Report n.111

On the Connectedness of the Efficient Frontier;
Sets Without Local Maxima

Anna MARCHI

Pisa, Luglio 1996
Thisresearch was supported in part by the Ministry of Public Education.



On the Connectedness of the Efficient Frontier :
Sets Without Local Maxima

Anna Marchi
Dept. of Statistics and Applied Mathematics
University of Pisa

Abstract

In this paper the concept of Set Without Local Maxima is
mmtroduced. By means of this concept we shall investigate the
connectedness of the efficient frontier for vector maximization
problems defined by functions whose local maxima are global.
Conditions under which the outcome of a vector function is a set
without local maxima are established. Applications for bicriteria
and three criteria problems are given.

0. Intreduction

The connectedness of the efficient frontier for vector maximization
problems 1s an important field of study because of its applications [3]. One
of the most recent papers on this subject was given by Hu and Sun [2].
They introduced the concept of a strictly quasi concave set in order to
prove the connectedness of the efficient outcome set. A crucial assumption
in their work is the closure of this set. In order to consider a wider class of
sets and relax the assumption of closure, we shall introduce, i this paper,
the concept of set without local maxima and study some properties of this
set. Relationships between a set without local maxima and a strictly quasi
concave set are studied and some sufficient conditions for the
connectedness of the efficient frontier are established in two dimensional
and three dimensional spaces. The results obtained are more general than
the ones given by Schaible [5] , Choo - Schaible - Chew [1] and Marchi
(4] and the suggested approach allows us to find some of the results given
by Warburton in [6], in a different way.



1. Sets Without Local Maxima and their properties

Let T ¢ IR™ be a not empty set. We shall consider the Projection
function P; : T—IR defined by Pi(r) = rj and we shall introduce the concept
of Set Without Local Maxima.

Definition 1.1: T < IR™ is said to be a Set Without Local Maxima
(SWLM) iff P;is a function whose local maxima! are global in T for
anyie {1,2,..,m}

The upper level sets of functions P; are:
Lpi(oi) ={reT|rizai}
for every aje Gi={ o eIR|Lp; () =}, ie {1,2,..,m}.

Definition 1.2: The point to set mapping Lpj (i) is said to be lower semi
continuous (lsc) at the point « j € Gi if r e Lp; (o) , {5} < Gj
{cXi} — o i imply the existence of a patural number M and a sequence
{ t* } such that * e Lpj (o¥) (with 1% 2 0¥ ) k=M, M+1,.... and §
o '

Now we are able to prove the following theorem of characterization
for sets without local maxima:

Theorem 1.1: Lp; (o) is Isc ¥V oj e Gj iff P is a function whose local
maxima are global in T.

Proof: Directly, taking into account the results obtained by Zang in [7]
regarding functions whose local maxima are global.

For the sake of simplicity, from now on we shall assume that T is a
compact set.

! Definition: A point R = (1€ 100 100 =1 o0 Tocal maximum for Pj in T but not global if
there exists a 8 >0 such that P;(r) S.Pi(Rl'loc), vYreBs R 1"10‘:) ~ T, where B3(r) denotes an open ball with
tadius 3 centered around r and there exists r such that Pi(r) > Pi(Rl“loc).



Set ;™ =max Pi(r), reT and Si= {r e T|1; = ;"™ }. Let us note, if
T is a compact set then Sj # & foranyie {1,2,,.,m}.

Theorem 1.2: TisaSWLM iff r e T and r ¢ Sj imply the existence of a

natural number M and a sequence { ¥ } — r such that ¥ >, k=M,
M+Hl,..... foranyi=1,., m.
Proof: Directly, taking into account Theorem 1.1 and the definition of local
maximum for function P, defined on T.

Theorem 1.3: Let R“™ ke the unique element of S; for any i e {1,2,..,m}.
If T is a SWLM then T is a connected set.
Proof: Suppose that T is disconnected; then there exist compact sets T}

and To of T suchthat T =T u Tg, T1 N Ty =&. Consider the
optimal solutions ! and r? of max Pi(r), r € T1 and max Pi(r), r e Tz,
respectively. Since r' e T and r* e T2 , then 1! # 2 . Taking into
account that there exists a unique element belonging to Sj, Ri*M3% = rl
or®. If R =rlthen 1! > 1% Since 1> 1; vr e Ty and Ty N Ty =0
then there exists a 5>0 such that Bg ?) ~ T2 =Bs (t*) and r?>1; Vr
e Bs (%), where Bg(r) denotes an open ball with radius & centered
around r. Hence, 12 is a local maximum for P; on T and this contradicts
the assumption.

2, Connectedness of E(T, IR™,) and WE(T, IR™,)

Let us consider the set of maximal elements of T denoted by E(T,
IRm-p-), ie.

E(T,R™)={reT|reT,suchthat r> r?, does not exist },
and the set of weakly maximal elements of T denoted by WE(T, IR™,), i.e.

WE(T, R™)={reT |reT,suchthat r> 1, does not exist}.

*Forany y' , ¥ cR™, y' = meansy' -y? e R\ {0 Ly v meansy! -y cint R,



In {2] the concept of Stni-ctly Quasi Concave set is defined in the
following way.

Let the set Y cIR™ be non-empty.'

Definition 2.1: Y is said to be Strictly Quasi Concave if for any y* , y* e Y

and y'x y?, there exists some ze Y such that
i) z= min {y!,y? }’,

i) z > min { y4, y% },Viefi|yhi=y4 }.

In the same way we are able to define the congept of Strongly Quasi
Concave set;

Definition 2.2: Y is said to be Strongly Quasi Concave if for any y'y’e Y,
y'2 y? there exists some zeY, z » y'» y* such that z > min {y*, y? }.

As regards the connectedness of E(T, R™,), in [2] we have the
following result. : '

Theorem 2.1: Let Tc IR™ be compact and E(T, IR™.) be closed. If T is
strictly quasi concave then E(T, IR™,) is connected.

In order to relax the assumption of closure of set E(T, IR™,) we will
study for which sets this property is verified. First of all, we will establish

under which conditions E(T, IR™.) = WE(T, IR™,), since it is easy to prove
the following theorem:

Theorem 2.2: If X IR™ is a closed set then WE(X, IR™,) is a closed set.

Lemma 2.1: If §; has a unique element, R*™2X then RFM2X j5 a maximal
element of T,i=1,2, .m.

Lety! =(v'1, ¥, ..¥'m) §=1,2 be two arbitrary points of K™, we denote by min {y' , 2 } the infimum of
yl and y2 ,i.e. the greatest lower bound of y] and y2 in the order generated by R™



Proof: If RIMaX T is the unique element belonging to S; thenre T, 1=
R¥M3% guch that 1 = Ri™™* does not exist. Hence, re T such that r 2
R™™* does not exist then R™™ is a maximal element of T.

Suppose T is a SWLM, the following theorems show under which
conditions E(T, IR™,) = WE(T, IRZ,) and, consequently, we have the
closure of E(T, IR™). Suppose Sj has a unique element R™j =1 m we
have the following result:

Theorem 2.3: Let Tc IR™ be a SWLM and w° ¢ T a weakly maximal
element of T. If there do not exist other weakly maximal elements in

the set w® + IR/™ except on the (n-1) dimensional face of w° + IR/™
then w° is a maximal element of T.

Proof: Taking into account Lemma 2.1, if w’e S; then w? is a maximal
element of T. Otherwise, if weT is a weakly maximal element of T
then re T such that r > w® does not exist and we have to prove that w°
is a maximal element of T, i.e. *e T such that r* > w® does not exist.
We suppose that r*e T such that * > w¥ exists. Taking into account
the assumptions, we have that there exists an index j such that w%= 5*
and w'< r* for any i e {1,2,...m} ixj. Hence, since r > w® does not
exist, there exists a neighbourhood Irx of r* such that ;* > rj for any re
I+ T, then r* is a local maximum for function Pj on T. This is
absurd since T is a set without local maxima.

Corollary 2.1: Let T R™ be a SWLM and w° e T a weakly maximat
element. If there do not exist other weakly maximal elements in the set

w? + IR™ except on the (n-1) dimensional face of w° + IR/ then F(T,
IR™,) = WE(T, IR%:) is a closed set.
Proof: Directly from Theorems 2.2 and 2.3.

Regarding the Strongly Quasi Concave set, we have the following
result:

Lemma 2.2: If TcIR" is a Strongly Quasi Concave set then:
1) T is a Strictly Quasi Concave set,

i) Sihas aunigue element R™* for any i e {1,2,..,m}.



Proof: i) Directly from definitions; ii)We shall suppose, ab absurd, that
there exist y! ,y? € i, ie. yli=y% and aze T such that yli = y% <z
does not exist. If T is a Strongly Quasi Concave set then there exists
ze T, z 2 y'# y? such that z > min { y', y? }, hence, there exists a ze
T such that y'; = y% < z; . This contradicts the assumption.

Let us note that result i) of Lemma 2.2 is not true for the class of
Strictly Quasi Concave sets.

Theorem 2.4 and 2.5 below will tell us the relationships between
Strictly Quasi Concave sets and sets Without Local Maxima when T is a

subset of IR? and R2.
SetInt (Lpi (0i))={reT|ri>a; } and Fr (Lp; (o)) = {r e T|ri=a; }.

Remark 2.1: Let us note that if r*e Int (Lp; (e;)) then for every sequence
£} > r* there exists M>0 such that £ >r¥ k=M, M+1,.....

Theorem 2.4: Let T— IR? be a SWLM and y!, y? two maximal elements
with one equal component. If there exists a z> min {y' , y* } then T is
a Strictly Quasi Concave set.

Proof: We must prove that for any A, B € T and A= B, there exist some z
€ T, such that
)zzmin{A,B},
i)zi>mn{ A;,Bi},Vie{i|Aj=B;}.
If A>B thenmin { A, B }= A then z=B verifies i) and ii).
If the condition A>B is not verified then we can have the following
cases:
aymin { A,B}=[A1,A2, B3] withA;< By, A2< Brand A3>
B3. Letus consider Lpi (A1) = {reTiri=A1}andLp; (A2) =§r
e T|r2z A2}, we have B e Int (Lp; (A1) and B e Int (Lps (A2)), this
means, for Remark 1.1, that there exits M>0 such that in every
sequence { *} 5> B 1> Ay and 5 >Ap VW k= MM+, ..... Taking
into account Theorem 1.1, Lp; (B3) is lower semi continuous then for
everyr e Lps (B3) and §{ 3 } —> B3 there exists a M3 and a sequence
{ ¥ } - r such that ©* e Lp; (1%3), ¥ k =M3,M3+1.... Let us consider
the sequence {r3} = {1/k Az + (1-1/k) B3}. Taking into account Be



Lps (B3) and { r¥3 }—> Bj then there exists a M3 and a sequence { * }
— B such that B3 < 13 < Az, V k =M3,M3+1..... This means that z =
™ V k > min (M3, M) verifies i) and ii).
bymin{ A,B}={A1,Ar=Ba, B3] with A;j < By and A3 > B3
then A e Int (Lp3 (B3)), B e Int (Lp1 (A1) and A, Be Fr (Lpz (A2)).
Let us consider the optimal solution DeT of the following problem:
Dy = max rp,reT. We have that Dy > Az = Bs.

112A1.13>B3
IfDy > Ay =B (D1 > A1 and D3 > B3 ) then z = D verifies i) and ii),
otherwise A and B are maximal elements of T with one equal

component. Taking into account the assumption, a z e T exists such
that z > min {A, B}.

In the particular case when T is a subset of IR? we have:

Theorem 2.5: If Tc IR? is a SWLM then T is a Strictly Quasi Concave
set.

Proof: It is sufficient to observe that if Te IR? is a SWLM the assumption
of Theorem 1.4 is verified. In fact, we suppose that two maximal
elements y!, y?eT with one equal component exist and that a z> min
{y', y? } does not exist, then y;'=y;2 and y2!< y»? and a z > min {
yLv? ¥} =[y1'=y:2, y2! ] does not exist. This means that there exist a
neighbourhood Iy; of y? such that y,?2 r) for any re Iy, then y? is a
local maximum point for function Py on T. This is absurd since T is a
set without local maxima,

Remark 2.2: Let us note that the viceversa of Theorem 2.5 is not true
since it is possible to give examples of Strongly Quasi Concave set
which are not connected while a set without local maxima is connected
(see Theorem 1.3).

As a consequence of the previous results, we have the connectedness
of E(T, R™),
Corollary 2.2: Let Tc IR? be a SWLM, w° e T a weakly maximal

element of T and y', y* two maximal elements with one equal
component. If there do not exist other weakly maximal elements in the



set w® + IR;™ except on the (n-1) dimensional face of w°+ IR™ and a

z>min {y', y? } exists then E(T, IR>,) is connected.
Proof: Directly from Theorem 2.4 and Corollary 2.1.

It is easy to find examples to show that the conditions in Corollary 2.2
are sufficient but not necessary.

In the particular case, Te IRZ, we have the following result.

Corollary 2.3: If Tc IR? is 2 SWLM then E(T, R%,) is a closed and
connected set.

Proof: Directly from Theorem 2.5 and Corollary 2.1. Taking into account,
if w® is a weakly maximal element and another weakly maximal

element r* exists on the one dimensional face of w° + IR.2 then r*isa
local maximum element.

Let us note, with the same approach used for the previous results, that
we obtain the closure of set E(T, IR™) when T is Strongly Quasi Concave
and, therefore, the connectedness of E(T, IR™).

Lemma 2.3: If T IR™ is a Strongly Quasi Concave set then E(T, IR™,) =
WE(T, IR%,) is a closed set.

Proof : If Tc IR™ is a Strongly Quasi Concave set we have to prove that
every weakly maximal element is a maximal element of T. For
Lemmas 1.1 and 2.1, if w° e S; then w° is a maximal element of T, If
wl ¢ S ie {1,2,.,m} we shall suppose that w® is a weakly maximal
element but not maximal element. Then r > w® does not exist but a r*
e Fr (w® + IR™) exists, hence, for some components r* > wi®, and
for the others r* = wi®, min { r*, w® }= w'. Since T is a Strongly
Quasi Concave set then z > min { r*, w® }= w° exists, this is absurd
since w® is a weakly maximal element of T.

Corollary 2.4: If Tc R™ is a Strongly Quasi Concave set then E(T, IR™) is
connected.

Proof: Similar to the proof of Theorem 3.1 given in [2] and taking into
account Theorem 2.2 and Lemma 2.3.



3. Vector Functions Without Local Maxima

Consider the vector maximization problem:
Py max F(x), xeX

where X IR is a compact set and F: X— IR™ is continuous function,
F(x)= (f1(x), £2(x),.., fm(x)) and F(X) cIR™

Letfi(X)=max fi(x), xeX and Si={xeX|fix) =fi(x)} for
any ie §{1,2,.,m}. _ -

In this section we shall state for which class of vector functions F, the
outcome F(X) is a set without local maxima and we shall establish that this
class is wider than the class of strictly quasi concave functions,
considered by Hu and Sun in [2]. |

First of all, the following theorem states that the outcome of a vector
function with functions whose local maxima are global is a set without
local maxima. _

Theorem 3.1: If £1(x), f2(x),.., fm(x) are functions without local maxima
on X then F(X) is a set without local maxima.
Proof* If f; does not have local maxima on X then foranyx eX and x ¢ S,

there is a sequence {x*}— x with x* X such that £(x¥) > fi(x) and,
for the continuity of £, {fi(x*)} — fi(x). Now, if we consider F(x) and
{ F(x*) } we have that § F(x*) }— F(x) with fi(x*) > fi(x) , hence, F(x)
is not a local maximum for function P; on F(X). For Theorem 1.3, F(X)
is a se without local maxima.

Taking into account previous results, in the bicriteria case, we obtain the
same results given by Marchi in [4]



Theorem 3.2: Let F: X— IR?, F(x)= (fi(x), f(x)). If fi(x), f(x) are

fimctions without local maxima on X then E(F(X), IR?) is closed and
connected.

Remark 3.1: Let us note that a strictly quasiconcave function does not
have local maxima which are not global, hence, we have for this class of
functions that F(X) is a set without local maxima,

In the following lemma, we will note that F(X) may be a set without
local maxima also when a function { has local maxima on X.

Lemma 3.1: Suppose f; has a local maximum on X, x°°c X . If xe X such
that F(x) = F(x'°°) exists and x is not a local maximum for f; on X then
F(x'°°) is not a local maximum for function B on F(X).

Proof: If x is not a local optimal solution for f in X then there is a
sequence {x*}— x with xX €X such that fi(x¥) > fi(x) and, for the
continuity of fj, {f(x*)} — fi(x). Now, if we consider F(x) and {F(x¥)}
we have that { F(x¥) }— F(x) = F(x'°) with i(x*) > £i(x), then F(X) is
not a local maximum for P; on F(X).

Example 3.1: Consider the following bicriteria problem:

Pg: max F(x) = (fi(x), f2(x)) , xe X =[-1,4],
where f1(x)= x%(x-3) and fa(x)= - x(x-3) . It is easy to verify that x=0 is a
local maximum while x=3 is not a local maximum for f; on X. Since F(0)
= F(3)= (0,0) then (0,0) is not a local maximum for P; on F(X).

Regarding a strongly quasi concave vector function, we obtain the

same results given by Warburton in [6] with respect to the efficient
frontier.

Theorem 3.3: Let X be a convex set. If F: X— IR™ is a continuous and
Strongly Quasi Concave function then:
i) F(X) is a Strongly Quasi Concave set,
i) E(T, IR™;) = WE(T, IR%,) is a closed and connected set.

Proof : i) Let x', x’¢ X and F(x') # F(x?); since F is a continuous and
Strongly Quasi Concave function, we have :



[]

[2]

[3]

[41
[5]
t6]

[7]

fi(0x'+(1-0)x)>min [ £ (x1), i (x?)]
foranyie {1,2,..m}, e (0,1). By the convexity of X, 0 x'+(1-0) x?
e X, ie {1,2,.,m}; therefore, there exists z = F(® x'+(1- 0) x?) such
that z» min [ F(x!) ,F (x»)1;
i) Directly, taking into account Corollary 2.4.
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