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1. Introduction

Recently, several kinds of vector valued generalized concave functions have
been introduced and studied; these functions are often used in vector
optimization problems since their properties let to state several necessary or
sufficient optimality conditions, see for instance [3-5].

For this reason it is important to state as much properties as possible related to
these classes of functions, so that further results can be obtained.

The main objective of the present paper is to deepen the analysis of several
classes of generalized concave vector valued functions, initiated in [7, 8], by
elaborating first order characterizations for them. These characterizations
extend on the one hand the classical Arrow-Enthoven characterizations of real
valued quasiconcave functions to several classes of generalized concave vector
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valued functions, while on the other hand, they extend the generalized
monotonicity concepts elaborated so far only for real valued functions 1, 2,9,
10, 12-16].

One of the key tools in our analysis is the Diewert’s Mean Value Theorem
which, for the sake of convenience, will be stated as follows [11].

Diewert’s Mean Value Theorem
Let the directionally differentiable real valued function d(x) be defined on the
line segment [y,z]. Then there exists Aye {0,1) such that:

O’ (Xg, 2-Y)<(2)- ¢(y)

where xy=y+Ao(z-y)e [v,2) and ¢’(x,,2z-y) = ¢(Xo+7\.(z Y))-9(%0)

7LO+

Another important role will be played in our analysis by the following scalar
function ¢,(x)=pTf(x), pe R™, for which we have:

¢D(x+?ud) q)n(x)

Ot

0pxd) = fim PTF (x,d) .

Note that this directional derivative is positively homogeneous in d, which
means that for all p>0 it results ¢’p(x,0d) = p ¢’ p(x,d).

The above properties of ¢’ p(x,d) will be frequently used in the sequel without
any further references.

Note finally that if function f is directionally differentiable then it is also radially
continuous; this property will be useful in the rest of the paper as regard to the
properties of quasiconcave functions.

2. Concavity and monotonicity

In [7, 8] several classes of vector valued concave functions have been
introduced and studied; in this paragraph we will focus our attention to the
following three classes.

Definition 2.1 Consider the vector valued function f:S—>R™, where SCR" is a
convex set, and let C&R™ be a closed convex cone with not empty interior. Set
C*e {C, C0, C%}, we will say that f is C*-concave [C*cv] if and only if
Vx,ye 8, x2y, YA (0,1) it holds:

fOAX+(1-AMy)-M(x)-(1-Mf(y)e C*.



In the following we will characterize these classes by means of the following
properties.

Definition 2.2 Consider the vector valued function f:S—R™, where ScR"isa
convex set, and let CCR™ be a closed convex cone with not empty interior, We
will say that:
iy fispolarly C-concave [p.C.cv] if and only if condition (2.1) holds:
the real valued function Op(x)=pTi(x) is concave Vpe C*, p#0;  (2.1)
i) fis polarly C%-concave [p.C%cv] if and only if (2.2a) and (2.2b) hold:
the real valued function Op(x)=pTf(x) is concave Vpe C*, p=20, (2.2a)
Vx,ye S, x2y, YA (0,1) fAx+(1-M)y)-AMx)-(1-W)f(y)0; (2.2b)
iii) fis polarly C®-concave [p.C%.cv] if and only if condition (2.3) holds:
the real valued function Op(x)=pTi(x) is strictly concave Vpe C*, p=0. (2.3)

The following monotonicity concepts are strightforward generalizations of the
monotonicity concepts used for real valued functions.

Definition 2.3 Consider the vector valued directionally differentiable function
f:S—>R™, where SCR™ is a convex set, and let CcR™ be a closed convex cone
with not empty interior.
Set C*e {C, C?, C%}, then f’(x,d) will be said C*-monotone [C*mon] if and
only if Vx,ye§, x#y, it holds:

(%, y-x)+H ' (y, x-y)e C*.

Definition 2.4 Consider the vector valued directionally differentiable function

£:S—>R™, where SCR" is a convex set, and let CER™ be a closed convex cone

with not empty interior.

Then £’(x,d) will be said:

) polarly C-monotone [p.C.mon] if and only if Vpe CH, p20, Vx,ye S, xzy, it
holds: P (%, y-x)+£(y, x-y)]=0;

i) polarly CO-monotone [p.C®.mon] if and only if Vpe C*, p20, Vx,ye S, xzy,
itholds:  pT[f’(x,y-x)+f (y,x-y)]=0 and f (X, y-x )+ (v, X-y)20;

iii) polarly C*-monotone [p.C*°.mon] if and only if Vpe C*, p#0, Vx,ye S,
X2y, it holds: P (%, y-x)+f (v, x-y)]>0.



The following theorems provide interrelations and first order characterizations
of the concavity concepts introduced.

Theorem 2.1 Consider the vector valued function f:S—R™, where Sch'isa

convex set, and let CCR™ be a closed convex cone with not empty interior.

Suppose also function f to be directionally differentiable when necessary.

Then the following statements are equivalent:

i) fis polarly C-concave,

ii) fis C-concave,

i) £y, x-y)-f(x)+H(y)e C Vz,ye$, x2y,

v) ’(x.d) is C-monotone,

v) 1’(x,d)is polarly C-monotone.

Proof i)=ii) Suppose ab absurdo that f is not C-concave, that is to say that

dx,ye S, x#y, ke (0,1) such that f(Ax+(1-A)y)-Af(x)-(1-A)f(y)e C; since C is a

convex cone, by means of a known separation theorem, Ipe C* such that

PTIAX+(1-A)y)-Af(x)-(1-A)f(y)]<0 so that ¢p(x)=pTf(x) is not concave and this is

absurd.

it)=iii) Since fis C-concave then Vx,ye S, x2y, YAe (0,1) it holds:
AT oo

the thesis then follows approaching A—0 since C is a closed cone.
iii)=iv) Let x,yeS, x#y; by the hypothesis we then have f (v, x-y)-f(x)+f(v)e C
and £°(x, y-x)-f(y)+f(x)e C, adding these two conditions it results, being C
convex, (X, y-x)+f’(y, x-y)e C.
iv)=v) LetpeC* x,ye S, xzy; by the hypothesis it is £’(x, y-x)+f (y,%x-y)eC so
that pT[f°(x, y-x)+f (v, x-y)]=0.
v)=1) Suppose ab absurdo that Ipe C+, Ix,ye S, %y, dAe (0,1) such that
PTIHAX+(1-M)y)-Af(x)-(1-R)f(y)]1<0. Let z=Ax+(1-L)y, it follows that:
PTIE@)-F)]<(1-MpTT(y)-£00)] and pTIE)-F(y)J<APTIEGR)-£(y)].

Applying the Diewert’s Mean Value Theorem to the line segments [x,z] and
[y.z] then dwe[x,z) and Ively,z) such that:

P (W, z-x)<pT[f(z)-f(x)] and pTf (v, z-y)<pT[f(z)-f(v)].
Note also that, since f’(x,d) is positively homogeneous in d, being z-x=(1-A)(y-
x) and z-y=A(x-y) it results:

£7(w, z-x)=(1-0)f*(w,y-x) and (v, z-y)=Af (v, x-y).
By means of these results it then follows that:
(1-Mp™t " (W, y-X)<(1-MpTIf(y)-f(x)] and ApTE *(v, x-y)<ApTIEx)-f(y)],




being A>0 and (1-A)>0 it then follows:
Pt (w, y-x)<pTIf(y)-f(x)] and pTf (v, x-y)<pT[f(x)-(y)],
and now, by adding the two inequalities we obtain:
pPTE (W, y-x)+pTf * (v, x-y)<0.
Since w-v=(1/a)(x-y), with a>0, we can deduce, by means of the positive
homogeneity of f'(x,d), that pTf *(w, v-w)4+pTf (v, w-v)<0 and this contradicts
the polarly C-monotonicity of £°(x,d). +

Theorem 2.2 Consider the vector valued function f:S—R™, where SCR" is a
convex set, and let CcR™ be a closed pointed convex cone with not empty
interior. Suppose also function f to be directionally differentiable when
necessary. Then the following statements are equivalent:
i) fis polarly CO-concave,
ii) fis CO-concave,
i) ©’(y, x-y)-f(x)+H{(y)e C° Vx,ye S, x2y,
iv) £’(x,d) is C°-monotone,
v) f’(x,d) is polarly C%monotone.
Prbof i)=>ii) The thesis follows directly from Theorem 2.1 since a C%-concave
function is a C-concave function such that condition (2.2b) holds.
i))=iii) Let x,ye 8, xy, Ae(0,1) and set z=Ax+(1-A)y; since f is C%-concave
then it is also C-concave so that f’(y, z-y)-f(z)+{(y)e C, note also that since f is
CP-concave then f(z)-Af(x)-(1-1)f(y)e CP so that, being C a pointed convex
cone, it results f°(y, z-y)-AM(x)+Af(y)e C% being f’(x.d) positively homogencous
in d, then f’(y, z-y)=f"(y, Mx-¥))=Af ’(y, x-y) so that the thesis holds,
iii)=iv) Let x,y€ S, x#y; by hypothesis we have f’(y, x-y)-f(x)+f(y)e C° and
£2(x, y-x)-f(y)+(x)e C, adding these two vectors it results, being C convex and
pointed, £’(x, y-x)+f *(y, x-y)e CC.
iv)=v) Let pe C*, x,ye 8§, x#£y; by hypothesis it is £’ (x, y-x)+f (v, x-y)e C0 so
that pT[f’ (x, y-x)+ *(y, x-y)]20 and £’ (x, y-x)+f *(y, x-y)=0.
v)=i} If£’(x,d) is polarly CO-monotone then it is also polarly C-monotone so
that, by means of Theorem 2.1, f is polarly C-concave; suppose now ab absurdo
that f is polarly C-concave but not polarly C%-concave, so that dx,ye S, x2y,
3A&(0,1) such that fAx+(1-A)y)-Af(x)-(1-M)f(y)=0.
Let z=Ax+(1-A)y. Then Vpe C*, p20, it results:

PTH)-(x)]=(1-MpTIf(y)-f(x)] and pT[Hz)-Ey)=ApTIEx)-£(y)].
From v) it follows that f’(x,y-x)+f(y,x-y)e C® and since C is pointed then
there exists re C*, r20, such that rT[f*(x, y-x)+f (v, x-y)]>0.



Let us consider now the real valued function 0(x)=rTf(x) which is concave
(since f is polarly C-concave); we have furthermore that:
O(D=1TFAXH1-L)y)=rTTAF )+ LMY= (K)H - M),
It can easily be proved that from this conditions it follows that 0,(x) is linear on
the line segment [x,y]. An immediate consequence of this is that:
%, y-X)=1TE (X, y-X)=0(y)-0,(x) and &y, x-y)=1TE (¥, x-y)=0,(X)-0,(y);

by adding these two equations we obtain rTf(x, y-x)+1T1’(y, x-y)=0 which is a
contradiction. ¢

Theorem 2.3 Consider the vector valued function £:S—R™, where SCR" is a
convex set, and let CcR™ be a closed convex cone with not empty interior.
Suppose also function f to be directionally differentiable when necessary.

Then the following statements are equivalent:

i) fis polarly C®-concave,

ii) fis C®-concave,

iii) £7(y, x-y)-f(x)H(y)e C® Vx,ye§S, x=y,

iv) £°(x,d) is C%-monotone,

v) f’(x,d) is polarly C®-monotone.

Proof i)=»ii} Suppose ab absurdo that f is not C%-concave, that is to say that
dx,yeS, x2y, Jhe (0,1) such that f(x+(1-A)y)-Af(x)-(1-M)f(y)e C%; since C is
convex, by means of a known separation theorem, Jpe C*, p20, such that
PTIEAx+(1-L)y)-Af(x)-(1-A)f(y)]<O so that dp(X)=p™f(x) is not strictly concave
and this is absurd.

it)=4ti) The proof is similar to the one given for Theorem 2.2.

iti)=iv) The proof is similar to the one given for Theorem 2.1.

v)=v) LetpeC*, x,y€ S, x#y; by the hypothesis it is £’ (x, y-x)+f(y, x-y)e C®
so that pT[f”(x, y-x)+£(y, x~-y)]>0.

v)=4) The proof is similar to the one given for Theorem 2.1 .

3. Quasiconcavity and quasimonotonicity

In the very recent works [7, 8] several classes of vector valued quasiconcave
functions were introduced and investigated; from these classes we will consider
only the following ones.



Definition 3.1 Consider the vector valued function f:S—R™, where SCR" is a
convex set, and let CCR™ be a closed convex cone with not empty interior, We
will say that:
) fis(C,C)-quasiconcave [(C,C).qcv] if and only if Vx,ye S, x2y, VAe (0,1) it
holds: fx)-(y)eC = fOx+(1-My)-f(y)eC;
ii) fis (C%, C%)-quasiconcave [(C,C%),qcv] if and only if Vx,ye S, x#y,
VA€ (0,1) it holds:
fx)-1{(y)eC® = fOx+(1-My)-f(y)e C®,
iii) fis (C,C%)-quasiconcave [(C,C%).qcv] if and only if Vx,ye S, X#Y,
Ve (0,1) it holds:
f(x)-f(y)eC = f(Ax+(1-L)y)-f(y)e C;

In the following we shall relate the above classes with the following ones.

Definition 3.2 Consider the vector valued function f:S—%R™, where SCR® is a
convex set, and let CCR™ be a closed convex cone with not empty interior. We
will say that:

D) fis polarly C-quasiconcave [p.C.qcvl if and only if Pp(x)=pTi(x) is
quasiconcave Vpe C*, p#0, that is to say if and only if Vpe C*, p20, Vx,ye S,
xzy, VA€ (0,1) it holds;

PT()-pTE(¥)20 = pTiAx+(1-A)y)-pTh(y)=20;

iy fis polarly CO-gquasiconcave [p.Co.qcv] if and only if o (x)=pT(x) is
semistrictly quasiconcave Vpe C*, p20, that is to say if and only if Vpe C¥,
p#0, Vx,yeS§, x2y, VAe (0,1) it holds:

PTER)-pTR(y)>0 = PTHAXH(1-A)y)-pr(y)>0;

iy fis polarly C%-quasiconcave [p.C%®.qcv] if and only if Op(x)=pT(x) is
strictly quasiconcave Vpe C*, p#0, that is to say if and only if Vpe C*, p=0,
Vx,ye s, x2y, VA& (0,1) it holds:

pTI(x)-p™(y)20 = pTf(Ax+(1-A)y)-pTh(y)>0;

Note that, when f is radially continuous, if dp(X) s strictly quasiconcave then it
is also semistrictly quasiconcave and if it is semistrictly quasiconcave then it is
also quasiconcave; it then results that, under such an hypothesis, polarly
C%-quasiconcavity implies polarly C®-quasiconcavity and polarly
Cl-quasiconcavity implies polarly C-quasiconcavity.



Propesition 3.1 Consider the vector valued function :5—R™, where SCR" is
a convex set, and let CeR™ be a closed convex cone with not empty interior.

i) Iffis polarly C-quasiconcave then it is also (C,C)-quasiconcave;

ii) Iffis polarly C"-quasiconcave then it is also (C%,C%)-quasiconcave;

iii) If f is polarly C®-quasiconcave then it is also (C,C%0)-quasiconcave;

Proof i) Suppose ab absurdo that f is not (C,C)-quasiconcave, that is to say
that 3x,ye S, x=y, Ike (0,1) such that f(x)-f(y)e C and f(Ax+(1-A)y)-f(y)e C; since
C is a convex cone, by means of a known separation theorem, Ipe C* such that
PTEAx+(1-A)y)-f(y)]<0; since f(x)-f(y)e C it is also pTf(x)-pTf(y)=20 so that, being
f polarly C-quasiconcave, pTfi(Ax+(1-A)y)-pTf(y)=0 which is a contradiction.

i) Suppose ab absurdo that f is not (C%,C%)-quasiconcave, that is to say that
dx,ye S, x=ty, Ihe (0,1) such that f(x)-f(y)e C° and f(Ax+(1-A)y)-f(y)e C%; since
C is a convex cone, by means of a known separation theorem, dpe C* such that
PTI(Ax+(1-A)y)-f(y)]<0; since f(x)-f(y)e CY it is also pTi(x)-pTf(y)>0 so that,
being f polarly C%-quasiconcave, pTf(Ax+(1-1)y)-pTf(y)>0 which is a
contradiction.

iii) The proof is similar to the ones given for i) and ii). .

The following example shows that a vector valued quasiconcave function is not
polarly quasiconcave in general.

Example 3.1 Let f(x)=(-2x, x?+2x), x& S=[-1,1], and let CcNR? be the Paretian
cone. Function f is (C,C).qcv and (CP,C%).qev in S, since Bx,ye[-1,11, x2y, such
that f(x)~f(y)e C, but it is not polarly C.qcv (veither polarly C°.qcv nor polarly
C%.qcev) in S, since for pT=(1,1) the real valued function Op(x)=pTi(x)=x? is
strictly convex and not quasiconcave in [-1,1].

We would like to notice that the concepts of quasiconcavity given in definition
3.1 are weak in order to ensure the convexity of the upper level sets of the
given function, see [8] Example 3.3, while the polar concepts of C-
quasiconcavity ensure the above property.

In the following we will characterize polarly C*-quasiconcavity by means of
the following properties of the directional derivatives.



Definition 3.3 Consider the vector valued directionally differentiable function
f:5—=R™, where SCR" is a convex set, and let CCR™ be a closed convex cone

with not empty interior. Then £ (x,d) will be said:
i) polarly C-quasimonotone [p.C.gmon] if and only if (3.1) holds Vpe CH,
p#0, Vx,ye§, xzy:
P ’(x, y-x)<0 = pTf *(y, x-y)=0; 3.D
i) polarly C%-quasimonotone [p.C°.qmon] if and only if both conditions
(3.2a) and (3.2b) hold Vpe C*, p#0, Vx,ye S, xy:
pTf (%, y-x)<0 = pTf ’(y, x-y)=0; (3.2a)
PE(%,y-%)<0 = Jze[¥y) suchthat pTf'(z,yx)<0  (3.2b)
i) polarly C%-guasimonotone [p.C%.qmon] if and only if both conditions
(3.3a) and (3.3b) hold Vpe C*, p=0, Vx,ye S, x#y:
P (X, y-x)<0 = pTf *(y, x-y)20; (3.3a)
dze (x,y) such that either pTf ’(z,x-y)<0 or pTf *(z, y-x)<0 (3.3b)

Theorem 3.1 Consider the vector valued directionally differentiable function
f:5—>R™, where SCR" is a convex set, and let CER™ be a closed convex cone
with not empty interior.

i) Iff’(x,d)is polarly C%-quasimonotone then it is polarly C-quasimonotone

i)y Iff’(x,d) is polarly C*-quasimonotone then it is polarly C°-quasimonotone
Proof Since i) follows directly from the definition, we just have to prove ii).

Let £°(x,d) be polarly C®-quasimonotone and let pe C*, p#0, x,ye S, x#y, be
such that pTf ’(x, y-x)<0; by means of the positive homogeneity of £’(x,d) we
then have pTf ’(x,z-x)<0 Vze (x,y] so that, by (3.3a), it results pTf *(z, x-z)20
Vze (x,y], this implies also that pTf *(z, x-y)=0 Vze (x,y].

By (3.3b) 3z& (%57 y) such that either pTf’(z,y-"o% )= = LpTF '(z,yx)<0 or

PTE"(z, 3% -y)=5pf *(z, x-y)<0. The thesis follows since this last possibility

cannot occure being p'f ’(z, x-y)20 Vze (x,y]. ¢
In the rest of the paper will be used the following results [6].

Theorem 3.2 Let SCR" be a convex set and let $:S— K be a real valued
quasiconcave function, It then results that: |
) is not semistrictly quasiconcave if and only if Ix,ye S, x#y, such that
O(x)>¢(y) and Fhe (0,1) such that:
OAXH(1-MY)=0(y) VA€(OX] and GOAx+H1-N)y)2o(y) VAe (1)



ii) ¢ 1is not strictly quasiconcave if and only if Jx,ye S, xy, such that:
OAXH(1-Vy)=0(x)=0(y) VA& (0,1).

Theorem 3.3 Consider the vector valued directionally differentiable function
f:S—>R™, where SCR" is a convex set, and let CcR™ be a closed convex cone

with not empty interior. Then the following statements are equivalent:

i) fis polarly C-quasiconcave, '

i) pTf(x)-pTf(y)20 = pTf (¥,x-y)20 VpeCt, Vxyes, x#y,

i) f’(x,d) is polarly C-quasimonotone.

Proof i)=ii) Since f is polarly C-quasiconcave then Vpe C*, Vie (0,1),

TH(y+A(x-y))-p T
Vx,ye€ S, x2y, such that pTf(x)-pTf(y)=0 it holds Pty (le)) p_1y) =0, so that

the thesis follows approaching A—07.
i)=iii) Letpe Ct, x,ye S, xy, be such that pTf ’(x, y-x)<0; by means of the
hypothesis this inequality implies that pTf(y)-pTf(x)<0 so that, by means of the
same condition, pf ’(y, x-y)=0.
iii)=1) Suppose ab absurdo that dpe C*, 3x,ye S, x2y, JAe (0,1) such that
PP )>PTEAX-H(1-A)y).
Let z=hx+(1-A)y; applying the Diewert’s Mean Value Theorem to the line
segments [x,z] and [y,z] then dwe[x,z) and ve[y,z) such that:

pf "(w, Z-x)<pT[f(2)-f(x)]<0 and pTf (v, z-y)<pT[f(z)-f(y)]<O0.
Since w-v=(1/0)(z-y) and v-w=(1/B)(z-x), with a, B>0, we can deduce, by means
of the positive homogeneity of f’(x,d), that:

pf’(w,v-w)<0 and pTf (v, w-v)<0.

and this contradicts the polarly C-quasimonotonicity of f’(x,d). +

Theorem 3.4 Consider the vector valued directionally differentiable function
[:S—=R™, where S&SR" is a convex set, and let CcR™ be a closed convex cone

with not empty interior. Then the following statements are equivalent:
i) fis polarly C%quasiconcave,
i) both the following conditions hold VpeCt, Vx,ye§$, xy:
pH()-pTHy)20 = pTf *(y, x-y)=0, (3.4a)
PTE (%, y1)<0 = Fze[Yy) such that pTf(z,y-x)<0,  (3.4b)

iii) f(x,d)is polarly CO-quasimonotone,

10



Proof i)=ii) Since f is polarly CO-quasiconcave then it is also polarly
C-quasiconcave so that, by means of Theorem 3.3, condition (3.4a) holds, so
that we just have to verify condition (3.4b).

Let pe C*, p20, x,y& S, x#y, be such that pTE (X, y-x)<0; from (3.4a) then prf(x)-
pTf(y)>0 and this inequality implies, by the polarly C-quasiconcavity of f, that
pTt(u)-pTf(y)>0 Vue (x,y). By means of the Diewert’s Mean Value Theorem
applied to [u,y] then Jze [u,y) such that pTf '(g, y-WSpT(y)-f(u)]<0. Set u-—-z%z,

and the thesis follows.
1i)=»iii) Condition (3.4a) implies that f is polarly C-quasiconcave so that, due
to Theorem 3.3, (3.2a) holds; the other condition holds by hypothesis.
iii)=>i) Suppose ab absurdo that Ipe C*, p#0, such that dp(x)=pTf(x) is not
semistrictly quasiconcave. Since f’(x,d) is polarly CO-quasimonotone then it is
also polarly C-quasimonotone and thus f is polarly C-quasiconcave, it then
results that ¢,(x) is a quasiconcave function. By means of Theorem 3.2, being
¢p(x)=pTI(x) quasiconcave but not semistrictly quasiconcave, it then follows
that 3x.ye S, x22y, such that pTf(x)>pTf(y) and Iwe (x,y) such that pTf(v)=pT{(y)
Vve[w,y) and pTf(v)2pTf(y) Vve (x,w); note that, due to the radial continuity
of ¢,(x), we can suppose, without loss of generality, that we (X,y) is such that
pTi(v)>pTf(w)=pTi(y) Vve (x,w); note also that, since pIf(v)=p™(y) Vve [w,y), it
is pTf (v, y-x)=0 Yve (w,y). Let now ue (x,w) be such that u—;le (w,y); applying
the Diewert’s Mean Value Theorem to the line segment [u,y] then dze[u,y)
such that pTf *(z, y-u)<pT[f(y)-f(u)]<0; then, being f’(x,d) positive
homogeneous, pTf ’(z, y-z)<0 so that by the hypothesis:
Elke[%l,y)c_:[%z,y)c(w,y) such that pTf ’(k, y-z)<0;

By means of the positive homogeneity of f*(x, d), we then have that Jke (W,y)
such that pTf '(k,y-x)<0 and this is a contradiction. ¢

Theorem 3.5 Consider the vector valued directionally differentiable function
£:5->R™, where SCR" is a convex set, and let CcR™ be a closed convex cone
with not empty interior. Then the following statements are equivalent:
i) fis polarly C®-quasiconcave,
i) both the following conditions hold Vpe C*, VX, ye S, x#£y:
PH)-pTE(Y)20 = pTf *(y, x-y)>0, (3.5a)
dze (x,y) such that either pTf ’(z, x-y)<0 or pTf *(z, y-x)<0 (3.5b)
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i) £’(x,d) is polarly C®-quasimonotone,
Proof i)=1ii) Since f is polarly C%-quasiconcave then it is also polarly C-
quasiconcave so that, by Theorem 3.3, (3.5a) holds. Let peC*, p#0, x,ye S, x2y,
arbitrarily chosen. Assume first that pTf(y)2pTf(x). Let ue (X,y), then by the
polarly C%-quasiconcavity of f, we have pTf(u)-pTf(x)>0; applying the
Diewert’s Mean Value Theorem in [u,x] we have that Jze [u,x) such that:
Pt (z, x-u)<pTf(x)-pTh(u)<0,

consequently we have pTf ’(z, x-y)<0.
Assume now that pTf(x)>pTf(y). By repeating the arguments of the previous
case, we derive that 3ze (x,y) such that pTf ’(z, y-x)<0.
ii)=iii) Condition (3.5a) implies that f is polarly C-quasiconcave so that, due
to Theorem 3.3, (3.3a) holds; the other condition holds by hypothesis.
iii)=i) Suppose ab absurdo that Ipe C*, p#0, such that $p(x)=pTi(x} is not
strictly quasiconcave; since f’(x.d) is polarly C%-quasimonotone then it is also
polarly C-quasimonotone so that, by Theorem 3.3, d5(X) is @ quasiconcave
function. By means of Theorem 3.2, being 0,(x)=pTf(x) quasiconcave but not
strictly quasiconcave, it then follows that 3x,ye S, x#y, such that:

PHAx+H(1-My)=pT()=p™i(y) VAe (0,1);
we then have that pTf *(z, y-x)=pTf *(z,x-y)=0 Vze (x,y) and this contradicts
condition (3.3b). .

4. Pseudoconcavity and pseudomonotonicity

In [7, 8] also several classes of vector valued pseudoconcave functions have
been introduced and investigated; from these classes we will consider only the
following ones.

Definition 4.1 Consider the vector valued directionally differentiable function

[:S—R™, where SCR" is a convex set, and let CER™ be a closed convex cone

with not empty interior. We will say that:

) fis (C%,C%)-pseudoconcave [(CP,C%).pev] if and only if Vx,ye S, X2y, it
holds: f(x)-f(y)eC® = £°(y, x-y)e C;

iy fis (C%CP)-pseudoconcave [(C%,C%).pcv] if and only if Vx,y€ S, x#y, it
holds: f(x)-f(y)eC® = (y,x-y)e C;

iii) fis (C,C%)-pseudoconcave [(C,C%%.pev] if and only if Vx,ye S, xzy, it
holds: fx)-f(y)eC = f(y,x-y)e C,

12



In the following we shall relate the above classes with the following ones.

Definition 4.2 Consider the vector valued directionally differentiable function
£:3—>R™, where SCR" is a convex set, and let C=R™ be a closed convex cone
with not empty interior. We will say that:

1) fis polarly C-pseudoconcave {p.C.pcv] if and only if Op(x)=pTf(x) is
pseudoconcave Vpe C*, p20, that is to say if and only if Vpe Ct, p=0,
VX, yeS, x2y, it holds:

PT)-pT(y)>0 = pTf (v, x-y)>0;

i) fis polarly C%pseudoconcave [p.Cpcv] if and only if Vpe C*, p=0,
Vx,y€ 8, ¥y, it holds:

PT(x)-pTf(y)=0 with f(x)=f(y) = pTf *(y, x-y)>0;

i) fis polarly C%-pseudoconcave [p.C%®.pcv] if and only if Op(X)=pTf(x) is
strictly pseudoconcave Vpe C*, p#0, that is to say if and only if Vpe C*,
p#0, Vx,yeS, x#y, it holds:

PH()-pTH(y)20 = pTf (v, x-y)>0;

Note that, by means of the definitions, it follows that a polarly
C%-pseudoconcave function is also polarly CO-pseudoconcave and that a
polarly C%-pseudoconcave function is also polarly C-pseudoconcave.

Proposition 4.1 Consider the vector valued function f:S—%R™, where SCR™ is
a convex set, and let CcR™ be a closed convex cone with not empty interior,

i) If fis polarly C-pseudoconcave then it is also (C%,C%)-pseudoconcave;

ii) Iffis polarly C%-pseudoconcave then it is also (C°,C%)-pseudoconcave;

iii) If f is polarly C%-pseudoconcave then it is also (C,C%)-pseudoconcave;
Proof i) Suppose ab absurdo that f is not (C%,C%)-pseudoconcave, that is to
say that 3x,ye S, x#y, such that f(x)-f(y)e C% and f’(y, x-y)2 C%; since C is a
convex cone, by means of a known separation theorem, dpe C* such that
P’ (y, x-y)<0; since f(x)-f(y)e C% it is also pH(x)-pTf(y)>0 so that, being f
polarly C-pseudoconcave, p™f *(y, x-y)>0 which is a contradiction.,

ii) Suppose ab absurdo that f is not (C%C%)-pseudoconcave, that is to say that
Ix,ye S, x#y, such that f(x)-f(y)e C° and £’(y, x-y)& C9; gince C is a convex
cone, by means of a separation theorem, 3pe C* such that pTf *(y, x-y)<0: since
I(x)-f(y)e C% it is also PTEx)-pTf(y)20 with f(x)#f(y) so that, being f polarly C°-
pseudoconcave, pTf ’(y, X-y)>0 which is a contradiction.
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ui) The proof is similar to the ones given for i) and ii). .
The following statement is direct consequence of a result of Diewert [11].

Proposition 4.2 Consider the vector valued function £:S—R™, where ScRis
a convex set, and let CcR™ be a closed convex cone with not empty interior.
Then if f is polarly C-pseudoconcave the f is also polarly C-quasiconcave,

Remark 4.1 Note that Example 3.1 shows that a vector valued
pseudoconcave function is not in general polarly pseudoconcave.

Function f is (C,C%).pev (and also both (C°,C%) pcv and (C%,C%) pev) in S,
since Ax,ye [-1,1], xy, such that f(x)-f(y)e C, but it is not polarty C.pcv (neither
polarly C%pcv nor polarly C%pcv) in S, since for p'=(1,1) the real valued
function ¢,(x)=p™f(x)=x is strictly convex and not pseudoconcave in [-1,1].

- In the following we will characterize polarly C*-pseudoconcavity by means of
the following properties of the directional derivatives.

Definition 4.3 Consider the vector valued directionally differentiable function
£:S—R™, where SCR? is a convex set, and let CcR™ be a closed convex cone
with not empty interior. Then f*(x,d) will be said:
i) polarly C-pseudomonotone [p.C.pmon] if and only if Vpe C*, p=0, Vx,ye$§,
X#Y, it holds:
pTE (%, y-x)<0 = pTf *(y, x-y)20;
i)y polarly C°-pseudomonotone [p.C°.pmon] if and only if Vpe C*, p=0,
Vx,ye S, xzy, it holds:
P’ (x, y-x)<0 with f(x)=f(y) = pTf *(y,x-y)>0;
iii) polarly C%-pseudomonotone [p.C%.pmon] if and only if VpeC*, p#0,
VX.yeS, x#y, it holds:
P (x, y-x)<0 = pTf (v, x-y)>0;

Theorem 4.1 Consider the vector valued directionally differentiable function
£:S—>R™, where SCR™ is a convex set, and let CcR™ be a closed convex cone

with not empty interior. Then the following statements are equivalent:
i) fis polarly C-psendoconcave,
) f’(x,d)is polarly C-pseudomonotone.
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Proof i)=ii) LetpeCT, xyeS§, x#y, be such that pTf ’(x, y-x)<0; by means of
the hypothesis this inequality implies that pTI(y)-pTf(x)<0; being f polarly C-
pseudoconcave then it is also polarly C-quasiconcave so that pT(x)-pTf(y)=0
implies pTf ’(y, x-y)=0.

ii)=»i) Suppose ab absurdo that f is not polarly C-pseundoconcave, so that
dpe C*, 3x,ye S, xy, such that pTf(x)-pTf(y)>0 and pTf *(y, x-y)<O0.

Due to the positive homogeneity of the directional derivative it follows that
Pt *(y, z-y)<0 for all ze [x,y]; since f is polarly C-pseudomonotone therefore it
follows that pTf ’(z, y-z)=0 for all ze [x,y], so that by means of the positive
homogeneity of £’(x,d) we have pTf ’(z, y-x)20 for all ze [x,y]. Let us now apply
the Diewert’s Mean Value Theorem to the line segment [X,y]; then there exists
we [%,y) such that pTf *(w, y-x)<pT[f(y)-f(x)]<0 and this is absurd. ’

Theorem 4.2  Consider the vector valued directionally differentiable function
f:S—R™, where SCR" is a convex set, and let CCR™ be a closed convex cone
with not empty interior. Then the following statements are equivalent:

i) f1is polarly C%pseudoconcave,

) f’(x,d) is polarly C%-pseudomonotone.

Proof i)=ii) Let peC*, x,ye S, x#y, be such that pTf (%, y-x)<0 and f(x)=f(y);
by hypothesis this inequality implies that pT(y)-pTf(x)<0; by means of the same
hypothesis we then have pTf ’(y, x-y)>0.

ii)=1) Since f’(x,d) is polarly C®-pseudomonotone then it is also polarly C-
pseudomonotone so that f is polarly C-pseudoconcave. Suppose now ab
absurdo that f is not polarly CO-pseudoconcave, so that dpe C*, Ix,ye S, xzy,
such that pTi(x)-pTi(y)=0, f(x)#f(y) and pTf *(x, y-x)<0. By hypothesis, it implies
that p™f *(y, x-y)>0. It then follows that x-y is an ascent direction of pTf(x) at y,
consequently it follows that dwe (x,y) such that pTf(w)-pTf(y)>0; this implies,
since pTf(x)=pTf(y), that pTf(x)-pTH(w)<O0.

Let us now apply the Diewert’s Mean Value Theorem to the line segment [w,x];
then there exists ve [w,x) such that pTf’(v, X-w)SpT[f(x)-f(w)]<0; it then
follows that pTf’ (v, x-y)<0 with ve (x,y).

Since pTf’(x,y-x)<0, due to the positive homogeneity of the directional
derivative it follows that pTf’(x, z-x)<0 for all ze [x,¥); since f is also polarly C-
pseudomonotone therefore it follows that pTf’(z, x-z)20 for all ze [x,y) , so that,
being f’(x,d) positive homogeneous, we have pTE’(z,x-y)20 for all ze [x,y) , so
that in particular for the above v we have pTLf’ (v, x-y)=20 and this is a
contradiction, 'y
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Theorem 4.3 Consider the vector valued directionally differentiable function
f:S—=R™ where SCR™ is a convex set, and let C&R™ be a closed convex cone
with not empty interior. Then the following statements are equivalent:

) fis polarly C%-pseudoconcave,

i) f’°(x,d) is polarly C%-pseudomonotone.

Proof i)=i) The proofis similar to the one given in Theorem 4.2.

it)=>i) The proof is similar to the one given in Theorem 4.1. *

3. Concluding remarks

The authors are convinced that the polar concepts of generalized concavity are
more restrictive than the C* generalized concavity concepts, but in many cases
these concepts could provide nicer structures to the vector optimization
problem; expecially we are aware that, in the image space approach to vector
optimization problems with polarly C* generalized concave functions, the
image set will have some nice particular properties. This idea will be developed
in other papers.
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