the set of all
efficient solutions for the bicriteria linear fractional problem; in Section 8 the
relation between bicriteria problems and bicriterion mathematical programs is
presented; finally concluding remarks are made in Section 9,

2. Statement of the problem

Consider the following bicriteria problem
P: "maximize" F(x) = (F,(x),F,(x)), X ES.

where S is a subset of R®and F,,F, are real-valued functions defined on an

open set X containing S.

We will refer to P as the bicriteria linear fractional programming problem when
F, , Fyare linear fractional functions and S is a polyhedral set, that is:

- SiXt Gy = 22T % o
F,(®) = dx+dy Fap(X) = d,x 7 d,, »S={x:Ax =b, x>0}, where

A=(ap),i=1,...,m,j=1,..,nisan mxn matrix, b= (b;, ..... b)) ER™ isan
m-dimensional vector, ¢, d,, ¢,, and d, € R?are n-dimensional vectors,

X = (Xps vees Xp) € R" is an n-dimensional unknown vector, Co1» dpys Cop» and dy,
are scalar constants; it is assumed that dix +dg;> 0, dyx + dp>0forallxe S

The meaning of "maximize” in problem P is to understand in the sense of
different solution notions in vector optimization, such as in the sense of
efficient, weakly efficient or properly efficient points, or, equivalently, in the
sense of non-dominated, noninferior or Pareto optimal solutions.

In order to have a self-contained paper, we recall the following definitions.



Definition 2.1
A point x* € § is said to be an efficient solution of P if there does not exist a
point x € S such that F(x) = Fyx*) (i = 1,2) where at least one of these

inequalities is strict.

Definition 2.2
A point x* € § is said to be a weakly efficient solution of P if there does not
exist a point x &€ S such that Fi(x) > F.x*) (i = 1,2).

The previous definitions are equivalent to the following ones:

Definition 2.1' (2.2")
A point x* is said to be an efficient (weakly efficient) solution for P if x* € §
and Fi(x) > F;(x*) for some x & S and some i = 1,2 implies that there exists at

least one j & J, such that Fj(x) < Fj(x*) ( resp. Fj(x) < Fj(x*)).

Sometimes when the functions F,() are nonlinear and differentiable, instead of

problem P we consider linear approximation at x° of this problem, namely :

"maximize" (VF;(x%) - x, VF,(x0) - x) , x €S 2.1)
Applying Definition 2.1 to problem (2.1), we obtain

Definition 2.3
A point x* € § is said to be a Kuhn-Tucker (K-T) properly efficient solution of
P if there does not exist a point x € §-such that VE(x*) - x = VFy(x*) - x*

(i = 1,2) where at least one of these inequalities is strict.

Definition 2.4

An efficient solution x° of problem P is said to be properly efficient (in the
Geofftion's sense) if there is a scalar M > 0 such that for each i, F(x) > Fi(xo)

and x €S imply F(x) - F(x%) < M(Fj(xo) - Fy(x)) for some j such that
Fi(x) < Fj(xo).




As is known, there are in the literature several definitions of properly
efficiency; through the paper, if any specification is given, any properly
efficient solution it is considered in the Geoffrion's sense.

We will denote the set of all efficient points of P by E, the set of all weakly
efficient points by E¥ and the set of all properly efficient points by EP.

In multiple objective programming, the knowledge of the set E may be useful
in the process of decision making, but its complete generation may be
computationally expensive, since E is, in general, not finite and its elements
can occur at the extreme points, at the edges and also in the interior of S.
Sometimes it is more convenient to approach the problem in the so called
criterion space Z = F(S) = {(z; , 2,}| z;=F,(x), z,= Fy(x) , x € S}, instead of
the decision space S.

The images

F(E)= {(F;(x), F5(x) ) | x EE} and F(E™) = {(F;(x), F,(x) ) | x EE"} are called
the efficient frontier and the weakly efficient frontier of P, respectively.

Before presenting the results obtained in bicriteria fractional programming, we

will give some other preliminary definitions.

Definition 2.5

Let A C R?be an arbitrary set and let ¢ : A ~> R be a real-valued function;
P(X,y) is said to be increasing in each argument if @(x,,y) < @(x,.y) for each
(x,y) € S such that x; < x, and @(x,y,) < p(x.y,) for each (x,y) € S such that

Y1<¥s

Let X & R" be a nonempty convex set and let f: X — R be a real-valued
function.

Definition 2.6 -
The function f is concave on X if for ¥V x!, x2€ X and Vt € [0,1],

I+ (1-0x2] = tfi(xY+(1-0f(x2) (2.2)
The function f is strictly concave on X if V x!, x?€ X, (xl.;t xz) and V t € (0,1)
the inequality (2.2) is strict.

Definition 2.7
The function f is quasiconcave on X if for ¥ x!, x2€X and YV t € [0,1],



min(f(x1), f(x?)) < fltx! + (1-0)x?] (2.3)
The function f is said to be explicitly gquasiconcave or semistrictly
quasiconcave on X if for x!, x*€ X, (f(x') = f(x2)) and ¥ t € (0,1) the
inequality (2.3) is strict.
The function f is said to be strictly explicitly quasiconcave or strictly
quasiconcave on X if V x1, x2€ X, (x!= xY)and ¥V tE (0,1) the inequality
(2.3) is strict.
The function f is explicitly quasiconvex on X if (-f) is explicitly quasiconcave.

Definition 2.8
The function f is quasimonotonic if it is both quasiconcave and quasiconvex.

Definition 2.9
The function f is explicitly quasimonotonic if it is explicitly quasiconcave and
explicitly quasiconvex.

Definition 2.10
The function f is pseudoconcave on X if X is open, T is differentiable and if
VxL x2eX, (x!- x)Vi(x?) <0 = f(x}) = f(x2).

Definition 2.11
The function f is pseudoconvex on X if (-f) is pseudoconcave.

3. The structure and the properties of the efficient (weakly,
properly efficient) set

In this section we will present some properties of the solutions of a bicriteria
problem, with particular attention to a bicriteria linear fractional problem.
First of all, let us note that from definitions 2.1, 2.2 and 2.4, itresults EC EWY,

EP C E (but not conversely); furthermore for a linear fractional vector
maximum problem, we have EP = E. This result was proved by Choo [18] for

the general case of L (L > 1) criterion functions, assuming that § is a compact
set:



Theorem 3.1 (Choo [18])
Let x° be an efficient solution of the bicriteria linear fractional problem. Then
xis properly efficient.

In what follows we will give a characterization of efficiency for a bicriteria
linear fractional problem by means of the Kuhn-Tucker conditions. With this
aim, we denote the row vectors of the matrix A by p;, -, Py, and we refer to

the following definition:

Definition 3.1 (Choo and Atkins [19])
A subset T of § is said to be a face of S if there exists J C {1, ..., m}, such that T
consists of points satisfying p;x=b;, Vi€Jand p;x <b,, Vi€ ].

T is called the face corresponding to J.
We have :

Theorem 3.2 (Choo and Atkins [19])

A point x* belonging to the face T corresponding to {1, ..., k} is efficient if and
only if there exist real numbers a,=20,i=1,..,kand w2 1, w, = 1 such that

ap Pyt o + g Py = WV (XF) + w, VE (x%) 3.1)

The equation (3.1) is equivalent to a system of linear constraints as it resuits
from the following:

Lemma 3.1

A point x* in T is efficient if and only if there exist real numbers aj, .., g, hy,
h,, q;, q, such that

a1 Pyt et 8 P = Qg€ - hyd)+ qac, - hyd,

¢; X+ ¢y =h

d,x +dy; = q

tthy +4hy-19,-ryq,=a; by + ... + 3 by

px*=b, i=1,..,k

pix*<b; i=k+l,..,m

4z0 i=1,...k, q>0i=1,2



From Lemma 3.1, the following results follow:

Corollary 3.1
The set of all efficient points in any given face of S is convex.

Theorem 3.3
The set EN T is a linearly constrained set and E is a finite union of linearly

constrained sets.

As we have pointed out previously, efficient points may be situated on the
faces, on the edges or in the interior of S; the interior points of S can be
efficient solutions without necessarily having S = E as it happens in the linear
case.

Hughes [43] derived general conditions for the bicriteria linear fractional
problem to have interior efficient solutions. He stated that the set of interior
efficient solutions (if any) is contained in a hyperplane separating the points
where each objective function is optimized.

Let R;=[Fy( x*z),fl] be an interval where fy = max {F,(x): x €S}, k=1,2
and x*2 satisfies F,( :al(*2 )=1,.

Theorem 3.4 ([43], Lemma 1)

The bicriteria linear fractional problem has interior efficient solutions if and
only if there exist scalars ¢, » 6, , u. such that

Cyt+ . dy +0,u.d; =0, c,
Cop + O, dyy+ O, U, dy; =6, Co1: 6.<0, u. ER,.

Corollary 3.2 (]43])

The set of all interior efficient points (if any) of a bicriteria linear fractional
problem lies on the hyperplane ¢,x + ¢, - u,(d;x + dy;) = 0 on which

Fy(x) = u,.

Corollary 3.3 ([43])
i) The hyperplane containing the interior efficient points (if any) of a
bicriteria linear fractional problem passes through the intersection of the



hyperplanes ¢ x + ¢5; =0, d;X + dy; = 0 and of the hyperplanes CX +Cpp =0
;& X +dg,=0
il) Fy(X) =-¢, for any interior efficient point.

With regards to closure property, Choo and Atkins ([19], Th.4.4) showed, for a
bicriteria linear fractional programming having a compact feasible region, that
E (and hence F(E)) is closed; such a property does not hold in general even if
the feasible region S is compact,

Uniike the set E, the set EY is always a closed set, as proved by Choo and
Atkins ([20], Th.1) for L > 2 criteria, arbitrary continuous objective functions
and for arbitrary constrained region S. With respect to problem P, we have:

Theorem 3.5 ([20])
The set BV of all weakly efficient solutions of problem P is closed.

With regards to connectedness property, Choo and Atkins [19] showed, for a
bicriteria linear fractional programming having a compact feasible region, that
E and EY are path-connected; more exactly, there exists a finite number of
connected line segments in E and in EY which describe the whole efficient
(weakly efficient) frontiers F(E) and F(E™).

When the feasible region is unbounded, Cambini and Martein [10] established
a necessary and sufficient condition for the connectedness of E together with
the following Theorem:

Theorem 3.6 ([10]) ‘
The set E of all efficient points of a bicriteria linear fractional problem having
an unbounded feasible region, is path-connected by a finite number of linear
line when at Ieast one of the objective function is linear.

In order to establish general results on the properties of the set E of all
efficient solutions, Schaible [65] and Martein [56] considered the following
parametric scalar problem associated to the bicriteria problem P:

P(8) : max {F,(x) : x €S, E,(x) 2 6}



Denote with z(0) and S(6) the optimal value and the set of optimal solutions
of problem P(6), respectively. Martein [56] gave a complete characterization
of E as a suitable union of sets S(6); furthermore Cambini and Martein [11, 12]
proved that when F, does not have local maxima different from global, then 6
belongs to an interval; such results generalize the ones given by Schaible [65]
in the case of strictly quasiconcave functions.

Martein [56] established a necessary condition for the connectedness of E :

Theorem 3.7 ([56])
If E is connected, then z(6) is a semistrictly quasiconcave function.

Schaible [65] generalized the results obtained in [17] and [19] :

Theorem 3.8 ([65])
If F,,F, are continuous and strictly quasiconcave functions and S is a

compact convex set, then E is connected and closed.

Let us note that if one F, is merely quasiconcave, E may be not connected.

As an application, Schaible considered the bicriteria non linear fractional
program
f1(x)  fx)
1 2
xMeag (gl(x) * 85(X)

)

where f; is concave on the convex set S, g; is convex and positive in S, and f,

is nonnegative on S if g; is not affine. According to [76] the functions F;(x)=

fi(x)
}g,l-(_x) are strictly quasiconcave on S. Hence, the efficient set for the above
1

problem is connected and closed.
At last, we give some results related to the connectedness of the efficient

frontier.
Choo et al. [21] proved the following result:



Theorem 3.9 ([21])
The efficient frontier F(E) of problem P is path-wise connected if F, and F, are

continuous and strictly quasiconcave and S is a compact convex set.
Recently, Marchi [53 ] generalized the previous result:

Theorem 3.10 ([ 53])

The efficient frontier F(E) of a bicriteria problem P having a compact feasible
region is path-wise connected if the functions F, and F, are continuous and

do not have local maxima different from global.

4. Methods for solving bicriterion fractional programming
problems

In many problems involving conflicts among objectives, in a natural way a
scalar optimization problem involving an utility function representing the
decision maker’s preference, is solved in order to find a suitable efficient
solution for problem P.

More exactly the following bicriterion scalar problem is associated to the
bicriteria problem P:

Max {209 =U[F,(x), F(1} | @1)

where U is an utility function defined on the set F(S) = { ( Fi(x), F5(x)) : x €S}
According to Geoffrion [32] at least one optimal solution to (4.1) is Pareto
optimal.

This section is devoted to describe some methods for solving (4.1) when U is
a “sum-type” operator, “product-type” operator and “minimum-type”
operator .

Let us note that some other classes of bicriterion problems (i.e. problems
involving two functions) can be transformed in problem (4.1) as it is shown in
1771, [79], [80], [81], for the following bicriterion max-min fractional problem

10



xeX
where X C R"and Y C R™ are two compact convex polyhedral sets and
F: X — R, Q: XxY — R are fractional functions.

max yrremi, h( F(x), Q(x,y))

In a recent report [39] Hirche considers problem (4.1) when the objective
functions F;() (i=1,2) are explicitly quasimonotonic; the class of explicitly

quasimonotonic functions includes the class of linear fractional functions.
Furthermore, it is assumed that the function U is strictly increasing in each
argument.

Using an idea from [40], Hirche [39] choose the global maximizer of z(X) in a
subset S°C S. '

Fori= 1,2 set t_"i = max {F(x) : x € S} and set
f = max {F;(x): X €S, Fy(x) = f,}, 4.2)
f,=max {F,(x):x €S8 ,F;(x)= f, } (4.3)

Define Sj(wj) ={xeS: Fi(x) = wj} for W E [f_j ,fj] ,j=12

and S* = §,(f )N S,(f,).

Hirche [39] showed that : i) any global maximizer x* of 2(x) on S is in S’ i1)
for each W< [t i f j] the function F,(x) attains its maximum on Sj(wj) in the
level surface {x €S : Fj(x) = wj} and only there; iii) the function z(x) attains

its local maxima (and consequently its global maximum) on $ in edges or
pieces of edges of S belonging to S’,

Warburton [83] showed that problem (4.1) can be solved by considering r
one-dimensional subproblems defined by
(R) : max { w(F;(x), F5(x)) 1 x € X..xforl<i<r.
If & (1=ixr)solves(R)), then & such that
u(F(&; )) = max{u(F(&, )): 1=i <1} solves (4.1).
The problem (R;) can be reduced to
(ﬁ ) max {u(w, h(w)): Wi SW=w}
where b is a linear fractional function and w; = F,(x, ) i=1, ..., n.
According to Warburton [84], if {?\vl solves (ﬁi ) , then ‘
R = &xi +(-&)x (4.4)

11



where
4 Wi (dyx; + doy) - (e4; + €gy)
ETW (- %) + oy - X
is an optimal solution to (R)).

(4.5)

Warburton’s algorithm
Step 1 Apply the parametric procedure to obtain the values

fi=wo=w;=..sw. =1 and the points x, for O<i =<r.

Step2 Foreachi(l <i=<r), let ﬁwl be an optimal solution of ( ﬁl ).
Step 3 Let ﬁk = max { u(é\q,hi( &;]. D :il<is=sr}, and let ﬁk be the
corresponding solution of (R,) given by (4.4) and (4.5). Then ﬁk solves

@.1).

Also, Warburton presented a simple finite procedure for solving (4.1) when U
is a “sum-type” operator. Numerical experiments indicate that the
Warburton’s algorithm performs effectively for problems of moderate size. For
larger problems the parametric phase may become rather expensive.

From now on, in this section we will consider problem (4.1) where F, and F,

are linear fractional functions.

As is known, for a fractional programming problem with a single objective
function a classic method of solving is that of the transforming variables.
However, for the vectorial fractional programming in applying this method
some difficulties occur. Due to this reason, in [78] the particular case where
the denominators of F, and F, are identical is considered, that is the synthesis-

function is under the form:

CIX+COI 02X+C02
Joax U gxrd, * dxsd, )

(4.6)

This problem is called pseudo-fractional programming problem [78]; it is
assumed that:

a) S is a nonempty and bounded set;

bydx+d,>0 Vx&8§

Using the variabie transformation y = tx (t = 0) problem (4.6) becomes a
pseudo-linear problem:

12



max U( ¢y + Corts C2¥ +Cpt) 4.7)
subject to
Ay-bt=0
dy +dyt=1
yz=0,t=0
The equivalence between problems (4.6) and (4.7) is given in the following
Theorem: |

Theorem 4.1 ([78], Tigan)
If the assumptions a) and b) hold and if (y*, t*) is an optimal solution for

e
problem (4.7), then % is an optimal solution for problem (4.6).

%
From Theorem 4.1 it results that {T is an efficient solution of the bicriteria
linear fractional programming problem P.
Patkar et al. [61] consider an operator U of “product-type”, so that the

following problem is obtained:
(X + ¢yp) (5% +epy)

&% (dX+dy) (dx 7 dy) (4.8)

By a variable transformation, problem (4.8) reduces to a quadratic

programming problem: : ‘

max ( ¢y + €yt ) Coy + Cpot ) 4.9)
subject to

Ay-bt=<0

(dyy+dyt X dyy +dg,t) <1

y=0,t=0
If the set S is bounded, a result similar to the one given in Theorem 4.1 is true
also for problems (4.8) and (4.9).

Konno and Yajima’s al gotithm

Kenno and Yajima [47] proposed two algorithms (parametric simpiex
algorithm and branch and bound algorithm) for solving problem (4.1) in the
case when the operator U is a “product-type”. They transform the maximum
problem into a minimum problem

13



i dx +dy, ) dx +dy,
XES X+ CX+Cy
under the following assumptions :
1} Sis nonempty and bounded set;
2) ¢x+¢pi>0, dix+dy>0, Yi=12and VxES.

After the variable transformation y = tx (t > 0), setting w = (y, 1), A= (A, -b),

(4.10)

c; =(ci»c)» dj =(djdgy), i=1,2, problem (4.10) can be rewritten as

follows:
dw d,w
min Nl . ~2 (4.11)
C W C,W
subject to
KWZO, wz=0

According to Konno and Yajima [47], it can be assumed, without loss of
generality, that < (W c W=1.
Then, (4.11) turns out to be the following:

min glw . c?zw (4.12)
subject to
Aw= 0, w20

c W c W =1
Problem (4.12) can be solved by the following master problem with two
parameters:

ming & w + & d,w (4.13)

subject to
Aw=0, w=0

r~

CW=1M, C,W=

E>0, n>0

1
M

In the branch and bound algorithm presented by Konno and Yajima [47], the

master problem associated to problem (4.10) is of the form
dix+d 1 dyx+d
1 01 a2 02 ( 4.1 4)

min g0 E)= ST X ot E ox v oy
subject to
XxESand £>0.

14



The computational experiments performed by Konno and Yajima show that
the total amount of computation time of the parametric algorithm is about
eight times as much as that for solving an associated linear programming
problem. Furthermore, when the size of the problem increases, the amount of
total computation time of the branch and bound algorithm increases slower
than the one of the parametric algorithm; this means that the branch and
bound algorithm is preferred to parametric algorithm for large scale problems.

Hirche’s algorithm
Hirche [39] proposed a one-parametric algorithm for solving problem (4.8).

The algorithm, stated in a general form, can be used for solving the sum of two
explicitly quasimonotonic functions.

Without loss of generality, in problem (4.11) it is assumed that ¢ (w=1
Hirche associates to this problem the following one-parametric problem :

d,w

dlw

min G(w, E) = & (4.15)

subject to
KW:O, glw:l, Eflw:g , W20, g, <E<E__

where Emin=min{31W!KW:0, glw:l,wzo},

Emaxzmax{glw: Aw=0, :1w=1,w20}.

By solving parametrically problem (4.15), a partition of the interval
[Emin> Emax] into finitely many subintervals [ &, , &, , ] is obtained. The

minimum of G (w,E)yon [E, § ]is determined.

A solution of (4.11) ( and also (4.10)) can be obtained by comparison of the
minima on all subintervals [ &, & 1.

With minor modifications the algorithm can be adapted for maximizing the
sum of two linear fractional functions. The resulting algorithm is related to
Cambini, Martein and Schaible’s algorithm [9] and to the Falk and Palocsay’s
algorithm [31].

Computational experiments performed by the author show that his algorithm
is promising in comparison with the branch and bound algotithm and the two-

15



parametric algorithms by Konno and Yajima. The relative expense was
measured by the number of simplex iterations.

Cambini . Martein and Schaible’s algorithm
In [9], the problem of maximizing the sum of m concave-convex fractional

functions on a convex set is shown to be equivalent to the one whose
objective function f is the sum of m linear fractional functions defined on a
suitable convex set; successively f is transformed into the sum of one linear
function and (m-1) linear fractional functions. As a special case, the problem of
maximizing the sum of two linear fractional functions subject to linear
constraints is transformed in the one whose objective function is the sum of a
linear and a linear fractional function. For such a problem two sequential
methods are suggested for any feasible region (bounded or not); one of these
methods is obtained by combining Cambini and Martein’s algorithm [7] and
Martein’s algorithm {54], which will be described successively.

Bykadorov in [5] states that these two sequential methods are more preferable
than other algorithms,

Falk and Palocsay’s algorithm
Falk and Palocsay [31] elaborated a method for solving problem (4.1) in which

U is a “sum-type” operator and S is a bounded set.

The algorithm determines z = -21 + 22 € Z, where z is the image of the optimal

solution x of the problem

C;X+Cy  CX+C
_ SXtCy S+
max {FO = g5+ dy, * &x + dyy

I XE S} (4.16)

The objective function F is neither quasiconvex nor quasiconcave, and thus it
can have multiple local minima and maxima. In general, a local maximum is not
a global one. Bykadorov [5], [6] studied generalized concavity properties of
sums of linear ratios and even of sums of ratios of polynomials. For location of
optima for sum of linear fractional functions see alsc Craven [22, p. 137).

The idea of Falk and Palocsay’s algorithm is to determine lower and upper

bounds for il + 52 which are iteratively improved. More specifically, a

triangular subset (zO, 10, VO) in the criterion space containing z is founded and,

16



successively, the size of the triangle is reduced until either an optimal solution
is obtained or the algorithm cannot improve the current bounds.

Let 2% = max {Fj(x): x €S} i=1,2and x1:0, x29 the optimal solutions. An
upper bound for ;51 + 22 is zol + 202 and a lower bound is determined by one
of the points z(x!:9) and z(x2:9) where z(x1:9) = (F;(x10) , F,(x1.9)) ;

2(x2:0) = (F)(x2:0) , F(x2:0)).

Find f} = max {F,(x10) + Fy(x1:0), F,(x:0) + F,(x2:0) } and determine

=10, 1%)=(2% .£;-2% ) andv0= (0, , v0) = (£,- 22, .2°,)

Fig.1

As it can be seenin Fig 1, 1°= 2(x1.9) and hence f; = Fi(x19) + F,(x1.0). The

0

point v" is the intersection between the line Z, = 202 and the line z; + 2, = f;

through 1°,
Then the points 1¥, v¥ | 2% which provide better lower and upper bounds for
il + -Zz » are constructed. For this purpose, a sequence of linear fractional

programs are solved. For example, if we want to reduce the upper bound
while the lower bound is not changed, we solve max{Fx) : x €S , F,(x) =

v’} and we obtain v! (in Fig. 1, v'is the point where the line joining the

points v°, 19 intersect the boundary of 7).
We obtain a new point z1=( V11 . V12 ) and so on.
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It is possible that the algorithm stalls since neither lower nor upper bound
change. In this case the point ( vl‘I1 , lk2 ) is added to triangle ( ¥, v¥ z%) and

with these points a square is constructed which is divided vertically into two

equally size rectangles. The value of z L+ iz can be increased in these
rectangles or not. If z + z, can be increased then a smaller triangle

containing z can be found by solving a linear fractional program and the
algorithm is restarted; otherwise the algorithm must be applied separately to
each rectangle. '

5. On the maximization of a linear and a linear fractional
function

Since a lot of problems of pratical interest involve a linear and a linear
fractional function, in this section we consider a particular case of the bicriteria
linear fractional problem, namely :

max. F(X) = (cx + oy, et 02 5.1)
x & §* TR dyx + d, )

Such problem was considered by Dormany [23} which applied the simplex
algorithm when the problem is reduced to a dual-parametric linear
programming problem.

For problem (5.1} the following cases will be considered for the synthesis-

function U:
CHX + Cgy

xnelaéi* Gi(X) = ¢ x + ¢y + m (5.2)
_ CX + €y

Xrer:iaéc* G(X) = (e 1x + ¢y ) m (5.3)

Jax, {G,(%) = min {ex + Coy s Txrdy, 1} (5.4)

where S* is a nonempty polyhedron without degenerate vertices.

Problem (5.3), for instance, appears when the remuneration fund and the
profitableness of an economic enterprise would be optimized.

Sometimes it is possible for a function to take a small value for an efficient
solution, but it is not acceptable in practice. For such a reason a problem of the
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form (5.4) is considered. In turn, Belen’kii [4] considers the minimization of
the maximum function of a linear function and a linear fractional function and
proposes a finite method for its solving; many optimization problems arising in
the automatic control of diverse objects reduce to such a problem. |
Also, the simultaneous optimization of absolute and relative terms [66] can be
expressed as a problem of type (5.2); for instance, the simultaneous
maximization of profit and return on investment may give rise to the following
model

f,(x)
g >
whereas the maximization of a weighted sum of risk and expected return/risk
may give rise to

Ma)é A fl(x) + A=0

Ma)§ uf(x) + gfl((x)) , u=0

In general, the problems of the form (5.1) are met within problems with a
quantitative criterion (expressed by a linear function) and a qualitative
criterion (expressed by a linear fractional function).

Guerra and Verdaguer [34] present a parametric algorithm in order to find
efficient points of problem (5.1). The linear function is transformed in a
parametric constraint. The solutions of the parametric problem offer efficient
points for problem (5.1).

Now we present some methods for solving problems (5.2) and (5.3).

On solving_problem (5.2)
In fiterature, several methods for solving problem (5.2) are given .

In [54] Martein proposed an algorithm, which works for any feasible region,
based on the concept of optimal level solution defined as follows:

Definition 5.1 :
A feasible point x* & § is said to be an optimal level solution if it is an optimal
solution of the problem

PE): {é max[( § ¢+ Cy XX+ Cpp ]}= z(E), XESE
where Sy = {xER": Ax=b, dpx+dg, =&, x=0}.
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Let x, be an optimal level solution of the linear problem P(§,+6), where &, is a
feasible level, that is such that S‘éo = (& , with corresponding basis B, where '
= dyXy + dy, ; we partition the vectors ¢, ¢, as¢;= (¢;5, € »

€= (¢, Cyy) and the matrix Aas A=[B|N].

Set Tin=cn-cpBN. = - CpBTIN.

The following parametric problem is considered:

PE,+0): { Eo—iﬁ—max[(go+ B)c; + ¢, )X + ¢y ]}, XGSEO+ 6

The idea of the algorithm is to find a local maximum point for problem (5.2) by
generating a finite sequence of optimal level solutions; such a finite sequence

is found by testing feasibility and optimality conditions with respect to the
parameter 0.

More exactly, set:
w = B ™! where ¢™*'=(0,..., 0,1), u% = (ECp+ Cop) W, h% = CypW,

Co=CXg Zo=2(E), X(8) =x(E,+ B) =x,+ 0w, Hy(6)={6:x(8)=0},
E o +(Uh +¢,)B+3g, 62
z(0) = 10 and é the positive root (if one exists) of the
0

derivative of z(0).
The following Theorem gives suitable optimality conditions.

Theorem 5.1
i) If it results u% = Z,- ¢, and ?»% <0, then x is a local maximum point for

problem (5.2) (as a particular case X, 1s a global maximum point if 7\% =0),

ii) If § € Up(6) then x(6) is a global maximum point for problem (5.2);
iii) If x, is a vertex of S and there exist two different basis B,, B, such that

0 0 0 0 :
MR, <Zy- G andu32>zo~co (or UB, > 7%y~ ¢ andu,32< Z,-C, )thenx,isa

local maximum point for problem (5.2).

The algorithm suggested by Martein [54], is the following:
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Step 0.
Solve the linear problem minS (dyx + dg,) =&, and problem P(E,); go to step
X€E

1
Step 1. Calculate z,, c,, M% , l% If u% = ZO- Cy» then x, is a local maximum

point for (5.2) and go to step 4.
If IJ% # 2= ¢, find Up(0). If Ug(0) = [0*, 0], then go to step 2, otherwise

calculate 6. If ’é & Up(0), stop: x(é ) is a global maximum point for (5.2) .

If ’E\ME Ug(0) and Ug(B) = [6,, +oo [, stop: problem (5.2) does not have optimal
solutions.

If §¢ Uy(®) and Ug(B) = [0,, 6%, set = 6% and go to step 3.

Step 2. Find a new optimal feasible basis and go to step 1. If such a basis does
not exist then X, is a local maximum poiat for (5.2) and go 1o step 4.

Step 3. If 6% is an extremum point for Hy(8) then go to step 1, otherwise go to

step 2.
0
I
Step 4. Find a basis B such that 6 zT > 0 and go to step 5; if such
B

a basis does not exist stop: X, is a global maximum point for (5.2).
Step 5. Solve P(§, + 8); if such a problem does not have solutions, stop: Xy s a

global maximum point for (5.2) , otherwise go to step 1.

Since the set of local, non global, maxima is finite, the procedure of Martein
finds a global maximum in finitely many steps or it shows that the objective
function is not upper bounded.

Two variants of the Martein’s algorithm are suggested in [9].

In [26] Ellero and Moretti Tomasin present some theoretical properties of the
problem and a sensitivity algorithm for a class of local optimum points .

See also Ellero [25].

Ritter [63] gives an algorithm for a more general case of problem (5.2) i. e.

max G *x)=a'(c;x+c¢ )+a”M
xXES ! D dyX + dy,

where a’ and a” are real nonnegative numbers.
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Krupitskii [48] presents a parametric algorithm for the case in which the
feasible set is not necessary bounded.

Chatterjee and Sen [16], with the aim of solving a blCI‘lteI‘la linear fractional
problem with a linear objective function in which €1 = 0, consider problem
(5.1) , form a convex combination of the two objective functions and present
an algorithm for solving the following problem'

xrgaéﬁ F(X) = acx + (1-0) 75—~ d X do , e (0,1) (5.5)
where S* = {x €R": Ax=Db, x = 0},

Chatterjee and Sen [16] approached directly this problem starting from a basic
feasible solution x;; corresponding to the basis B and they established a
condition under which the solution can be improved and also conditions for
optimality criteria.

(1)

Denote c;x =2, ¢)x +¢pp=2z,and dyX +dy, = zzand let  z;”’ = c;pXp,
(2) _ (3)_

Zg " = CopXp+ Cp and z;” = dypXp+ dyy

where ¢y, ¢,3 and d,g denote the components of the vectors ¢y ¢ and d,

associated with the basic variables. We assume to know the following vectors:
—Rla . oD _ .2 . 3) =

y;=B'a;; & )j =Cip Yz )J =cpp Y 2 )j =dy ;-

CoBXp * €2

dypxp + doy

be the value of the objective function for the feasible solution xg = B! b,

x .
Set 6 = min {yii; 1y >0} andlet z = o + (1 - o)

Theorem 5.2 [16]
Let x5 be a nondegenerate basic feasible solution for problem (5.5). If for

every column a; in A, either the condition

Ly 2 @, _ e,

condition
0 (z(l)j - Clj) -
1w 2029(2; - ¢3)- 020 2P, - ¢y)- 0222 - (2D - )
o (299)%- (& z@ ‘:3‘,))2
holds, when z(3) C34 <0, then z,is the mammum value of problem (5.5) and

=0

the nondegenerate basic feasible solution xpis an optimal basic feasible

solution.
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Konno and Kuno [46] consider generalized linear fractional programming
problems

o X + Co;
P, :  minimize f;(x) = g(x) + CX + Gy
subject to

XES* ={x:Ax=b}
and '
P, : minimize f,(x) = g(x) - H

subject to

xeS* = {x:Ax=b}
where g is a convex function on S**, When g = 0 the objective functions f;
and f, are no longer quasiconvex nor quasiconcave, so that multiple local
optima can occur.

Assuming
CX+¢op>0and cyx + ¢ >0 Vx € Sk 5.6)

Konno and Kuno [46] embedded P;and P, into an (n+1)-dimensional master
problem and then applied a parametric associated approach.
The master problem associated with P is

2
Py o minF(x, &) =g(x) +& Lo +2C01) T2 szi‘ Con)”

subject to
xB)eS ={(x85:Ax=b, £>0}
while the master problem associated with P, is
Py: minFyx,8=gX)-28 \c;x + ¢y +E (65X +Cpp)
subject to
(x,5)es.
The objective functions F; and F, are convex for fixed values of £ > 0 and if
(x*, §*) is an optimal solution of P, (P,), then x* is an optimal solution of P,
(P,) under assumption (5.6).

In this way the algorithm developed by Konno and Kuno [46] for generalized
linear muttiplicative programming problem can be adopted for problems P,and

P2n
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On solving problem (5.3)

Consider problem (5.3) where S* is a nonempty compact polyhedron without
degenerate vertices, and assume that ¢, x + ¢;;> 0 and X +dyy >0 Vx & S*
Hirche [41] showed that if the set of the optimal solutions of (5.3) is nonempty
then there exists an optimal solution of (5.3) which belongs to an edge of the
polytope S*.

The problem (5.3) was also studied by Ellero and Moretti Tomasin [27] , [28];
they introduced the following definitions:

Definition 5.2

The real number £ is said a feasible level for (5.3) if there exists x* € $* such
that ¢ x* + ¢y =&

One can easily see that since S* is a compact set, the set of the feasible levels
(denoted by K) is an interval of R,

Definition 5.3
The point x* & S* is an optimal level solution (briefly : 0.l.s.) of (5.3) for the
level € =cx* + ¢, € K iff x* is an optimal solution of the following linear

fractional programming problem

CrX + Cpy
L L S ™

where S,é ={X&8* X+ ¢y =EL
Let L. be the set of optimal level solutions of (5.3) for the level & and Iet

L= U Lg be the optimal level solutions set of (5.3).
EEK

It is easy to proof that if x* € S* is a global maximum point for G, on S* then
x*€ L, & L (where & = ¢;x* + ¢, ) and if L. = & then there exists at least
one point of L, which belongs to an edge of S*.

Ellero and Moretti Tomasin [28] proposed a simplex-like algorithm for solving
the problem (5.3) when the set $* is bounded.

The algorithm is based on the exploration of the set of optimal level solutions
and it consists by the following steps.

Step 1 Determine an optimal solution X of the problem

Py: min {cx+ ¢y : xES}andlet £ = C1Xy+ Co; (€ 1s the current level).
Determine an optimal solution x,. of the problem PLF(E) and let B the
corresponding basis. Set X, =X, (X, is the current optimal solution).
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Step 2. Let s be the edge of S* identified by the basis B. Compute the
nonnegative numbers v, and v, representing the highest value with respect

to feasibility and level optimality, respectively, of the points of s.

Ifv, >0and vy> 0 then go to step 3; otherwise go to step 4.

Step 3. Set = min {v 42 Yolg)- Compute the point v, of global optimum of the
restriction v( € + v) of the objective function on the edge s with v € [0, A !

If vy=0and Gy(x(vy)) > G,(x,) then Xoc = X(Vg), E=E+ 4 and go to step 2.

Step 4. Compute (if one exists) an optimal basic solution Xo for PLE(E) chosen
among the optimal basic solutions not yet explored and let B the
corresponding basis. Go to step 2.

If there are no solutions of PLF(E) not yet explored then STOP : Xgpc is a
solution of problem (5.3).

Remark : According to Ellero and Moretti Tomasin [28] the previous algorithm
can be adapted for solving problem (5.2). But unlike the algorithms of
Cambini et al. [3] and Martein [54) this algorithm determine the maximum
when the set S* is bounded.

In another paper [27] Ellero and Moretti Tomasin give a different definition of

optimal level solutions and give an algorithm for solving the problem (5.3)
: . o : . CoX +Cop
even if S* is unbounded; in ‘thelr approach the function X T dy, is

parametrized.

6. Bicriteria fractional transportation problem

As is known, some fractional transportation problems can be viewed as
particular fractional problems, so that the previous approaches can be applied
to these. However, there are very few specific results referred to this problem.
In this section we present some of the results obtained in bicriteria fractional
transportation problems.

Consider the feasible region § of the classical transportation problem defined

by
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n
.Exij:ai’ i=1,..m

Exg v J=1,.
xijz-_O, i=1,.,m;j=1,..,n

where X;; represents the amount of the commodity to be shipped from source i

to destination j, a; is the available quantity at source i and bj denotes the

m n
demand level at destination j. We assume that E a;= 3 b.
jEe

Kanchan et al. [44] considered the problem of minimization on S of the

function
m n

> 3dix
f(X)_E Ecx RS Y 6.1)

21 glqu Hij

where it is assumed that 2 2 q;; X;j > 0 for all feasible solutions X = (;;)-
=1 j=1

They suppose that Cijs d and qj; are linearly dependent but Cij and q;j are
linearly independent so that the objective function f(X) is quasimonotonic,
Hence,
i) the optimal solution occurs at an extreme point of the feasible set;
ii) local optimum is global optimum.
Based on these properties Kanchan et al. [44] proposed a simplex-like
algorithm for solving the problem of minimizing the function (6.1).
However, Hirche [38] found out an example in which the al gorithm proposed
in [44] does not converge, so that the objective function does not attain its
minimum at an extreme point of the feasible set. He draw the conclusion that
the minimizer of problems with explicitly quasiconvex functions would be
determined by a simplex-like algorithm followed by a method of descent.
Misra and Das [57] generalized the results présented in [44] for three and
multi-index transportation problem with the objective function of the form
(6.1).

Let us consider now the case of two fractional objective functions
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i= ]

n
El _]Elll" ij
m

f,(X) = and f,(X) =

i g EME

n n
> En E“i'xi'
=1 =1 =

1=

m
where 3 Elijxijz() E Emuxu>0and 2 Enx > 0.
1=1 j=1 i=

We can construct a synthesis function of the form

(2 Elg 13)( 2 Eml_] 1_1)

F(X) = £,(X) £,(X) = (6.2)

m

2
(121 gln” %ij)

The function (6.2) is explicitly quasiconcave on S and also pseudoconcave,

The local minimum occurs at a basic feasible solution but the local minimum is

not global .

Sharma [69] considers the problem of minimization the function (6.2) on S and

provides a simplex-like algorithm ensuring a local minimum.

Stancu-Minasian [71] generalized the results presented in [69] for three and

multi-index transportation problem and Sharma [70] for three-index.

Furthermore, Stancu-Minasian [72] considers the problem of minimizing the

function (6.2) over a feasible set S obtained by adding constraints of the form
OSXijsgij, i=1L..,mj=1,.,n

Such kind of problems are then formulated as three-dimensional problems

(without the condition of capacity of quantity which is transported) and

solved by a method similar to the one described in [71] using a variable

transformation method.

Chandra and Saxena [15] present a technique for shipment completion date-

total shipping cost tradeoffs in the quadratic fractional transportation problem

(2 gcu Xjj + )’

minimize F (X) = ;n = (6.3)
Xe :HE— 2 IJ lj + B),_
n%mémsze {F(X) = max {t; : x;; > 0}} (64)
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where t;;is the time of transportation from the i™ source point to the j

destination point and it is independent of the amount of commodity
transported so long as x;; > 0.

They propose an algorithm which generates all solutions which are Pareto-
optimal with respect to cost and completion date. The algorithm is similar to

the one elaborated for the linear case by Glickman and Berger [33] .
Denote problem (6.3) by (P) (initially P,) and let Z* be the optimal value of

(P). If X*_= (x*) is one of the K alternate optimal solutions of (P), we consi-

* * *, * = i
der the set Sy = jl(l.l) X5 € X% x%;> 0 and T ohe K (D ES, b

Let us note that if problem (P) has not alternate optimal solutions, then

* *
T i3 %xsk {t1J X >O}

The algorithm finds, iteratively, all optimal schedules with earliest completion
times less than T*, till no other feasible schedule is found on the permissible
routes.

The steps of the algorlthm are as follows:
Step 1 Determine the set of all optimal solutions X* = {x*; } for problem P,

using Aggarwal’s method [1].
Step 2 Calculate Z*,and T*,. |
Step 3 Modify the cost matrices [c il and [a:lD ] to get the problem (P,), in the
following way:
*
M (arbitrarily large) if t=T,
ij *
c?, i if 1<T,
i = dou, forall (i, j)
Step 4 Optlmlze (P,) using the optimal solution of (P,) and a reoptimizing

procedure similar to Glickman and Berger [33]
Step 5 If (P,) has a feasible solution for the permissible routes, then new

* * * * * *
values (Z, , T, ) are obtained such that Z,> 2, and T, <T,.

& * *
The procedure is repeated: at each iteration we get (Z;l= ' T,), (2, T) .. till no

other feasible solution is found on the permissible routes.
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Saxena |64] applied previously the same algorithm (with minor modifications)
1o a problem in which the objective functions are (6.1) and (6.4).

Gupta and Puri [35], consider the problem
m

m n
( 2 2 Clj X T OL)(E 2 dij Xt B) £,(Xf,(X)

=1 i=

— _ 1 2
Xmax 2(X) = = 500 (6.5)

&S m

2 E eu 11

where f, 20, f,> 0, ;> 0 for al] X (x ) € S and 1, , £, are of non-conflicting
naturei.e. f, (X1)>f (X3 if and only 1f f,(XY > 1, (XQ)

The function z is a pseudoconvex function. The optimal solution of problem

(6.5) appears at an extreme point of S, The problem (6.5) is shown to be
related to "indefinite" quadratic programming (IQP) which deals with
maximization of a convex function over S for which a local maximum is a
global maximum (under certains conditions) and its optimal solution provides
an upper bound on the optimal value of problem (6.5). The extreme point
solutions of (IQP) are ranked to tighten the bounds on the optimal value of
(6.5) and a convergent algorithm is developed to obtain the optimal solution.

Basu et al. [3] have developed an algorithm to find the optimum time-cost
trade-off in a three-dimensional two-objective transportation problem, where
one of the objectives functions is the sum of a linear and a quadratic fractional
function and the other function is non linear. In their procedure, the possible
time-cost trade-off pairs are determined first and then the optimum
transportation plan is arrived at by using trade-off ratios.

As we have previously point out, it is clear that not much work has been
done in bicriteria transportation fractional programming.
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7. On generating the set of all efficient solutions for the
bicriteria linear fractional problem

In this section we present some sequential methods suggested for solving the
bicriteria linear fractional problem P, that is in finding the set of all efficient
solutions of P. Since a convex combination of the two objectives functions
does not have, in general, particular properties, some authors elaborated
parametrical methods for solving problem P. In such methods one of the two
objective functions is transformed in a parametric constraint. The set of all
efficient points is generated by means of a suitable post-optimality analysis.

Fori=1,2 set fi =max {Fix) : x € 8}, f;= max {Fi(x): xES ,F)(x) = fz},
cand fy=max {F,x):xE€S,F(x)> f,}
We have f; (x) <F,(x) <f, forxEE.

Foranywe [, f 11, consider the following parametric problem:
P(w) : max {F(x) : x €S, F,(x) = w }
The following results were given by Warburton [83].

Lemma 7.1

If x* is efficient, then there exists a scalar we [ { y» T 1 such that x* solves
P(w).

Lemma 7.2

A solution of P may be found among the solutions of P(w) over the interval

fi=swsf,.

Choo and Atkins [19] showed that any solution of P(w) for f, < w =< f, is

efficient and that P(w) can be solved as a parametric linear program.
More exactly, by the variable change y = tx, the program P(w) is transformed
in the following row parametric linear program Q(w)
Q(w) : max ( Y + Cot )
subject to
Ay-bt<0
doy +dppt =1
C1y + oyt = w( dyy +dgst), y=0,t=0,
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Choo and Atkins [19] give a parametric algorithm to evaluate the efficient
frontier. The algorithm uses only one-dimensional parametric linear
programming problem.

Parametric procedure of Choo and Atkins

Step L Solve (4.2) and (4.3) in order to obtain f,, f,.
Step 2 Starting from f; = w, and applying row parametric procedure,

determine w;, i=1, ..., r, such that Wy SW; S .. W, = f_1 and the
corresponding points ( y; , ;) , where w; occurs at the i-th basis change in the
parametric solution of Q(w; ).

Step 3 Let x; = Ztll— ,i=0, ..., 1, be the corresponding solution of P(w; ). Then

fB= ) Fix, ,x]

i=1

Parametric procedure of Cambini and Martein

Unlike Choo and Atkins, Cambini and Martein consider the bicriteria linear
fractional problem P for any feasible region (bounded or not). By means of the
Charnes - Cooper transformation applied to one of the two linear fractional

objective function (for instance the first one), problem P reduces to an
equivalent bicriteria problem where one of the objective function is linear, We

will refer to such a problem as:
CX + ¢,

P* : su sy Ao g) s XER={Xx: Ax=b,x =0}
p (ax ax + do) X { X x =0}
Congider the following scalar parametric problem
CX + ¢
P*(0) : su 0=ZB,X€R9

where R(0) = {x: Ax=b,ax=L-0,x=0}.
First of all, let us note that for any fixed 0, the linear fractional problem P*(8)

can be solved by means of a simplex-like procedure which works for any
feasible region, suggested by Cambini and Martein in [7, 8 ].
The following procedure is utilized for finding L.

Calculate Séps ax = M ; if M is finite then solve the following problem
X
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CX + ¢ " |
sup ﬁ, x & SN {x: ax = M}. If such a supremum is not finite then E=&

i CX + ¢, '
, otherwise set L = su » =S N {x:axz=M}.
Pax+ d,

If M = 4+ , there exists a feasible halfline r » whose equation is of the kind

CX + ¢
X=X,t+tu,t=0, such that sup ax = +» . Consider su L If
0 xepr xepr dx + d,

cX+ ¢
such a supremum is not finite then E = &, otherwise set L = sup ——2
P - ey dx+d,

The relationship between the optimal solutions of P*(8) and the set E of all
efficient points of P* is given [10, 55] by:
E= BE[OUB ! S(8) where S(6) is the set of optimal solutions of P*(0) (it

can be proved that S() is nonempty for any 6 > 0) and 8,5 = +% or is such
that z is increasing in [0, 8,,.x] and constant in [Bax » % ]; so, E can be
generated by performing a suitable post-optimality analysis on P*(9).

For a fixed value 6 of the parameter, let x* be an optimal basic solution of
P*(é\ ) with corresponding basis B; we partition the vectors x*, ¢ ,and d

as x* = (x*g, X*) , ¢ = (0, ¢y), d = (dg , dyy) and the matrix A = [(A; 2)] as
A=[B|N].

Set  Ty=oy-cgBN, dy=dy-dgBN, &y=ext4cy, dp=dx* +dy,

v=dg 8y~ Sy, ¥®) =y - 0w withw =), dy- Uy S » Where g and p,
are the last components of the vectors c;B™ and dzB™, respectively:
X*g(8) = x*g - 0 h where h is the last column of B™.

The parametric analysis is performed by studying the optimality condition

¥(8) < 0 and the feasibility condition X*5(0) = 0. With regard to the optimality

condition, set I, = {i: w; < 0}; if I, = ¢ then y(8) < O for any 8 = 0, otherwise

Y0 =<0 V6&([0,0,] where B, = inéh%l -;% = %{]:

With regard to the feasibility condition, set L={i:h>0}.

If 1,= then x*5(6) = 0 for any 0 = 0, otherwise x*g(8) = 0 V6 €[0, 0,]
X*p; X',

where 6, = min :
i€l hi "k
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As a consequence, for any 6 €[0, 8], where 0 = min {6,, 0,1}, x*5(0) is the
optimal solution of the problein P*(6); when 0> 8 and 6 = 9, , feasibility is

restored by means of dual-simple like algorithm; when 6>8 and 6 =6,

optimality is restored by means of Cambini and Martein’s algorithm [7].
The sequential method suggested for solving problem P*(0),0€]0,0__is

the following:
Step 0. Solve P*(0) and let x*5(0) be an optimal basic solution; set i = 0 and

go to step 1.

Step 1. Consider P”‘(Bi + 0), 0 = 0; calculate y(B), x*Bi(e), 0 and set

B”’I =0 + 8; x#gl*l = x*5'( 8) is an optimal basic solution for P*(0i+]), If
2(0'1) = (0", then 0= 0, stop; otherwise go to step 2.

Step 2 If 6 =6, < + then Xy, enters the basis by means of a simplex-like

pivot operation; set i = i+1 and return to step 1.

I 6= 0, < 400 , then xBj must leave the basis and a pivot operation is
o) o O
| ay 8j<0, 1€L, ¥j

step 1. Otherwise x*3"™1(6) is optimal for P*(61 + 8), 0,,.,= +% ; stop.

performed on % such that ; seti=i+1 and return to

When F,(x) and F,(x) have the same denominator dx+d,, problem P* reduces
to a bicriteria linear problem as outlined also by Dutta et al. in [24] which
compare their method with the one proposed by Nykowski and Zolkiewski
[58] which reduce the problem to solving the following three criteria linear
programming:

Xnéaé; (€4 +Chy s X+, -dx - dy) for Fyx)>0 ¥ xES, j= 1,2,

and

xrréa)st (clx+001,02x+002,dx+d0) for F(x)<0 Vx €8, i=1,2.

The method of Dutta et al. [24] is computationally less cumbersome than the

one of Nykowski et al. [58] which is sujtable for probiem with different
denominators.
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Applying the variable transfomation y = tx to problem P , where t = 0 is such
that
dy+dyt=a, aE€ER,i=12,

problem P becomes

max ( ¢y + cyt, ¥ + cgot )
subject to

Ay-bt<0

dy+dgt=oy, i=1.2

y=0,t=0
Let Y be the feasible set of this problem. It is possible for Y to be empty for
any chosen o,. Kall’s theorem [82] gives some conditions for Y to be
nonempty for any chosen o,

8. Bicriteria problems and bicriterion mathematical programs

In section 4 it has been pointed out that an efficient solution of the bicriteria
problem P can be found by solving the bicriterion program (4.1), where U is a
suitable utility function.

The problem can be also reversed: the knowledge of the set E of all efficient
points can be used in order to find an optimal solution of (4.1) for a given
function U?

Geoffrion [32] gives an answer to this question when F, and F, are real-
valued concave functions of x and U is a real-valued increasing function with
respect to each argument. He suggested a method for solving problem (4.1)
based on any known parametric programming algorithm for the parametric
program: -

P() : max {tF,(0) + (I-)E,(x)}, tE[0,1],

The procedure suggested by Geoffrion can be applied only for functions
F, and F, which are concave because the more general class of functions is

not closed with respect to addition and multiplication with positive scalars.
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The results of Geoffrion are extended by Marchi [S1] to classes of non

necessarily concave functions. She showed that the optimal solutions of
problems Py, and Py, are contained in the set E, of all efficient solutions of Pg,

and the set E, of all efficient solutions of Py 2 where
Piyi mag hE (L E00) 5 By max hy(Fi(, Fy(x)

h, is an increasing function in each argument, h,is a function increasing in
the first argument and decreasing in the other, F, and F, are continuous

functions and

Py X (Xmea)é F,(x), Xnéué Fy(x)) and PBZ: (Xngué F(x), xrréins Fy(x)).

Also, Marchi [51] considered classes of problems more general than Ph1 and
P, 5 i.e.
Py, max hy(FFE (), GEW) 5 Py, max hy(FF (). G(Fy(x)

where h,and h, have the above properties and F and G are increasing
functions.
For other results related to bicriteria problems see also [52], [53].

Pasternak and Passy [59] considered the case where U is a strictly
quasiconcave function and where F, and F, are linear functions, extended the

Geoffrion’s method for including boolean variables.

Prasad et al. [62], developed an algorithm for maximization and minimization
of bicriterion quasiconcave function g(c,x, ¢,X) subject to linear constraints.

The algorithm for maximization is based on bisection approach whereas the
one for minimization is an implicit enumeration method.

9 Conclusions

In this paper we have reviewed the main theoretical results and computational
approach obtained up to now in bicriteria fractional programming (BFP). From
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the review it is clear that much work bas been done in (BEP). It is found that
certain methods offer appreciable computational advantage over the others in
terms of computer time requirement. Thus, there is an urgent need for
computer based numerical experimentation to compare various BFP methods.
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