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1. Introduction

One of the most widely studied vector optimization problem in social and
economical sciences is the bicriteria problem.

For such a reason, some authors focused on their study on such a particular
class of vector optimization problems, in order to find specific optimality
conditions or specific properties of the objective function [4, 12, 15].

One of the aim of the paper is to compare, in the bicriteria case, some classes of
vector valued generalized concave functions, recently introduced by some
authors 3, 5, 6,7, 8, 10, 11].

In particular, we will prove that, under continuity assumption, the classes of C-
quasiconcave type functions, introduced by Luc, see [11], coincide with the
classes of (C,C)-quasiconcave and (C,C%)-quasiconcave functions introduced
by the author.

It is pointed out also that it is possible to give a first order characterization for
(C,C)-quasiconcave functions (let us note that this is not possible [6] when the
image of f is a subset of R", with n>2) and that it is possible to extend, in the
bicriteria case, a classical result given by Martos [14].

Furthermore some new classes of generalized concave vector valued functions
are defined by means of a polyhedral cone C and their inclusion relationships
with other classes are studied.

1 This paper has been presented to the Sth Symposium on Generalized Convexity, held in Luminy,
Marseille (France), in June 1996, and has been submitted for refereed publication to the Proceedings of

the Conference.



2. Definitions and preliminary results
Several classes of vector valued functions have been recently defined by some
several authors in order to extend to the vector case the concept of scalar
quasiconcave functions, see [2]; one of the aim of this paper is to compare the
following classes of functions in the bicriteria case: consider a function f:S—®R™,
with SCR" convex, and a closed, convex cone CcR™, with nonempty interior;
from now on we will denote with C° the cone C without the origin, with C00
the interior of C and with C* the positive polar cone of C.
A function f is said to be:
C-quasiconcave [11] if Vx,ye§, x2y, Vze R™ it holds:
fx)ez+C, f(y)ez+C = f(x+My-x))ez+C VAe(0,1);
strictly C-quasiconcave if Vx,ye 8, x2y, Vze R™ it holds:
f(x)ez+C, f(y)e z+C = f(x+My-x))ez+CY Vie (0,1);
(C* C*)-quasiconcave (3,5, 6] if Vx,yeS$, x2y, it holds:
f(y)e f(x+C* = f(x+My-x))ef@)+C* YAie(0,1),
where C*,C¥e {C,C°,C%};
polarly C-quasiconcave [7-10] if Vpe C*, p=0:
the scalar function f,(x)=p™(x) is quasiconcave;
polarly semistrictly C-quasiconcave if Vpe C*, p=0:
the scalar function f,(x)=p™(x) is semistrictly quasiconcave;
polarly strictly C-quasiconcave if Vpe C*, p#0:
the scalar function f,(x)=p™f(x) is strictly quasiconcave.
It is easy to verify that the classes of polarly C-quasiconcave type functions are
propetly contained in the C-quasiconcave type ones defined by Luc;
furthermore the classes of (C*,C¥)-quasiconcave functions contain properly the
previous ones.
When C is a polyhedral cone, so that also its positive polar C* is a polyhedral
cone[1], we can define the following new classes of vector quasiconcave
functions.

Definition 2.1 Let f:S—R™, where SCR" is a convex set, and let CcR™ be a

polyhedral cone. Then a function f will be said to be:

) C'-quasiconcave if d"{(x) is quasiconcave for every extreme vector d of
Cc*;

iy semi C*-quasiconcave if d'f(x) is semi quasiconcave for every extreme
vector d of C™;



i) strictly C*-quasiconcave if d'f(x) is stnctly quasiconcave for every extreme
vector d of C*;

iv) semistrictly C*-quasiconcave if de(ix) is semistrictly quasiconcave for
every extreme vector d of C*. |

Let us note that these new classes of f{mctions are more general than the
polarly C-quasiconcave type ones and are more restrictive than the C-
quasiconcave type ones. '

Remark 2.1 When the polyhedral cone'C is the Paretian cone C=R™, then
C*=C and the above defined C*-quasic@ncave type functions become the
componentwise quasiconcave type functibns; in other words these functions
can be considered as a generalization, with respect to a polyhedral cone, of the
componentwise quasiconcavity,

As we have already said, in this paper we will analize the previously reminded
functions in the bicriteria case. With this a{im, from now on we will consider a
closed, convex, pointed, polyhedral cone C=R? with nonempty interior in the
following form: :
C={xe R x=Au;+hu; , 420, uie K2, i=1,2}, (2.1a)
so that its polar cone, verifying the same ﬁ)roperties, can be considered in the
form:

Ct={xe R% x=p,d;+,d, , 1:>0, die R?, i=1,2}. (2.1b)
Note that C and C* have nonempty interiors if and only if vectors u; and d;
respectively are linearly independent. |

3. Relationships among the classes in the ébicriteria case

Now we will study in the bicriteria case t?he relationships existing among the
classes of functions introduced in the previbus section.

As regards to (C,C)-quasiconcave and C-qﬁasiconcave functions, the following
Example 3.1 focus on that when the imageiof f is a subset of R the class of C-
quasiconcave functions is properly includc—*fcd in the one of (C,C)-quasiconcave
functions; Example 3.2 points out that this inclusion is still proper in the
bicriteria case when f is not continuous. |



Example 3.1

Let f:R3R3, £(x),X,)=(X1,X0,-X X, ), and let C=3? ; this function is (C,C)-
quasiconcave but not C-quasiconcave (neither strictly C-quasiconcave) in the
sense of Luc. Set x=(1,0), y=(0,1), z=(0,0)§ and w=x+(1/2)(y-x)=(1/2, 1/2), then
f(z)=(0,0,0), £(x)=(1,0,0)e f(z)+C, f(y)=(0,1,0)e f(z)+C and f(w)=(1/2,1/2,-
1/4)e f(z)+C, so that f is not C-quasiconcavée. It can be verified that f is a (C,C%-
quasiconcave function, since f(y)e f(x)4C, x#y, implies that x;x,=y,y,=0,
¥12X20 and y,>x,20, and this happens if and only if y;>x;20 with y,=x,=0
or y;=x,=0 with y,>%,20 so that f(x+A(y-X))e f(x)+C® VA& (0,1).

Example 3.2
Let us consider the Paretian cone C= ':R and the function f:S—R? with
S={(x,y): xe[-1,1], y<0}:

(x,-x) forxe E—l,l], x#0, and y=0
f(x, ){ (-2,2) foif x=0 and y=0

(-1/2,-172)  for xe[-1,1] and y<0

fis (C,C)-quasiconcave in S even if, for p=(-1/2,-1/2) (u=Ff(x,y) Vy<0, xe [-1,1])
the following C-upper level set is not convex:

UE={(x.y): xe [-1/2,1/2M0}, y=0}{(x,y): xe [-1,1], y<0}.
Since C-quasiconcavity is equivalent to thb convexity of the C-upper level set
[11], the function f is not C-quasiconcave.

+
L]

The following theorem proves that in the bicriteria case, under continuity
hypothesis, (C,C)-quasiconcavity is equ1valent to C-quasiconcavity, as well as
to C*-quasiconcavity. '

Theorem 3.1 Let f:S—>R?% where Sgi)i“ is a convex set, be a continuous
function and let CcR? and C*<R? be as described in (2.1).

Then the following properties are equlvalent

1) fisa(C,C)-quasiconcave function;

ii) fis a C-quasiconcave function;

iy fis a C*-quasiconcave function,

Proof We firstly prove, as a preliminary rﬁ}sult, that if ;T (y)=d,"f(x), i {1,2},
then either f(y)ef(x)+C or f(x)ef(y)+C.

Let je {1,2}, j#i, and suppose ab absurdo that f(y)e f(x)+C and f(x) f(y)+C;
then by means of a known separation theorem, Ap;,p,e C*, py,p,#0, such that



p1"f(y)<p,™(x) and p,TECX)<p,TE(Y); set: p=pldi+pld; and p,=pid; +udd; ;
since d;Tf(y)=d,Tf(x) we have:
KT and (8074 TEY),

then pj and p? must be nonzero so that! de(y)<d Tf(x) and d;"f(x)<d;"f(y)
which is a contradiction. ;
Using this preliminary result we are now able to prove the thesis.
By means of the results described in the previous section we just have to prove
that condition i) implies condition iii). Suppose ab absurdo that Jie {1,2} such
that d;"f(x) is not quasiconcave, so that :Elx,ye S, x#y, dA1€(0,1) such that
d;"f(y)2dTf(x) and &;Tf(x+),(y-x))<d,"f(x). By means of the continuity of f,
there exists A,e (A;,1] such that d;Tf(x+A,(y-x))=d;Tf(x), so that cither
f(x+A(y-x))e FEHC or F(x)e Fx+A(y-x))+C.
The (C,C)-quasiconcavity of f implies: :

fx+My-x)ef(x)+C or fx+A(y-x))e f(x+A(y-x)HC Ve (0,A,),
so that d;Tf(x+A(y-x))2d;"f(x) or diTF(x+A(y-x))2d;Tf(x+A,(y-x))=d;Tf(x)
Ve (0,h,) which is a contradiction since L€ (0Ay). W

Remark 3.1 Let us note that the equlvalence between ii) and iii) is also proved
by Luc in [11].

Remark 3.2 Note that when C is the Parétian cone of R, the previous results

state that the (C,C)-quasiconcavity and the C-quasiconcavity of the function
can be characterized by means of its componentwise quasiconcavity.

The following theorem shows that in tﬁe bicriteria case, under continuity
assumptions, (C,C%)-quasiconcavity is equlvalent to strictly C-quasiconcavity,
as well as strictlty C*-quasiconcavity,

Theorem 3.2 Let f:S—R? where Sgi)?“ 1S a convex set, be a continuous
function and let CcR? and C*<%R? be as described in (2.1).

Then the following properties are equlvalent

) fisa (C,C%-quasiconcave function; |

ify fis a strictly C-quasiconcave function; :

iii) fis a strictly C*-quasiconcave function,

Proof By means of the results described in the previous section we just have
to prove that condition i) implies conditi(j)n 1ii); note also that, by means of
Theorem 3.1, since a (C,COO)-quasiconcavq function is also (C,C)-quasiconcave



then f is a C*-quasiconcave function. Suppose ab absurdo that Jie {1,2} such
that din(x) is quasiconcave but not strictly quasiconcave, so that Ix,ye S, x#y,
%1€ (0,1) such that d;"f(y)=d;"f(x) and d;THx+A, (y-x))=d;TH(x).
If d;™f(y)=d;,Tf(x) then, by means of the preliminary result proved in Theorem 3.1,
we have that either f(y)e f(x)+C or f(x)e f(y)+C so that from the (C,C00)-
quasiconcavity of f it follows:
f(x+AM(y-x))e f(x)+C% or f(x+?\.(y x))ef(y)+C® Yie(0,1),
so that d;Tf(x+A(y-x))>d"f(y)=d,Tf(x)=d; Tf(x+7\.1(y -x)) VAe(0,1) which is a
contradiction since A€ (0,1). :
Let now be d;"(y)>d;"(x); since d;T(x)=d;T(x+A,(y-x)) then we have that either
f(x+k,(y-x))e f(x)+C or f(x)e f(x+X,(y-x))+C; in every case by means of the
(C,CY-quasiconcavity of f it follows:
diTExAA(Y-X))>d; T x+A, (7-X))=d; (%) VAe (0,A);
since d;"f(y)>d;"f(x), the continuity of f implies that JA,& (0,A,), IAs€ (A1,1) such
that d;"f(y)>d; f(x+Ay(y-x))=d; TE(X+A4(y-%))>d TE(x+A, (y-x)); by means of the
same arguments, applying the (C, COU)—quasiconcavity of f to the interval [A,,A;],
then we have that:
di TR+ My -x))>d, T A (y-x))=d,; Tf(x+?u3(y X))>d T+ (VX)) VAe Mg,)s),
and this is a contradiction since A€ (hy,A5).: O

As it is well known, in the scalar case quasjiconcave functions have a first order
characterization, on the contrary for (C,C)-quasiconcave functions this is not
possible [6] when the image of f is a subset pf R°, with n>2.

When n=2, we are able to characterize in the differentiable case a (C,O)-
quasiconcave function, as is pointed out in ?the following theorem.

Theorem 3.3 Let £:5—R?, where Sg‘ﬁ‘;‘ is a convex set, be a differentiable
function and let Cc%R? and C*<R? be as desctibed in (2.1).

f is (C,C)-quasiconcave if and only if for evéw X,y&€ S, x#y, it holds:

fy)efE)H+C = Jx)(y-x)eC.

Proof We firstly prove, as a preliminary result, that if f is continuous and
dx,ye 8, x#y, Jie {1,2} such that f(y)=f(x) and d;"f(y)=d;,"f(x)>d;,"f(x+A(y-x))
Ve (0,1) then f is not a (C%,C)-quasiconcave function and if it is also
differentiable then it is not a weakly (C, C) quasiconcave function.

Set je {1,2}, j#i, we can easily prove that smce d;Tf(y)=d,Tf(x) and f(y)#f(x) then
d; Tf(y):av&d Tf(x); we can also suppose, without loss of generality, that

Tf(y)>c1 Tf(x)



By means of the continuity of f and the assumptions, I8¢ (0,1) such that
& (x+My-x))2d; F(x+8(y-x)) VAe (0,1), and I\, & (0,8) such that Vie [0,A,]:

d; "y )=d;Tf(x)>d; TE(x+A, (y-x))>d,TH(x+8(y-x)) and ATy )>d; T (x+My-x)).
Then it is f(y)e f(x+A,(y-x))+C*® otherwisé, by means of a separation theorem,
dpe C*, p0, such that pT[f(y)-f(x+),(y-%))]<0 so that being p=j1;d; +H1,d; we
have pid;"[f(y)-f(x+h; (y-x))1+u;d;Tf(y)- f(x+9L1(y x))}<0 with ;20 and ;>0
which is a contradiction.

Since f(y)e f(x+A,(y-x))+C% and f(x+5(y-x))e f(x+M(y-x))+C with 8e (A;,1) we
have that function f is not (C*®,C)-quasiconcave.
Suppose now f to be also differentiable; by means of the Lagrange theorem
applied to the segment [x, x+A,(y-x)] 3€& (O,\) such that:
di O+ (7-x0)=d; T+ I (RHE (Y X)) () +h (¥-X))-X),
so that, being d;"f(x)>d;"f(x+),(y-x)) and %;>0, d;TT(x+E(y-X))(y-x)<0 which
implies that J(x+E(y-x))(y-x)e C. Since it i§ y-(x+&(y-x))=(1-E)(y-x) with 1-£>0
we also have J{x+E(y-x)N(y-(x+&(y-x)))e C, so that since f(y)e f(x+&(y-x))+C%
we have that function f is not weakly (C%,C)-quasiconcave.
Using this preliminary result we will now pfove the thesis.
Since in general a (C,C)-quasiconcave function is also weakly (C,C)-quasi-
concave we just have to prove the sufficiency. Suppose ab absurdo that f is not
(C,C)-quasiconcave, that is to say, by means of Theorem 3.1, that f is not C*-
quasiconcave; then Jie {1,2} such that ¢;"f(x) is not quasiconcave, so that
dx,ye S, xzy, A€ (0,1) such that dan(y;)zd-Tf(x)>d-Tf(x+7t. (y-x)); set also
je{1,2}, j#i.
By means of the continuity of f, IA,.A;e {0 1], Ay#A4, such that A, (A,,A4) and
AT (x)=d P (xH Aoy %)= TH AR (y-x))> 0 A1) YAe (k).
Set v=(x+A,(y-x)) and w=(x+A,(y-x)); by means of the continuity of f and the
hypothesis, Jo;e(0,1) such that the function g(o)=d; f(v+o(w-v)) is strictly
decreasing in [0,0,]. By means of the Lagrange theorem applied to the segment
[v, v+ou, (w-v)] F€e (0,0,) such that: |
d;Tf(v+o (w-v))=d, Tf(v)+d, TJf(vJ-I-ﬁ(w-v))((vﬂ)cl(W -v))-v),
so that, being d, Tf(v)>d Tf(v+0t1(vv -v)) and bc1>0 d; TJf(*w*&(w v))(w-v)<0 which
implies that J{(v+§(w-v))(w-v)¢ C. Since f is continuous and g(a!) is strictly
decreasing in [0,0], then Jye (ot4,1) such thélt:
din(v+Ej,(w—v))=din(v+'y(w-v))>ﬂin(v+0£(w-v)) Yoe (€.
If f(v+E(W-v))2f(v+y(w-v)) then by means d)f the preliminary result we have that
f is not weakly (C%,C)-quasiconcave so that it is not weakly (C,C)-



quasiconcave; if f(v+&(w-v))= f(v+'y(w -v)) then, since 0Oe C,
fv+y(w-v))e f(v+E(w-v)+C.

Since Jy(v+&(w-v))(w-v)e C and (y-£)>0 we have also that
T (v+E(W-V) [(V+Y(W-v))-(v+E(w-v)) )& C and this implies that f is not weakly
(C,C)-quasiconcave. | |

Remark 3.3 Theorem 3.3 is equivalént to state that the class of (C,C)-
quasiconcave functions coincides with the class of weakly (C,C)-quasiconcave
functions (2) [6]. '

4. Increasness and decreasness in the bicﬁteria case

In [5], some relationships among (C, C)~q1:1asiconcavity, C-increasness and C-
decreasness (3) have been 1nvest1gated for single variable vector valued
functions. ;

The aim of this section is to prove that in the bicriteria case it is possible to
generalize to vector valued single variable functions the well known
characterization of scalar quasiconcave fun?:tions given by Martos [14].

With this aim we firstly prove that C- increasness and C-decreasness are
equivalent to the increasness and decreashess of the scalar functions d, f(x)
and d,"f(x).

Theorem 4.1 Let f:[a,b]>R?, where [a,b];% is an interval, be a continuous
function and let CcR? and C*<%? be as described in (2.1).

Then the following properties are equivalent:

i) fis C-increasing iff both d,Tf(x) and dﬁf(x) are increasing scalar functions;
iiy fis C-decreasing iff both d,f(x) and dff(x) are decreasing scalar functions.
Proof We will prove only case i), since to ;other is analogous.

2 Consider the vector differentiable function f:S—)‘:Tim, vﬂf/here SR is a convex set, and let CcR™ be a
closed cone with nonempty interior. Set C*e {C,CO,COO}; function f will be said to be:

weakly (C*,C)-quasiconcave if Yx,ye$, x#y, it holds: f(y)e f(x)+C* = Je(x)(y-x)e C.

3 Let £:[a,b]>R™, where [a,b]=R is an interval, and let (j.'lcERm be a closed cone with nonempty interior.
Function f will be said th be C-increasing if f(y)e f(x)-ifC Vx,ye [a,b], y>x, while it will be said to be
C-decreasing if f(y)ef(x)-C Vx,ye[ab], y>x. .



For the necessity, suppose ab absurdo that Jie {1,2} such that d;Tf(x) is not
increasing, so that 3x.ye [a,b], y>x, such that d;Tf(y)<d;Tf(x); then d, [f(y)-f(x)]<0
so that f(y)-f(x)& C which contradicts the Q~increasness of f.

For the sufficiency, suppose ab absurdol that f is not C-increasing, so that
3Ix,ye[a,b], y>x, such that f(y)¢ f(x)+C; then by means of a separation theorem
dpe C*, p#0, such that pT[f(y)-f(x)]<0 sd that, being p=,d;+p,d, , we have
].Llle[f(y)-f(x)]+u2d2T[f(y)-f(x)]<0 with 1,20 and [1,20; then Jie {1,2} such that
d;Ti(y)<d;"f(x) which contradicts the increasness of d,Tf(x). o

The following theorem generalizes the one glven by Martos [14] in the scalar
case.

Theorem 4.2 Let f:[a,b]>R2, where [a,ﬁ)]gﬁR is an interval, be a continuous
function and let Cc%? and CtcR? be as described in (2.1). Then function f is
(C,C)-quasiconcave if and only if both the two conditions (4.1) and (4.2) hold:

Vx,ye S, xy, such thaf; f(y)=f(x)

it fOeMy-x)e FR+CO VAe (0,1) then fxrAy-x)=f(x) VAe0) D

Jdo,fe[a,b], o<B, such that: 4.2)
a) fis C-increasing in [a,0(], '
b) Zx,ye[a,B] such that f(y)e f(x)+c100
c) fis C-decreasing in [,b]. :
Proof =) Condition (4.1) follows directly by the definition of (C,C)-
quasiconcave functions; from Theorem 3.1 the scalar functions d,Tf(x) and
d,f(x) are quasiconcave so that being d;Tf(x) continuous Vie {1,2} then for
each ie {1,2} 3o;,B;e [a,b], IM;e R such that (see Martos [14]):
dTf(x) is increasing in [a,0;] with lef(x)<M Vxe [a,04],
d;"f(x) is constant in [0, p;] w1th d;TEx)=M; Vxe [o;,B],
d;"f(x) is decreasing in [B;,b] with d;"f(x)<M; Vxe [B;,b].
Set oi=min{o;,0,,} and B=max{B;,,}; by means of Theorem 4.1 f is C-increasing
in [a,0r] and C-decreasing in [B,b]; note finally that also condition (4.2b) holds,
since in [o,B] at least one of d;f(x) and dszf(x) 1s nondecreasing and the other is
nonincreasing so that it’s not possible to ha*fwe f(y)e f(x)+C® with x,ye [o,B].
«) We firstly prove, as a preliminary result, that if condition (4.1) holds and f is
not (C,C)-quasiconcave then Jie {1,2}, Elx,ye S, x#y, such that f(y)#f(x) and
d;"f(y)=d,"F (>4 TEHx+My-x)) VA (0,1). |



If f is not (C,C)-quasiconcave then, from Theorem 3.1, Jie {1,2} such that diTf(x)
is not quasiconcave, so that Iv,we S, v#w, IA,€ (0,1) such that
di"f(w)2d; F(v)>dT v+ (w-v)); set also je {1,2), jai.

By means of the continuity of f, 3A,,A,e [0 11, Ag#A,, such that A& (A,,A3) and
d;TF(V)=d; TR v+ Ay (W-v))=d; TV A (=) > dTEVAAW-V)) Ve (ghs).

Set x=(v+h,(w-v)) and y=(v+A,(w-v)) and note that f(x+A(y-x))e f(x)+C
VAe (0,1). Then condition (4.1) implies that f(y)=f(x), otherwise it is
f(x+My-x))=f(x) VA& (Ay,A3) which is a dontradiction, so that the preliminary
result is proved. Using this preliminary result we will now prove the thesis.
Suppose ab absurdo that f is not (C,C)-quasiconcave, then from the preliminary
result we have that Jie {1,2}, Ix,ye'S, x#y, such that f(y)=f(x) and
d;"f(y)=d;"f(x)>d;Tf(x+\(y-x)) VA€ (0,1), so that f(x+A(y-x))& f(x)}+C and
f(x+My-x))e f(y)+C VA& (0,1). By means of these conditions, if x¢ [c,] then the
C-increasness of { in [a,0] and the C-decreasness of f in [B,b] is contradicted, so
that xe [a,B]; in the same way we have that also ye [a,B]. By means of the
preliminary result proved in Theorem 3.3, gwe also have that f is not a (C%,C)-
quasiconcave function in [, ] which contradicts condition (4.2b). J

The following Example 4.1 points out that condition (4.1) in Theorem 4.2
cannot be relaxed. -

Example 4.1 Let i R—R?, with f(x)=sin(x)[1,-1]T, and let C=R?2, so that
componentwise quasiconcavity can be studied instead of C*-quasiconcavity.
f is (CO,C9)-quasiconcave but not (C,C)-qliasiconcave.

Note finally that some concepts of vector increasness and decreasness have
been studied also in [13]. :

5. Bicriteria case and C*’-quasiconcavity;

In [5, 6], several classes of (C*,C#)-quasicbncave functions have been defined
and studied; the aim of this section is to ﬁ)oint out the inclusion relationships
among these classes and the new deflned classes of C"-quasiconcave type
functions. It is easy to verify that:

i) if fis CT-quasiconcave then it is also (C C)-quasiconcave,

i) if fis semi C*-quasiconcave then it is also (C%,C)-quasiconcave,

iif) if f is strictly C*-quasiconcave then it is'also (C,C%)-quasiconcave,
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iv) if f is semistrictly C*-quasiconcave then it is also (C%,C%)-quasiconcave.
Note that Example 3.1 shows that these inclusion relationships are proper. In
the bicriteria case and under continuity hypothesis we have that the inclusion
relationships can be represented in the following diagram.

| (CO.C).qev |
T 1T T
| (C9,C00),qev | 1(C9,C) qcv| — COaev
— —= sm C*-qev = Ch-qev
T T T T
sm.str. Ct-qev | | (CO,C%).gev | sm.str. C*-qev
T T T

str. C*-qev = (C,C%) gev

Diagram 1

Example 4.1 and the following Example 5.1 show that some of the represented
inclusion relationships are proper.

Example 5.1 Let :R%—R2, with f(x)=(0,Ixl), and let C=R2, so that
componentwise quasiconcavity can be studied instead of C*-quasiconcavity.

f is (C%9,C90)-quasiconcave (consequently f is (C%,C0%-quasiconcave and
(C%,C)-quasiconcave, too) since Ax,ye R such that f(y)e f(x)+C%; on the other

hand f is not (C?C)-quasiconcave (so that it’s neither (C°,CY%-quasiconcave nor
(C°,C™)-quasiconcave) since f(2)e f(-1)+C? but f(0)e f(-1)+C.

Remark 5.1 Note that it has been possible to characterize by means of the C*-
quasiconcavity and strictly C*-quasiconcavity the (C,C)-quasiconcave and
(C,C%)-quasiconcave functions, that is to say just those classes of functions
having a fixed behaviour whenever f(y)=f(x); Example 4.1 shows that nothing
can be said when no properties of the functions are fixed for points x and y
such that f(y)=f(x), as we have for (C%C%)-quasiconcave functions,

Assuming that condition (4.1) holds, we can furthermore deep on the

relationships among the considered classes of generalized concave vector
valued functions.
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Theorem 5.1 Let f:S—>R2, where SCR™ is a convex set, be a continuous
function and let CcR? and C*<R? be as described in (2.1); suppose also that
(4.1) holds. Then f is (C,C)-quasiconcave iff it is (C%,C)-quasiconcave.

Proof Since a (C,C)-quasiconcave function is also (C%,C)-quasiconcave we
just have to prove the sufficiency. Suppose ab absurdo that f is not (C,C)-
quasiconcave; then, by means of the preliminary result proved in Theorem 4.2,
Jie {1,2}, Ix.ye S, x=y, such that f(y)={(x) and d;Tf(y)=d;"f(x)>d;TH(x+A(y-x))
VAs(0,1).

By means of the preliminary result proved in Theorem 3.3, we then have that fis
not a (C%,C)-quasiconcave function which contradicts the assumption. O

The following Diagram 2 summarizes the inclusion relationships among the
considered classes of continuous bicriteria functions when condition (4.1)
holds. Example 5.2 shows also that the inclusion relationships are proper.

(C%,C).qev = (CO,0).qcv = (C,C).qev

sm C*-gev = C*-qev

7
[ ©0CO%qev |
T T
sm.str. C*-qev | | (CO,C9).qev |
T T

str. C*-qev = (C,C90).gev

Diagram 2

Example 5.2 Let us consider the following continuous functions £:S—%R2 such

that f(x)2f(y) Vx#y and let C=R?2.

) f(x)=(x,x2+xlxl) is (C,C)-guasiconcave but it is not (CO0,C00)-gunasiconcave
since for x<0 it is f(x)=(x,0);

i) f(x)=(x2-xIxl,x2+xlxl) is (C00,C00)-quasiconcave but its components are not
semistrictly quasiconcave and it is not (C0,C%)-quasiconcave since for x<0
it is f(x)=(2x2,0);

i) f(x)=(x,0} is cw ss.quasiconcave (and also (CO0,C00)-quasiconcave) but not
(C0,C®)-quasiconcave (nor cw strictly quasiconcave);

iv) f(x)=(x2+xIx1)[1,-1]T is (CO,C90)-quasiconcave (and also (Cho, 00y
quasiconcave) but not cw ss.quasiconcave (nor cw strictly quasiconcave).

12



REFERENCES

[1] M.S. Bazaraa and C.M. Shetty, Foundations of optimization, Lecture Notes
in Economics and Mathematical Systems 122, Springer-Verlag, 1976.

[2] A. Cambini and L. Martein, Multiobjective Programming and Generalized
Concavity, submitted to the proceedings of the S5th Symphosium on
Generalized Convexity, Luminy-Marsiglia (France), June 17-21, 1996.

[3] A. Cambini, L. Martein, and R, Cambini, Some optimality conditions in
multiobjective programming, Proceedings of the XI International Conference on
MCDM, Coimbra (Portugal), (1994)

[4] A. Cambini, L. Martein, and I.M. Stancu-Minasian, A survey of bicriteria
fractional problems, Technical report n°106, Dipartimento di Statistica e
Matematica Applicata all’Economia, Universitd di Pisa, 1996.

[5] R. Cambini, Composition theorems for generalized concave vector valued
functions, to appear in JIOS.

[6] R. Cambini, Some new classes of generalized concave vector-valued
functions, Optimization 36, n°1 (1996) 11-24.

[7] R. Cambini and S. Kdémlosi, Generalized concavity and generalized
monotonicity concepts for vector valued functions, Technical report n°98,
Dipartimento di Statistica ¢ Matematica Applicata all’Economia, Universita di
Pisa, 1996.

[8] R. Cambini and S. Kémlosi, Polar quasiconcavity and polar
quasimonotonicity concepts for vector valued functions, submitted to JOTA.

[9] R. Cambini and 8. Kémlosi, Generalized Concavity and Generalized
Monotonicity in Vector Optimization, submitted to the proceedings of the 5th

Symphosium on Generalized Convexity, Luminy-Marsiglia (France), June 17-21,
1996.

13



[10] R. Cambini and S. Kémlosi, Polar pseudoconcavity and polar
pseudomonotonicity concepts for vector valued functions, submitted to the
proceedings of the XIII International Conference on Mathematical
Programming, Mdtrahdza (Hungary), March 24-28, 1996.

[11] D.T. Luc, Theory of vector optimization, Lecture Notes in Economics
and Mathematical Systems 319, Springer-Verlag, Berlin, 1988,

[12] L. Martein, On the bicriteria maximization problem, in “Generalized
Convexity and Fractional Programming with Economic Applications”, edited

by A. Cambini, E. Castagnoli, et al., Springer-Verlag, Berlin (1990) 77-84.

[13]  J.E. Martinez-Legaz, Quasiconvex duality theory by generalized
conjugation methods, Optimization 19 (1988) 603-652.

[14]  B. Martos, Nonlinear programming theory and methods, North-Holland,
Amsterdam, 1975.

[15]  S. Schaible, Bicriteria quasiconcave programs, Cahiers du C.E.R.O. 25
(1983)93-101.

14



